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Abstract: The development of rapid, accurate, cost effective methods to determine soil physical and chemical properties 
is important for sustainable land management. In the last two to three decades, the interest in using visible and near 
infrared (Vis-NIR) spectroscopy as an alternative method for determining soil properties has increased. To obtain reliable 
predictions of soil properties, multivariate calibration techniques such as Partial Least Squares Regression (PLSR) are 
commonly used to correlate the spectra with the chemical, physical and mineralogical properties of soils. 

The objective of the paper was to assess the potential of Vis-NIR spectroscopy coupled with PLSR to determine soil 
chemical and physical properties such as organic carbon (SOC), sand, silt, clay, and calcium carbonate (CaCO3) 
contents in a sample site of southern Italy. 

Spectral curves showed that the soils could be spectrally separable on the basis of chemical and physical properties. 
PLSR calibration models were derived for each of the soil properties and were validated with an independent data set. 
The optimum number of factors to be retained in the calibration models was determined by leave-one-out cross-
validation. The accuracy of the calibration and validation models for the different soil properties was evaluated with the 
coefficient of determination (R2) and the root mean squared error (RMSE). The results showed that predictions were 
satisfactory for all soil properties analyzed with high values of R2 > 80.  

A combination of Vis-NIR spectroscopy and multivariate statistical techniques, therefore, can be used as a rapid, low 
cost and quantitative means of characterizing the soils of southern Italy. 
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1. INTRODUCTION 

Soil is one of the most important natural resources 
because it plays a key role in biochemical and 
geochemical cycling, water partitioning (storage and 
release), land protection and buffering, and energy 
partitioning, all of which are essential for supporting 
ecosystems [1]. Moreover, soil represents the largest 
pool of carbon (C), storing approximately 1500 PgC in 
the top 1 m [2, 3]; hence, even relatively small changes 
in soil C storage per unit area could have a significant 
impact on the global carbon balance. Therefore, 
accurately quantifying soil properties and their spatial 
and temporal variability is an important issue for 
sustainable land management, precision agriculture 
and soil mapping as well as for carbon sequestration. 
However, conventional methods of estimating soil 
properties, based on field or laboratory methods, are 
relatively complex, time consuming, and expensive 
when large numbers of soil samples need to be 
analyzed [4]. To overcome this, visible and near-
infrared spectroscopy (Vis-NIR, 350 - 2500 nm) has 
become, in recent decades, an important tool for 
quantitative evaluation of soil properties, e.g.,  
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carbonate content, organic carbon (OC), total nitrogen 
(N), iron (Fe) oxide minerals, soil texture [5-10]. 
Compared to conventional laboratory methods, the Vis-
NIR spectroscopy technique has been accepted as 
rapid and cost effective, requiring minimal sample 
preparation and no hazardous chemicals. It is non-
destructive and several soil properties can be 
determined from a single measure [e.g. 4, 10-15]. The 
Vis-NIR spectroscopy method is based on the simple 
assumption that the soil reflectance in the 350-2500 nm 
spectral region is a linear combination of the spectral 
signatures of its various components weighted by their 
abundance [16, 17]. So, small changes in physical, 
chemical, mineralogical and biological soil properties 
produce different spectral characteristics that can be 
identified by reflectance spectroscopy [12, 18-23]. 

Although measuring soil Vis-NIR reflectance 
requires only a few seconds, the reflectance spectra 
are largely non-specific due to interference resulting 
from the overlapping spectra of soil constituents that 
are themselves varied and interrelated [24]. Therefore, 
the physical, chemical and mineralogical properties of 
soils can be correlated to reflectance spectra by 
suitable multivariate calibration procedures [15, 25, 26] 
such as multiple linear regression (MLR), principal 
components regression (PCR), partial least-squares 
regression (PLSR) and artificial neural networks (ANN) 
[e.g. 6, 7, 12, 14, 21, 27-29]. 
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Several studies have successfully shown the 
effectiveness of Vis-NIR spectroscopy in determining 
the physical, chemical and mineralogical properties of 
soils of various pedo-climatic environments around the 
world. Yet few studies have been carried out in 
southern Italy [9, 10, 22, 23, 30, 31]. 

The objective of the paper was to assess the 
potential of Vis-NIR spectroscopy to determine various 
soil chemical and physical properties such as organic 
carbon (SOC), sand, silt, clay, and calcium carbonate 
(CaCO3) contents in a sample area of southern Italy. 
To this end calibration models based on laboratory Vis-
NIR spectroscopy coupled with PLSR analysis were 
developed. 

2. MATERIAL AND METHODS 

2.1. Description of the Study Area 

The study area was the Turbolo watershed, with a 
surface of about 30 km2, located in northern Calabria 
(southern Italy) between 39°32’25’’N and 39°29’51’’N 

latitude, 16°12’57’’E and 16°05’21’’E longitude (Figure 
1). Elevation ranges from 75 to 1,015 meters above 
sea level, with an average value of 292 m. Slope 
ranges between 0° to about 66° with a mean slope of 
16°. 

The climate is sub-humid, with a mean annual 
precipitation of 1,200 mm, distributed over 105 days. 
Rainfall peaks occur in the period from October-March, 
which accounts for more than 60% of the precipitation 
[32]. The mean annual temperature is 16°C, and mean 
monthly temperatures range between 7°C in January 
and 26°C in August. 

The Turbolo watershed in the western sector is 
dominated by a mountainous landscape characterized 
by steep slopes shaped on Palaeozoic metamorphic 
rocks (mainly gneiss and schist), intensely fractured 
and weathered, and in many places covered by thick 
regolith. In the eastern sector, the topography is 
characterized by gentle slopes and fluvial terraces cut 
on sedimentary terrains of Neogene-Quaternary ages 

 
Figure 1: Study area and soil sampling locations. 
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consisting mostly of clays, sands and conglomerates 
[33]. Alluvial and colluvial deposits are present along 
the valley floors [34]. 

The distribution of soil types is closely related to the 
geological, geomorphologic and climatic properties of 
the area. According to the pedological data, derived 
from the soil map of Calabria [35] based on Soil 
Taxonomy [36], the dominant soils types are Alfisols, 
Inceptisols and Entisols. In addition, on clayey hillsides, 
soils exhibit prominent vertic properties, with a high 
structural dynamism characterized by the development 
of cracks (due to shrinkage of desiccated clays) on the 
surface in the dry season, subsequently closed by 
water infiltration, and consequent swelling of clays in 
the following wet season. The pedoclimatic regime is 
xeric and thermic, shifting to udic and mesic in the 
mountainous parts [35]. The prevailing soil textural 
classes are sandy loam and sandy clay loam [34, 37]. 
The soil profiles frequently appear truncated or 
severely degraded by water erosion and mass wasting 
[38, 39].  

Regarding the land use, about half of the study area 
is agricultural, mainly cropland and olive groves [34], 
whereas more than 20% has a shrubby and 
herbaceous cover often left to pasture. The remainder 
consists of woodland, which is widespread in the 
western sector of the watershed. 

2.2. Sampling and Analysis of the Soil 

A set of 215 georeferenced surface soil samples 
(about 0-20 cm depth) were collected within the study 
area, by means of an auger sampler (Figure 1). The 
sampling sites were carefully selected on the basis of 
the most representative soil-landscape features, such 
as geological substrate, topographic characteristics, 
soil types, land use/cover and development/ 
degradation conditions of the topsoil. The locations of 
the sampling sites were recorded with a Garmin 
eTrex30 GPS, with an accuracy of 3-5 m.  

The samples were brought to the laboratory, air 
dried, gently crushed in an agate mortar to break up 
larger aggregates and visible roots were removed; 
afterwards each sample was sieved at 2 mm (fine earth 
fraction), homogenized and quartered and then split 
into two sub-samples. One was used to determine 
certain soil properties (organic carbon, calcium 
carbonate, clay, silt and sand contents) using 
conventional laboratory methods, and the other one for 
the spectroscopic measures. 

The physical and chemical properties were 
determined according to the Italian Official Methods for 
Soil Analysis [40, 41]. The relative proportion of sand 
(2-0.05 mm), silt (0.05–0.002 mm), and clay (less than 
0.002 mm) content was determined through the 
hydrometer method, after pre-treatment with sodium 
hexametaphosphate as a dispersant. The content of 
soil organic carbon (SOC) was determined by Walkley-
Black method and calcium carbonate content (CaCO3) 
was determined by the pressure calcimeter method. 

2.3. Soil Vis-NIR Reflectance Measurements  

Soil Vis-NIR reflectance was measured in the 
laboratory, under artificial light, using an ASD 
FieldSpec IV spectroradiometer (Analytical Spectral 
Devices Inc., Boulder, Colorado, USA), which 
combines three spectrometers to cover the portion of 
the spectrum between 350 and 2500 nm, with a 
sampling interval 1.4 nm for the 350 - 1000 nm region 
and 2 nm for the 1000 - 2500 nm region. The 
spectroradiometer was located in a nadir position at a 
distance of 10 cm from the sample, allowing for 
radiance measurements within a circular area of 
approximately 4.5-cm diameter. For the spectral 
measurement, each soil sample was placed inside a 
circular black capsule of 10 cm in diameter and 1 cm 
depth and levelled with a spatula to obtain a smooth 
surface. A 50 Watts halogen lamp with a zenith angle 
of 30°, located at a distance of approximately 0.25 m 
from the soil sample was used as a light source. The 
measured radiance was transformed to spectral 
reflectance as the ratio between the radiance reflected 
by the soil and that of a standard white reference plate 
(Spectralon) measured under the same illumination 
conditions. The noise level in the spectral signal was 
reduced by averaging 50 spectra for each soil sample. 
In addition, to eliminate any possible spectral 
anomalies due to geometry of measurement, four 
replicate scans were acquired and averaged for every 
soil sample by rotating the sample by 90° (Figure 2). 

 
Figure 2: Setup of the experimental equipment for soil  
Vis-NIR spectral measurements. 
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Finally, the average reflectance curves were 
resampled at 10-nm interval, to reduce spectral 
dimensionality. 

2.4. Calibration and Validation Models  

In order to develop models based on spectra and 
reference laboratory data of the soil samples, the 
multivariate statistical procedure was used (Figure 3). 
Prior to developing the spectra calibration models, 
therefore, pre-treatment was carried out to minimize 
noise and optimize calibration accuracy. The measured 
Vis-NIR reflectance (R) spectra were transformed to 
apparent absorbance through log(1/R) to enhance the 
linearity between the measured absorbance and the 
values of the relevant soil properties. The absorbance 
spectra were mean-centred to ensure that all results 
would be interpretable in terms of variation around the 
mean; then they were smoothed through a median filter 
algorithm with a first derivative to remove an additive 
baseline [42]. Finally, multiplicative signal correction 
(MSC) was applied to the absorbance spectra to 
correct for light scattering variations [43]. Details on 
pre-processing methods can be found in Martens and 
Næs [25] and in Næs et al. [44]. 

 
Figure 3: Flow chart of the procedure used to develop  
Vis-NIR PLSR prediction models for the determination of soil 
properties. 

Partial least squares regression (PLSR) [14, 25], 
was chosen from the available multivariate statistical 
methods to determine the relation between absorbance 
and soil properties (clay, silt, sand, SOC and CaCO3) 
determined by conventional methods. Pre-treatment of 
data and the PLSR analysis were performed with 

PArLeS vs3.1 software developed by Viscarra Rossel 
[42]. The idea behind PLSR is to find a few linear 
combinations (components or factors) of the original X-
values (spectral data) and to use only these 
combinations in the regression equation [44]. In this 
way, the irrelevant and unstable information is 
discarded and only the most relevant part of the X-
variation is used for regression; thus, the problem of 
collinearity is solved and more stable regression 
equations obtained [44]. PLSR reduces the Vis-NIR 
matrix to a small number of statistically significant 
components and is based on the latent variable 
decomposition of two sets of variables: the set X of 
predictors (matrix n × N, where n is the number of 
observations and N is the number of wavelengths) and 
the set y of response variable (vector n × 1 of soil 
properties). The latent variables, which are orthogonal 
factors that maximize the covariance between 
independent (X) and dependent variables (y), explain 
most of the variation in both predictors and responses. 
The optimal number of latent variables was chosen 
through a one-at-a-time cross-validation as the number 
that minimizes the predicted residual sum of squares. 

To evaluate the accuracy of the PLSR regression 
models the dataset was separated randomly into two 
subsets: calibration set (75%, n=161) for developing 
the prediction model and validation set (25%, n=54) to 
test the model’s accuracy (Figures 1 and 3).  

The leave-one-out cross-validation procedure was 
used to test the predictive significance of each PLSR 
component and determine the number of factors (latent 
variables) to be retained in the calibration model: one 
sample was left out of the global data set and the 
model was calculated on the remaining data points. 
The value for the left-out sample was then predicted 
and the residual computed. The process was repeated 
with another sample from the data set, and so on, until 
every sample had been left out once. The predictive 
ability of the cross-validation models was evaluated by 
the coefficient of determination (

  
R

Cal

2 ) and the root 

mean square error of calibration (
 
RMSE

Cal
). 

The models were independently validated through 
the validation set, and the coefficient of determination 
(
  
R

Val

2 ) and the root mean square error of validation 

(
 
RMSE

Val
) were computed to check the goodness of 

prediction. 

3. RESULTS AND DISCUSSION  

The summary statistics of the soil properties for the 
exhaustive, calibration and validation data sets are 
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reported in Table 1. The content of SOC of the 
exhaustive data set ranges from a minimum of 0.2 % to 
a maximum of 7.0 % with a mean value of 1.7 %, 
indicating that most topsoil samples have a moderate 
SOC content. 

The sand content for the exhaustive data set ranges 
from 3.0 % to 93.0 % with a mean value of 59.5 % 
(Table 1). The silt content varies from 1.0 % to 58.6 % 
with a mean value of 20.6 %, while clay content ranges 
from 4.0 % to 66.0 % with a mean value of 19.9 %. The 
data shows that most soil samples have a moderate to 
high sand content and are generally poor in clay (Table 
1); the soils, therefore, can be mainly classified as 
loamy sand, sandy loam and sandy clay loam. 

CaCO3 content ranges from 0.0 to 28.4 % with 
mean value of 6.0 % (Table 1). Soil samples with high 
contents of CaCO3 and sand, together with low SOC 
indicate that many soils are poorly developed and/or 
have undergone considerable erosion [22, 37]. 

Descriptive statistics of soil properties of the 
calibration set and the validation set (Table 1) are quite 
similar to those of the exhaustive data set. In addition, 
all soil properties have an asymmetric distribution as 
shown by the values of skewness (Table 1). 

The spectral curves of all soil samples are plotted in 
Figure 4a and show a typical pattern in each 
wavelength domain; in particular, reflectance is 
generally lower in the visible range (350-700 nm) and 
higher in the near infrared range (700-2500 nm). 

In accordance with Demattê et al. [45], soils are 
spectrally separable on the basis of physical, chemical 
and mineralogical composition or molecular groups. 
Their spectral curves, therefore, showed variation in 

shape, overall reflectance intensity and absorption 
bands (depth and amplitude) around 1400, 1900 and 
2200 nm (Figure 4a). These bands can be associated 
with clay minerals, OH features of free water at 1400 
and 1900 nm, and lattice OH features at 1400 and 
2200 nm [14, 16]. In addition, the spectra showed a 
small reflectance peak around 2200 nm, which may be 
due to organic molecules (e.g. CH2, CH3, and NH3), 
Si\OH bonds, cation\OH bonds in phyllosilicate 
minerals (e.g. kaolinite, montmorillonite) [46]. In some 
soil spectra, the absorption band at 2200 nm is 
associated with a smaller band (doublet) at 2160 nm, 
due the combination of the OH-bond fundamental 
stretch with the Al-OH fundamental bending mode [47]. 

Figure 4b shows the comparison of the spectral 
curves of soils with different values of particle size 
distribution, SOC and CaCO3 content. In accordance 
with other studies [e.g. 5, 10, 12, 48], SOC is a 
property which has a strong influence on spectral 
response. Reflectance intensity was relatively high, 
throughout the 350 nm to 2500 nm wavelength range, 
for soils with low content of SOC. Spectral curves with 
low reflectance show a concave or linear shape, which 
results in a decrease of curve slope between 500 and 
800 nm domain (Figure 4b), that is typical of soils with 
high SOC content [49]. 

Moreover, variations in soil particle size distribution 
modified the shape and overall reflectance intensity of 
the soil spectra [23]. In fact, it was observed that 
reflectance intensity, in the entire Vis–NIR spectrum 
domain, is relatively high for soils with loamy sand 
texture with over 70 % sand content (Figure 4b); this 
was probably due to the high amount of quartz in the 
sand fraction, which raised the intensity of spectral 
reflectance [50, 51]. Conversely, the soil reflectance 
decreased when clay content, dominated by 

Table 1: Summary Statistics of the Exhaustive (E), Calibration (Cal) and Validation (Val) Data Sets of Soil Properties 

 SOC Sand Silt Clay CaCO3 

Samples E Cal Val E Cal Val E Cal Val E Cal Val E Cal Val 

Number 215 161 54 215 161 54 215 161 54 215 161 54 215 161 54 

Min (%) 0.2 0.2 0.2 3.0 4.0 3.0 1.0 1.0 6.0 4.0 4.0 4.0 0.0 0.0 0.0 

Max (%) 7.0 7.0 6.2 93.0 93.0 79.0 58.6 53.0 58.6 66.0 54.0 66.0 28.4 28.4 25.3 

Mean (%) 1.7 1.7 1.8 59.5 60.7 55.9 20.6 19.5 23.9 19.9 19.7 20.4 6.0 5.9 6.2 

St. Dev. (%) 1.2 1.2 1.2 17.9 17.8 18.0 12.5 12.5 12.0 10.3 10.0 11.3 6.5 6.3 7.0 

Median (%) 1.5 1.4 1.7 62.0 63.0 59.5 19.0 17.0 23.0 18.0 18.0 18.0 2.8 2.8 2.5 

Skewness (-) 1.6 1.6 1.3 -0.8 -0.7 -1.1 0.7 0.7 0.8 1.1 0.8 1.6 1.1 1.0 1.1 

Kurtosis (-) 3.0 3.2 2.2 0.6 0.4 1.0 -0.1 -0.3 0.4 1.8 0.2 4.0 0.3 0.2 0.2 
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phyllosilicates, increased [52, 53] and, consequently, 
the SOC content increased [10, 54]. 

Finally, in many soil spectra an absorption band 
around a wavelength of 2342 nm was observed (Figure 
4b), which is indicative of the presence of CaCO3 in the 
soil [55]. Moreover, it was generally the case that soil 
reflectance increases with CaCO3 content (Figure 4b).  

Cross-validation results of the PLSR prediction 
model, obtained from the relationships between 
laboratory Vis-NIR spectra and soil properties, 
including SOC, sand, silt, clay and CaCO3, of the 
calibration set are shown in Figure 5a. The PLSR 
results show that calibration models fully account for 
the variance in each soil property. 

The optimum number of factors used in the 
calibration models, determined on the basis of the best 
cross validation results (lowest RMSE and the highest 
R2), were 10 for SOC, 12 for sand, 16 for silt, 11 for 
clay and 13 for CaCO3 (Figure 5a). A very good 
calibration was obtained for all soil properties with R2 
greater than or equal to 0.80. The high accuracy of the 
calibration models was also indicated by the lowest 
RMSE of cross-validation. 

The best results were obtained for CaCO3 and 
SOC, with a RMSE of 1.93 % and 0.41 % and R2 of 
0.91 and 0.88, respectively (Figure 5a). The estimation 
obtained for silt (R2 = 0.80; RMSE = 5.69) was less 
accurate.  

The PLSR models built in this study from Vis-NIR 
reflectance compare well with the results obtained by 
other researchers [9, 10, 14, 15, 31, 54, 56, 57, 58 and 
many others].  

Moreover, the predictive power of the calibration 
model of each soil property was tested against an 
independent data set (validation set); the scatter plots 
of the validation models were reported in Figure 5b. 
The results obtained were very good for SOC, sand, 
clay and CaCO3 with R2 greater than or equal to 0.80, 
while the results for silt were less satisfactory 
(R2=0.77). In addition, these results are in close 
agreement with the results obtained from the PLSR 
cross-validation models. 

4. CONCLUSIONS  

In this study soil Vis–NIR spectroscopy and PLSR 
were used to determine SOC, sand, silt, clay, and 
CaCO3 content in an area of southern Italy. 

Reflectance spectroscopy allowed for the detection 
of soil changes through variations in reflectance 
intensity, absorption features and spectral shape. 
Visual inspection of the spectral curves demonstrated 
that SOC content and particle size distribution have an 
important influence on spectral reflectance in the Vis-
NIR domain. Moreover, comparison of spectral curves 
showed that soil samples could be spectrally separable 
on the basis of soil properties; in particular, reflectance 
intensity was observed to be relatively higher for soils 
with low SOC content, high CaCO3 content and loamy-
sand texture, which have a high sand content. 

The results show that the proposed approach is 
suitable for predicting the soil properties considered in 
this study. The results of cross validation for the 
calibration models indicated a very good fit. Values of 
R2 ranged between a minimum of 0.80 for silt and a

 
Figure 4: a) Spectral curves of all soil samples; b) Spectral curves selected to illustrate the variation of soils properties in the 
study area. 
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Figure 5: Scatter-plots of observed versus predicted soil properties for calibration models (a) and validation models (b). NF = 
number of factors; R2: coefficient of determination; RMSE: root mean square error. 
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maximum of 0.91 for CaCO3 content. The results for 
the validation models were also satisfactory and in 
accord with those obtained by other authors. 

Finally, the approach proposed in this study could 
be extended to soil surveys in other areas of the 
Calabria region. 
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