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ABSTRACT 

The accuracy of grain yield estimation is critical for national food security. Because of the comprehensive 

influence of spatial differentiation conditions, such as temperature, precipitation, soil, rice variety, and 

irrigation, yield estimation requires integrated modeling that is based on dynamic conditions. These dynamic 

conditions include geographical background, biological factors, and human impact. Most existing studies 

focus on the observation and analysis of external factors; only a few reports on yield simulations are coupled 

with nature, management, and crop growth mechanism. Our study incorporates the crop growth mechanism 

of rice, along with data of rice varieties, soil, meteorology, and field management, to determine the rice yield 

in Jiangsu province, China. In addition, we have used a decision support system for the agrotechnology 

transfer model, along with Coupled Model Intercomparison Project data and geographic information system 

technology. Our results showed that: (1) A calibrated variety genetic coefficient could simulate rice biomass 

value (flowering stage, maturity stage, and yield) reasonably. The values of NRMSE (Normalized Root Mean 

Square Error) between the simulated and measured values after parameter calibration are all less than 10%, 

the values of d(index of agreement) are all close to 1, the simulated value of yield is in good agreement with 

the measured value. (2) A linear correlation between the meteorological elements and yield was observed. 

The linear correlation had regional differences. Notably, an increase in precipitation was conducive to the 

increase in yield. Except at the Huaiyin site, the other sites showed that the temperature rise could 

potentially lead to reduced production. We found that an increase in solar radiation was unfavorable to the 

production of rice in the northern and western sites in the Jiangsu province, whereas it was conducive in the 

southern and eastern sites. (3) Our study predicted the rice yield from typical sites in the Jiangsu province 

from 2019 to 2060 in the wake of climate change while excluding the extreme effects of diseases, pests, 

typhoons, and floods. The order of average yield per unit area is as follows: Xinghua site (8212.76 kg/ha) > 

Huaiyin site (7912.70 kg/ha) > Gaoyou site (7440.98 kg/ha) > Gaochun site (7512.29 kg/ha) > Ganyu site 

(7460.88 kg/ha) > Yixing site (7167.00 kg/ha). Notably, the average yields from the Xinghua and Huaiyin sites 

were higher than that from the Jiangsu province (7617.77 kg/ha). The fluctuation of the yield per unit area at 

each site was generally consistent with the fluctuation in the overall yield, showing a downward trend and 

tends to be stable. The dispersion of yield per unit area indicates that Gaochun had the most stable yield per 

unit area followed by Xinghua, Ganyu, Yixing, Huaiyin, and Gaoyou. The yield per unit area of the Huaiyin and 

Gaoyou sites was unstable and portrayed the biggest fluctuations. Future studies need to focus on how to 

deal with spatial variation and carry out adaptive verification to make the simulation results applicable to 

more dimensions. 
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1. Introduction 

Food-related issues are deemed as the top priority of agricultural production. Obtaining accurate crop growth 

monitoring information and yield prediction information in real-time is crucial for agricultural management and 

food security [1]. Currently, China is facing many issues regarding cultivated land, including less cultivated land per 

capita, poor quality and serious degradation of cultivated land, the severe shortage of reserved cultivated land 

resources, and aggravation of cultivated land reduction [2]. Crop yield is a direct index that can be used to 

evaluate farmland productivity and income of farmers. Timely and effective estimation and prediction of crop 

yield per unit area can aid in decision-making at the national level and offer guidance to farmers (with respect to 

grain storage and grain trading), contributing considerably to national agricultural decision-making, farmland 

production management, and grain storage security [1, 3]. Therefore, studies on crop yield estimation have 

become an essential topic in many disciplines, including geography and agronomy. Affected by many factors, such 

as meteorology, soil, varieties, and cultivation management measures, the farmland production system has 

significant temporal and spatial variability, and several urgent problems in determining crop yield remain unsolved. 

First, it is imperative to develop an integrated model that is based on nature, humanities, biotechnology, and other 

factors to predict the trend of agricultural production. Second, we need to quantify the impact of these factors on 

agricultural production. To solve these problems, it is critical to understand the complex process of crop yield 

formation, along with its physiology and biochemistry. From the perspective of multiple influencing factors, such 

as meteorological conditions, soil conditions, field management, and phenological and agricultural time 

information, ensuring the rationality and accuracy of yield per unit area estimation also play an important role [3]. 
All these solutions serve as an important reference for governments at all levels to formulate efficient policies and 

guidelines related to food security, with both practical and theoretical innovation [4]. 

In recent years, satellite remote sensing and crop growth models have been widely applied for crop growth 

monitoring and yield prediction. Applying remote sensing technology for yield estimation is one of the earliest 

agricultural remote sensing applications [5]. Wang put forward the concepts of “relative spectral variable” and 

“relative yield” to carry out the multi-period relative variable rice unmanned aerial vehicle remote sensing yield 

estimation [6]. Quarmay et al. estimated the total yield of wheat, corn, and rice using the cumulative normalized 

difference vegetation index (NDVI) calculated by multi-temporal AVHRR(advanced very high-resolution radiometer) 

data [7]. Wang et al. used the NDVI and enhanced vegetation index derived from the moderate resolution imaging 

spectroradiometer dataset to predict the winter wheat yield in the United States of America using linear models 
[8]. Although it is operable and concise to quantitatively obtain the key physical and chemical parameters related 

to crop growth by using remote sensing data to estimate the crop yield in the current season, it can not really 

reveal the impact of the internal mechanism affecting rice yield change, and the yield change caused by the 

impact of climate change on crops in the future can not be obtained only through remote sensing inversion, The 

scalability of space-time application is not strong. Additionally, the alterations in yield caused by the impact of 

climate change on crops in the future cannot be obtained through remote sensing inversion Which causes the lack 

of scalability in spatio-temporal applications, and therefore, remote sensing technology can integrate into a crop 

growth model for complementary advantages [5]. 

The aim of applying the crop growth model for crop yield estimation is to predict the expected crop yield and 

identify the spatiotemporal distribution and change rules of crop yield, based on the crop physiology and ecology 

and the comprehensive influence of geographical environmental factors, including temperature, precipitation, soil, 

regional differences, rice varieties, and anthropological factors [9, 10]. Combined with the advantages of remote 

sensing in parameter acquisition, the crop yield estimation model has evolved from simple parameter statistics to 

yield estimation systems based on physiological and ecological mechanisms [11–13], its rapid development 

provides quantitative tools for crop growth and yield prediction, climate, variety, and management measure effect 

evaluation. Major breakthroughs have been made in the most accurate large-scale and field-level yield estimations. 

In addition, with the help of daily meteorological data collected in the past years, the crop model can cover various 

climatic year types and obtain the crop yield potential under different climatic year types [14-16]. As a supplement 

to the field experiment research method, crop models have an increasingly extensive application. They play an 

important role in cultivation and breeding, field management, yield prediction, disaster assessment, and 
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agricultural technology popularization. However, because of the complexity and large parameter differences of 

various models developed in the world, the application and popularization of the models have a few challenges. 

To solve this problem, various models have been standardized in the USA to form a comprehensive decision 

support system for agrotechnology transfer (DSSAT) system, which can analyze the impact of agricultural 

technology worldwide on soil, crop growth, and development. The DSSAT system encompasses many series of 

models, including CERES (crop environment resource synthesis) and CROPGRO (Crop GROwth). The cereal crop 

simulation model CERES is most widely used for studying the impact of climate change on agriculture. It can 

simulate the growth, development, and yield of rice according to the interaction between soil, water, weather, 

atmosphere, and the crop itself, along with field management. CERES has developed different yield estimation 

models, including CERES-Maize, CERES-Wheat, and CERES-Rice [17-20]. Bhatia et al. applied the DSSAT model to 

analyze the potential yields of soybean with water limitation and non-limitation in India during 2008 [21]. The 

DSSAT model was also used to study the impact of future climate change and irrigation demand on crops to 

provide strategies in response to the future climate change [22-25]. In our study, the DSSAT model was combined 

with geographic information system (GIS) to predict the spatiotemporal variation of crop yield with climate and 

management changes. Our aim was to mitigate the risk of reduced yield [26, 27]. The CERES-Rice model has been 

established to estimate rice biomass and yield accurately. In particular, the model was increasingly used to 

evaluate the impact of climate change on rice production after the 1990s. 

In this study, we used the DSSAT crop yield estimation model. The influences of extreme abnormal weather 

were excluded. From the perspective of physiological and ecological mechanisms of crops, our study considered 

the influencing factors of crop growth, including field management and rice genetic coefficient, along with natural 

conditions. Six typical paddy rice planting sites in the Jiangsu province, China, were selected as the study area. 

After calibrating the genetic factors of rice varieties at each site, we simulated the rice yield per unit area of the 

main planting sites in the Jiangsu province from 1990 to 2018 and verified the accuracy of the simulated yield. 

Under the condition that the relative difference (NRMSE) and coincidence(d) between simulated and observed 

values are good, the yield simulation is carried out by using the calibration results of rice genetic factors. This 

study combined the calibrated rice genetic factors with the Coupled Model Intercomparison Project (CMIP)5 

climate prediction downscaling dataset of the sites during 2019–2060 and predicted the rice yield per unit area of 

the rice plantation sites in the Jiangsu province for the next 41 years. Our study may provide a reliable decision-

making reference for realizing the rational utilization of cultivated land resources, optimization of rice production 

space layout, and establishment of food security mechanisms in Jiangsu province. 

2. Materials and Methods 

2.1. Overview of the Study Area  

Jiangsu province is located in the middle and lower reaches of the Yangtze River in China, (116°18′ E–121°

57′ E, 30°45′ N–35°20′ N). Jiangsu is bordered by Shandong in the north, the Yellow Sea in the east, Zhejiang, 

and Shanghai in the southeast, and Anhui in the west. It has a total of 13 prefecture-level cities (Fig. 1). Located in 

the cross-junction of China’s economic “T- shaped” overall layout, the core area of the Yangtze river delta and the 

North–South cultural transition zone, Jiangsu has a favorable geographical location. 

With an area of 103229.17 km2, Jiangsu is the province with the lowest elevation terrain in China. It is covered 

predominantly by plains and most areas are below 50 m above the sea level, the plain area accounts for 86.89%. 

Jiangsu is located in a transitional climate region (from temperate to subtropical zone), with a mild climate, 

moderate rainfall, and distinct four seasons. The average temperature in Jiangsu is 13–16 ℃. The annual rainfall 

runoff-depth is between 150 and 400 mm, resulting in abundant underground water sources. Jiangsu is one of the 

main and high-yield rice provinces in China. Both the total yield and planting area rank first in China. Jiangsu only 

has single-cropping rice, with medium-grained rice grown in the north region of the Yangtze River Basin and late 

rice grown in the south region of the Yangtze River Basin. Drawing upon the zoning method of Zhang et al., [28] in 

our study, we divided Jiangsu into four regions that cultivated different rice varieties (Fig. 1). 
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Figure 1: Research area of Jiangsu province. 

2.2. Data Sources 

The data used in this study included Jiangsu’s basic geographic data (obtained from the administrative division), 

a digital elevation model (DEM), observation data from Jiangsu meteorological sites and its data description 

documents, downscaled climate projections from the CMIP dataset, and socio-economic statistics, along with land 

use (vector), soil, and phenological data. 

2.3. DSSAT Yield Projection Model 

An accurate estimation of the annual rice yield in the Jiangsu province is based on long-time series rice yield 

simulation prediction and spatiotemporal analysis. The four main rice-growing areas in the Jiangsu province were 

selected in this study. The influence of extreme abnormal weather factors was excluded. We conducted the 

regional calibration of the rice genetic coefficient in each area using random sampling observation data of yield 

from 1990 to 2018. Thereafter, the multi-factor parameters, such as meteorology, soil, field management, and 

modified genetic coefficient were comprehensively considered. Then, we used the DSSAT rice yield estimation 

model to estimate the change in rice yield per unit area from 1990 to 2018 in the Jiangsu province. After 

comparing the simulated value with the observed value and verifying the rationality of the model, the long-time 

series simulation prediction of rice yield per unit area in the typical rice planting sites in the Jiangsu province was 

carried out using the multi-year CMIP5 downscaled climate projection dataset from 2019 to 2060. 

2.3.1. Model Parameter Pretreatment 

Meteorological Parameters 

The DSSAT model considered the daily data, and the daily meteorological documents were needed for 

simulating crop growth (from sowing to maturity). Concurrently, for the model to evaluate the external natural 

conditions during the simulation period more accurately and improve the rationality of the model simulation, we 

incorporated the meteorological data before crop sowing and after the harvest. The meteorological data included 

the name of the meteorological site, country name, longitude and latitude, altitude, daily solar radiation (MJ/m2), 

daily maximum temperature (℃), daily minimum temperature (℃), and daily precipitation (mm).  
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The redundant data (e.g., null and missing measurement) not required by the DSSAT model in the original 

meteorological data were preprocessed by batch processing the meteorological data. The meteorological data 

were first processed according to the rules described in Table 2 and the actual element values of the 

meteorological factors were obtained. 

Table 1: Research data. 

Data Sources 

Land use data (2015) 

Institute of Geographic Sciences and Natural Resources 

Research, Chinese Academy of Sciences (CAS) 

DEM data (30 m) 

Daily observed meteorological data from 1990 to 2018 (precipitation, daily 

maximum temperature, daily minimum temperature, and solar radiation) 

Soil type data 
Institute of Soil Science, CAS 

Data of the second soil survey in China 

1:4,000,000 soil nutrient data Soil Center, National Earth System Science Data Center 

CMIP5 downscaling climate projections dataset China crop model computing service 

Socio-economic statistics 

(Field management data, e.g., actual yield per unit area and rice fertilization) 

Statistical Communiqué of the People's Republic of China 

on the National Economic and Social Development 

Jiangsu Statistical Yearbook and other literature 

Phenological data of rice growth and development China’s social-economic big data research platform 

*Note: digital elevation model (DEM). 

 

Table 2: Description table of meteorological data attributes. 

Data Eigen Value Note Calibrated Value 

32744 Blank NULL 

32700 Microscale 0 

32766 Missing measurement NULL 

31XXX Snow (sleet, snowstorm) XXX denotes precipitation XXX 

30XXX Rain and snow XXX denotes precipitation XXX 

32XXX Fog dew frost XXX denotes precipitation XXX 

 

Because it is impossible to directly observe the solar radiation factor required by the model, our study refered 

to the formula for calculating short wave radiation using the FAO Penman-Monteith method [9, 29, 30] (Eqs. 1–6), 

which converts the daily sunshine hours recorded in the meteorological data to daily radiation value, as follows: 

𝑅𝑠 = (𝑎𝑠 + 𝑏𝑠
𝑛

𝑁
)𝑅𝑎 (1) 

𝑅𝑎 =
24(60)

𝜋
𝐺𝑠𝑐𝑑𝑟[𝜔𝑠 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜔𝑠)] 

(2) 

𝑁 =
24

𝜋
𝜔𝑠 

(3) 

𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠[−𝑡𝑎𝑛(𝜑)𝑡𝑎𝑛(𝛿)] (4) 

𝑑𝑟 = 1 + 0.033𝑐𝑜𝑠(
2𝜋

365
𝐽) (5) 

𝛿 = 0.409𝑠𝑖𝑛(
2𝜋

365
𝐽 − 1.39) (6) 
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Where 𝑅𝑠 is short wave radiation (MJ/m2 per day), n refers to the actual sunshine hours (h), N is the maximum 

possible sunshine hours (h), 𝑛/𝑁 is relative sunshine, and𝐺𝑠𝑐  is the solar constant number (0.0820 MJ/m2 per 

minute), 𝑅𝑎 denotes extraterrestrial radiation (𝑀𝐽𝑚−2𝑑𝑎𝑦−1), 𝑎𝑠 and 𝑏𝑠 are regression constant, representing the 

transmission coefficient of extraterrestrial radiation reaching the earth’s surface [on cloudy days (𝑛 = 0) and sunny 

days (𝑛 = 𝑁)], 𝑎𝑠 + 𝑏𝑠 refers to the transmittance of extraterrestrial radiation reaching the earth’s surface, 𝑑𝑟 is the 

relative distance between the sun and the earth, 𝜑 is the latitude (rad), 𝛿 is the sun inclination angle, 𝜔𝑠 is the 

sunset angle, 𝐽 is the day sequence, and 𝜋= 3.14159. The calculation result (𝑅𝑠) is the required daily solar radiation. 

Soil Parameters 

Soil is the basis of crop growth. The model requires accurate soil data to ensure the rationality of simulation 

results. The operation of the DSSAT model needs to input the corresponding soil information of each site, 

including data such as soil type, nutrient, and profile (physical, chemical, and morphological properties of surface 

and stratification; Table 3), which is used to simulate the moisture content of the soil, carbon and nitrogen 

nutrient cycle, and root growth. Soil taxonomy consists of soil order, soil group and subgroup, soil genus, soil type, 

and soil varieties. The profile information of soil species or varieties in soil taxonomy was input in the experiments. 

Table 4 shows the soil species of each site.  

Table 3: Description of the physical, chemical, and morphological properties of soil surface and stratification. 

Soil Type Soil Properties Impacting Factors  

Soil surface 

Soil type, color, slope, permeability, reflectance 

Reflects the effects of soil water 

infiltration, evaporation, drainage, 

nutrients, and other factors on 

crop yield 

Soil thickness 

Soil moisture evaporation limit (mm) 

Number of runoff curves and soil drainage rate (fraction/day ) 

Photosynthetic factors (0–1) 

Soil stratification 

Lower limit of soil water or moisture content at withering point (cm3 ∙ cm−3) 

Field moisture capacity (cm3 ∙ cm−3) 

Saturated moisture content (cm3 ∙ cm−3) 

Soil bulk density (g∙ cm−3) 

Soil organic carbon 

Nitrogen（wt.%） 

Soil pH 

Clay content (wt.% < 0.002mmsoilparticle − size) 

Powder content（wt.%0.002 − 0.05mmparticle − size） 

 

Table 4: Information of soil species in the rice-cultivating sites. 

City County  Site Code Meteorological Site Soil Type Longitude (°) Latitude (°) Elevation (m) 

Lianyugang Ganyu LYGY 58040 Silt at sand bottom 119.08 34.51 10.8 

Huai’an Huaiyin HAHY 58143 Silt at sand bottom 119.51 33.48 6.1 

Taizhou Xinghua TZXH 58158 Ground clay 120.29 33.12 7.1 

Zhenjiang Gaoyou ZJZJ 58241 Yellow soil 119.27 32.48 9.6 

Nanjing Gaochun NJGC 58345 Green soil at sand bottom 119.29 31.26 8.1 

Wuxi Yixing WXYX 58354 Clay head 120.21 31.37 4.1 
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Field Experiment Parameters 

The field management data of DSSAT model includes the name and number of field experiments, experiment 

treatment, soil type information, phenological information (crop sowing and harvest etc.), irrigation date and 

volume, fertilization type, date, and amount. The null data and abnormalities in the required data were corrected 

and improved by using the mean value of adjacent years. 

Rice Planting Monitoring Site 

The operation of DSSAT model requires information on rice variety, experimental data, agricultural site location, 

and other agricultural data. We selected six rice-cultivating sites that have relatively complete data and are evenly 

distributed in the Jiangsu rice-growing area. The original agricultural data of different years were sorted, 

summarized, and stored. In addition, ArcGIS was used to process the coordinate information of sites, such as 

projection change and coordinate transformation, which was used for registration, geometric correction, and 

digitization with the administrative division map of Jiangsu province. 

2.3.2. Variety Parameter Debugging and Verification 

The various parameters of DSSAT model controlling crop growth were stored in variety parameter (.CUL), 

species parameter (.SPE), and ecological parameter (.ECO) files. User-adjustable parameters were stored in the 

species parameter file. These parameters were used in the DSSAT model to simulate crop growth and 

development and yield formation. The genetic parameters of varieties were adjusted by trial and error until the 

optimal consistency between the simulation value output was obtained using the adjustment parameters and the 

measured value. 

Generally, the genetic parameters of rice in a certain range of planting areas do not change with time and 

space. Therefore, we assumed that the genetic parameters of rice varieties in the four rice-growing areas of the 

Jiangsu province were the same. Debugging and verification were conducted on the genetic parameters of rice 

varieties in the four rice-growing areas, including (1) Single point debugging: The annual rice variety parameter 

experimental data of each site was input into the model to simulate the average genetic parameters of the same 

variety for many years; (2) Variety debugging: A comprehensive simulation was performed on the same variety in 

each rice-cropping area to determine the optimal genetic parameters of varieties in each area; and (3) Effect 

calibration: The rice growth under different temporal and spatial conditions was simulated to compare errors 

between the model simulation value and actual observation value. A cyclic debugging was conducted to improve 

the localized simulation effect of the model. 

The description of each rice variety was composed of genetic parameter codes and parameter values. The rice 

varieties in the model were determined using eight genetic parameter values, as shown in Table 5. 

Table 5: Description of genetic parameters of crop varieties. 

Genetic Parameters Definition Note 

P1 Heat hours required to complete the basic vegetative growth period (℃/d) 

Parameters 

related to 

development 

P2O Optimum photoperiod (H) 

P2R The delayed degree of flower bud differentiation P2R caused by each day  

longer than the optimal photoperiod for 1h (℃/d) 

P5 Heat hour required to complete grouting period P5 (℃/d) 

G1 Coefficient of potential spikelets numbers (expressed in spikelets per gram of  

dry matter weight of main stem at flowering) 

Parameters 

related to yield 

G2 Potential grain weight G2 (g) 

G3 Tillering coefficient G3 (relative value, taking the tillering capacity of rice variety  

IR64 under ideal environment as 1.0) 

G4 Temperature tolerance coefficient G4 (relative value, 1.0 for varieties  

grown in conventional environment) 
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The determination of the eight genetic parameters required the data of single-site meteorology, soil, and field 

management, which were treated as the initial values of the genetic parameters and input the model for cyclic 

debugging. Thereafter, a set of optimal genetic parameters were determined for each rice variety.  

We used 𝑅2 to judge the goodness of fit between the simulated value and the observed value which expresses 

the fitting degree of the regression line, After re-study and discussion, the author decided to use Root Mean 

Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) to measure the relative difference between 

simulated and measured values when testing the applicability of the model. The consistency index d (index of 

agreement) is used to check the consistency between the simulated value and the measured value. The 

calculation method is shown in formulas (1), (2) and (3). 

RMSE = √
∑ (Si − Ri)

2n
i=1

n
 

(1) 

NRMSE =
RMSE

R̄
× 100% 

(2) 

d = 1 − [
∑ (Si − Ri)

2n
i=1

∑ (|Si
′| − |Ri

′|)2n
i=1

] 
(3) 

 

In the formula,𝑆𝑖  is the simulated value, 𝑅𝑖 is the measured value, 𝑆𝑖
′
= 𝑆𝑖 − �̄�,𝑅𝑖

′
= 𝑅𝑖 − �̄�, �̄� is the average 

value of the measured value, and 𝑛 is the number of samples of the simulated value. It is generally believed that, 

NRMSE < 10% is excellent; 10% < NRMSE < 20% is good; 20% < NRMSE < 30% is medium; NRMSE > 30% is poor. The 

closer the value of d is to 1, the better the consistency between the simulated value and the measured value, 

otherwise it is the opposite. 

2.3.3. Simulation and Prediction of Rice Yield 

Rice yield changes correlate with spatiotemporal and regional changes. Using time as a measuring unit, we 

conducted a long-time series prediction on the rice yield at each of the six sites in the Jiangsu province and 

analyzed its distribution rules and variation features. Under the condition of ensuring the rationality of the 

simulated value, we used the meteorological data of RCP4.5 medium and low greenhouse gas (GHG) emission and 

radiation forcing scenarios derived from the CMIP5 climate prediction downscaling dataset. In addition, assuming 

that the soil conditions, field management, and other factors remain unchanged in the future, we employed the 

DSSAT model to simulate and predict the yield per unit area of six typical rice sites in the Jiangsu province from 

2019 to 2060. The corresponding data was analyzed. The abnormalities in the data are caused by the impact of 

extreme weather and other factors on rice yield. Other data were processed drawing upon previous studies [3, 15, 

16]. Based on the simulated annual rice yield from 2019 to 2060, the average yield of each site from 2019 to 2029, 

2030 to 2039, 2040 to 2049, and 2050 to 2060 were calculated.  

3. Results 

3.1. Correction of Rice Variety Parameters 

We collected random sampling data of rice varieties (flowering stage, maturity stage, and yield) from six typical 

sites in the Jiangsu province from 1990 to 2018 to debug and determine the optimal genetic parameters of the 

crop. A better goodness-of-fit (R2) of the flowering stage, maturity stage, and yield after genetic parameter 

calibration was obtained than that before calibration (Fig. 2). By comparing and analyzing the simulated and 

measured values after parameter calibration (Table 6), the result shows that the values of NRMSE are all less than 

10%, the values of d are all close to 1, the simulated value of yield is in good agreement with the measured value. 

It shows that various parameters can accurately reflect the main genetic characteristics of crop varieties, and can 

be used to simulate crop production potential. The rice variety genetic parameters after calibration are shown in 

Table 7.  
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Figure 2: Debugging and calibration of rice genetic parameters. Parameter calibration of flowering (a), maturity (b) and yield (c). 

Table 6: Error comparison between simulated and measured rice yield in Jiangsu Province. 

 Parameter 

Index 
Flowering Period Maturity Period Yield 

NRMSE 0.14% 1.69% 0.07% 

d 0.9149 0.9983 0.9998 

 

Table 7: Genetic parameter after calibration of rice varieties. 

Parameter Name P1 P2R  P5 P2O G1 G2 G3 G4 

Site code 

HAHY (Huai’yin site) 720.0 170.0 450.0 12.60 50.0 0.0190 1.00 1.00 

LYGY (Ganyu site) 770.0 150.0 490.0 13.20 50.0 0.0190 1.00 0.90 

TZXH (Xinghua site) 580.0 162.0 490.0 12.20 60.0 0.0190 1.00 1.00 

ZJGY (Gaoyou site) 680.0 170.0 490.0 12.00 49.0 0.0190 1.00 1.00 

NJGC (Gaochun site) 750.0 190.0 490.0 12.00 48.0 0.0200 1.00 1.00 

WXYX (Yixing site) 750.0 220.0 558.0 12.7 67.0 0.0150 1.00 1.00 

 

3.2. Verification and Analysis of Historical Rice Yield Simulation Results 

The DSSAT model was run based on the databases of meteorology, soil, field management, and a variety of 

genetic parameters. We also used ArcGIS for correlation, operation, and format conversion to obtain the annual 
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rice yield simulated data from 1990 to 2018. The simulated value was compared with the measured value to verify 

the accuracy of the model simulation results. 

The actual rice yield per unit area of each site was treated as a reference, excluding the year of missing 

statistical data. Fig. 3 demonstrates the comparison between the simulated and measured values. A small 

statistical error was observed between the simulated and measured values, and the overall change trend of the 

simulation was consistent with that of the actual observation, thus meeting the experimental requirements. 

 

Figure 3: Comparison of simulated and measured values of rice yield. 

3.3. Response Analysis of Rice Yield to Meteorological Factors 

Fig. 4 shows the comparison and analysis of the daily value data of four meteorological elements and the 

annual rice production data of each site. The difference in rainfall between the years was the most evident, but it 

is difficult to identify the relationship between meteorological elements and rice yield based on the change of 

daily value data. Therefore, this study sorted the data of the annual total accumulated temperature, maximum 

precipitation, minimum precipitation, and solar radiation during the rice growth stage in the past years (1990-

2018). 

 

Figure 4: Comparison and analysis of meteorological factors and rice yield. 
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3.3.1. Response Analysis of Rice Yield to Rainfall 

A great difference in rainfall was observed for different years and regions. The trend line in the scatter plot of 

rice yield-total precipitation in the growth stage of each site showed an upward trend. Thus, a positive correlation 

existed between rice yield and total precipitation in the growth stage, indicating that the increase of precipitation 

in the growth stage was conducive to the increase of rice yield. 

 

Figure 5: Representation of the correlation analysis of rainfall and rice yield. 

3.3.2. Response Analysis of Rice Yield to Temperature 

Except for the highest/low temperature of the HAHY site and the highest temperature of NJGC site, a negative 

correlation was observed between the overall rice yield of other sites and the total rice yield of Jiangsu province 

and the (highest/low) accumulated temperature during the growth period, indicating that the increase in 

temperature during the growth period of rice would result in a decrease in the rice yield. 

3.3.3. Response Analysis of Rice Yield to Solar Radiation 

Each site had different correlations between rice yield and total solar radiation during the growth period. 

Among them, the rice yields of the LYGY, HAHY, and ZJZJ sites showed a negative correlation with the total solar 

radiation value, and a positive correlation was reported between the rice yield of the TZXH, NJGC, and WXYX sites 

and the overall rice yield of Jiangsu and the total solar radiation value. This indicates that the increase of solar 

radiation during the growth generated two sides of effects on rice yield, and the overall effect was positive. 
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Figure 6: Representation of the correlation analysis of temperature and rice yield. 

3.3.4. Multiple Linear Regression Analysis between Rice Yield and Meteorological Elements 

We conducted a multiple linear regression analysis, based on the average annual values of meteorological 

factors and annual yield data of six sites in the Jiangsu province during the rice growth stages from 1990 to 2018. 

The purpose was to study the linear regression relationship between rice yield and meteorological factors in 

Jiangsu province. The regression analysis results are shown in Table 8. The multiple linear regression equation was 

y = 0.0332𝑥1 − 1.2647𝑥2 − 1.1644𝑥3 + 1.1687𝑥4 + 16330.9738. 

Table 8: Multiple linear regression analysis results. 

Parameters 
Total Precipitation 

(mm) 

Total Highest 

Temperature (℃) 

Total Lowest 

Temperature (℃) 

Total Solar 

Radiation (MJ/m2) 
Constant 

Variable coefficient 
𝑥1 𝑥2 𝑥3 𝑥4 b 

0.0332 -1.2647 -1.1644 1.1687 16330.9738 
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The R2 obtained by regression statistics reached 0.66 and significance statistics was 0.0079, less than the 

significant level 0.05, indicating a significant regression effect of the regression equation. The following findings 

were concluded from the regression analysis: 

(1) A positive correlation was observed between rice yield and the total precipitation in the growth period. An 

appropriate increase of precipitation was conducive to increasing the total rice yield, but short-term heavy 

precipitation events could pose a great threat to rice production. (2) There was a negative correlation between rice 

yield and temperature. In the event of low temperature, temperature rise increased the rice yield. However, if the 

temperature increase exceeded the appropriate range, the rice yield was reduced. (3) A positive correlation was 

seen between rice yield and solar radiation during the growth stage of rice.  

 

Figure 7: Representation of the correlation analysis of solar radiation and rice yield. 

3.4. Simulation and Prediction of Rice Yield in the Wake of Future Climate Change  

The results showed that the DSSAT modeling conducted parameter debugging by evaluating the simulation 

results of critical growth, development stages, and yield (such as rice flowering and maturity). The values of 

NRMSE between the simulated and measured values after parameter calibration are all less than 10%, the values 

of d are all close to 1, the simulated value of yield is in good agreement with the measured value. The average 

yield of each site from 2019 to 2029, 2030 to 2039, 2040 to 2049, and 2050 to 2060 were spatially presented (Fig. 

8). We can see, a small difference was observed in the yield per unit area value of each year period at the same 

site, and the overall situation was relatively stable. 

According to the data in table 9, which portrays the average yield per unit area of the six sites. Xinghua had the 

highest average yield per unit area followed by the other five sites (Xinghua > Huaiyin > Gaochun > Ganyu > 

Gaoyou > Yixing). Yixing had the lowest average yield per unit area. Xinghua (8212.76 kg/ha) and Huaiyin (7912.70 

kg/ha) had a higher average yield per unit area than the average level (7617.77 kg/ha), whereas Gaoyou (7440.98 
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kg/ha), Gaochun (7512.29 kg/ha), Ganyu (7460.88 kg/ha), and Yixing (7167.00 kg/ha) had a lower average yield per 

unit area than the average level. 

 

Figure 8: Average rice yield of each site in the Jiangsu province. 

Table 9: The average yield per unit area of the six sites. 

Site Huaiyin Site Ganyu Site Gaochun Site Xinghua Site Yixing Site Gaoyou Site Average 

Yield per unit 

area (kg/ha) 

7912.70 7460.88 7512.29 8212.76 7167.00 7440.98 7617.77 

 

As shown in Fig. 9, the fluctuations in the yield per unit area at each site during 2019–2060 were generally 

consistent, showing a downward to stable trend. The dispersion of yield per unit area at each site was as follows: 

Gaochun > Xinghua > Ganyu > Yixing > Huaiyin > Gaoyou, indicating that Gaochun had the most stable yield per 

unit area, followed by Xinghua, Ganyu, and Yixing. Huaiyin and Gaoyou had the greatest fluctuation, with the most 

unstable yield per unit area. 

4. Discussion 

4.1. Response Analysis of Rice Yield and Meteorological Factors 

Drawing upon the rice yield data, climate data, correlation analysis, and multiple linear regression model, we 

explored the response relationship of rice yield to climate and its regional differences. By analyzing the correlation 

between single factor (precipitation, temperature, and solar radiation) and rice yield at each site and using the 

multiple linear regression analysis between the average annual meteorological factor values and the average 

annual yield in the Jiangsu province, we identified the impact of meteorological factors on the yield at each site 

and the total yield of Jiangsu province. 

(1) On the one hand, excessive precipitation will reduce the oxygen content in rice fields, leading to a decrease 

in the rice tillers number and the inhabitation of rice growth and development [31]. On the other hand, during the 

critical growth stages, such as the heading-flowering stage, excessive precipitation will cause potential flood and 



Temporal Variation Analysis of Rice Yield Yuqi et al. 

 

95 

rainstorm disasters, which are unfavorable to rice flowering and pollination, and ultimately affect the total rice 

yield [32]. 

 
 

Figure 9: (a) Broken line chart of predicted yield at each site in the Jiangsu province from 2019 to 2060 (b) Dispersion of 

simulated value (HAHY: Huaiyin site; LYGY: Ganyu site; NJGC: Gaochun site; TZXH: Xinghua site; WXYX: Yixing site; ZJGY: Gaoyou 

site). 

(2) The results showed that 28–32 ℃ was the optimum temperature for the germination of rice seedlings. The 

optimal temperature for tillering, panicle differentiation, and heading was approximately 20 ℃, 30 ℃, and 25–

35 ℃, respectively. In terms of flowering, the optimal temperature was approximately 30 ℃. Temperatures lower 

than 20 ℃ or higher than 40 ℃ were not conducive to fertilization [33]. Statistical data analysis showed that the 

rice yield would decrease by 14 % for every 10 ℃ daily temperature increase [34]. Therefore, the proper 

temperature rise is favorable to increase rice yield; however, a high temperature will have a significant negative 

impact on rice yield. This is because high temperatures will accelerate rice growth and development and reduce 

the number of rice tillers. Thus, the total dry weight and panicle weight will be reduced [35]. In addition, heat 

damage caused by high temperatures will reduce the seed setting rate of rice, leading to yield reduction. 

Additionally, high temperature also promotes weed and pest infestation. 

(3) The increase in sunshine hours in the rice-tillering stage was beneficial to the increase of rice yield per unit 

area. The increase in sunshine hours and the temperature difference between day and night during the rice 

flowering and fruiting stage may potentially increase the rice yield per unit area [36]. Moreover, rice is also very 

sensitive to water demand. In the jointing-heading stage, an increase in solar radiation aggravates the rice leaf 

evaporation, leading to insufficient water supply and affecting the formation of rice grains. This also explained the 

negative correlation response of rice yield to solar radiation at certain sites. 

In the context of global warming, climate change has increased the amount of heat received by the Jiangsu 

province in the rice-producing areas. Our results can help the relevant departments strengthen early warning of 

meteorology and information release, take remedial measures in time and take active measures to pursue 

advantages and avoid disadvantages [37]. 

The limitations of our study are: (1) Linear correlation and multiple regression analysis models have limitations 

when used to analyze the impact of meteorological factors on rice yield. It is necessary to explore a response 

model more in line with the complex action mechanism of meteorological factors, which is closely related to the 

regional characteristics of agricultural production. (2) Our study does not highlight the impact of meteorological 

disasters on rice production in the event of extreme weather. Therefore, future studies should use the extreme 
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weather scenario data to explore the effect of extreme disaster weather on rice production and observe the 

impact of climate change on rice production. (3) Our study focused on the influence of meteorological factors on 

rice yield throughout the whole rice growth cycle. However, more detailed and subdivided research is required to 

identify the impact of meteorological factors on rice yield during each growth stage. It is necessary to refine the 

time points of rice vegetative growth and reproductive growth and carry out phased data analysis to obtain a 

more accurate analysis. 

4.2. Rice Yield Prediction Based on the DSSAT Model 

We used the DSSAT crop growth model to simulate the rice yield per unit area over the years. Comparing the 

simulated values by the model and observed values of rice, including flowering stage, maturity stage and yield, 

indicates a strong positive correlation and consistency between the simulation results and the observed values. 

The calibrated rice variety parameters can reflect the main genetic characteristics of rice varieties accurately. 

Additionally, this indicate that the model has a strong simulation ability for rice growth and development and yield, 

which can be used for the research of crop production potential simulation. Considering the influence of 

abnormal factors, such as diseases, pests, and extreme weather, some errors are bound to exist between the 

simulated and actual measured values. The results indicated that the errors were within a reasonable range. The 

calibrated and adjusted rice genetic parameters can fit the rice varieties of each site. Hence, the model can 

perform a good simulation on the rice yield in the future by using the calibrated parameters. Governments at all 

levels can implement corresponding policies using the simulated and predicted fluctuation in the yield per unit 

area at each site. Additionally, relevant departments can strengthen the guidance of agricultural production and 

make reasonable plans regarding grain purchase, sales, and transportation, which has important theoretical and 

practical significance for maintaining the stability of rice yield and grain production in the Jiangsu province. 

Notably, the soil conditions and field management status were assumed to remain unchanged for a period of 

time. Our results can reflect the impact of climate change on the rice yield per unit area and support relevant 

departments and farmers to take reasonable field management measures while accounting for climate change.  

The limitations are: (1) The data of rice irrigation at each site adopted the irrigation water quota value of 

various regions in the Jiangsu province, and the impact of diseases and pests were excluded. (2) Because rice 

growth and its influencing factors are complicated, can be affected by many internal and external factors, and the 

model simulation was a multi-system interaction process, it was difficult to involve various changeable actual 

situations comprehensively. For example, when the DSSAT model simulated the yield, it was unreasonable to 

assume that the canopy structure of rice was uniform. The representativeness of localized varieties is not high 

enough, which needs to be further verified by different rice varieties. (3) The uncertainty of climate change 

forecast will lead to a certain deviation in rice yield prediction. Thus, many extremely special natural conditions 

can be involved in yield estimation to improve the accuracy of model simulation. (4) The DSSAT model was 

effective in estimating the rice yield, based on a single point scale. However, if the site-based one-dimensional 

model is extended to a two-dimensional regional scale, it will be difficult for the DSSAT model to process regional-

scale crop parameters, field management, and other information. Therefore, future studies need to improve the 

model and combine the model with GIS, remote sensing, and other technologies to focus on how to deal with 

spatial variation and carry out adaptive verification to make the simulation results applicable to more dimensions. 

5. Conclusion 

Under the research framework of rice yield and climate change response analysis, we used the DSSAT crop 

yield estimation model to simulate the changes in rice yield of typical sites in Jiangsu province, China. In addition, 

we explored the spatiotemporal characteristics of rice yield in the Jiangsu province while considering climate 

change and identified the response relationship between rice yield and changes in the meteorological factors. To 

provide a basis for formulating policies to maintain the stability of rice yield in the Jiangsu province, the following 

conclusions were obtained: 

(1) In this study, the DSSAT crop growth model was used to simulate the annual rice yield per unit area at six 

typical rice planting sites in four rice-cropping areas of Jiangsu province from 1990 to 2018. By comparing the 
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simulated values by the model and the observed values of rice parameters such as flowering, maturity and yield, 

this study found that the values of NRMSE between the simulated and measured values after parameter 

calibration are all less than 10%, the values of d are all close to 1, the simulated value of yield is in good agreement 

with the measured value. Considering the influence of aberrant factors, such as diseases, pests and extreme 

weather, there must be some errors between the simulated and observed values. However, our study indicated 

that the errors were within a reasonable range. Hence, the calibrated rice genetic parameters can fit the rice 

varieties at each site effectively and the model can carry out a good simulation on the rice yield in the Jiangsu 

province under the influence of climate change. 

(2) In this study, we employed the method of control variables. The meteorological data of RCP4.5 medium and 

low GHG emissions and radiation forcing scenarios derived from the CMIP5 climate prediction downscaled dataset 

were used to predict the changes in the yield per unit area at six typical rice sites in the Jiangsu province under 41 

long-term time series. The results showed that the yield per unit area at each site fluctuated (within a certain 

range) with time. Xinghua had the highest average yield per unit area, and Gaochun had the most stable 

fluctuation of yield per unit area. Overall, the yield per unit area of rice showed a downward trend, tending to be 

stable gradually. 

(3) Our results showed that precipitation, temperature, and solar radiation had a certain linear correlation with 

rice yield. The linear correlation had regional differences. An increase in precipitation was conducive to the 

increase of rice yield at all sites in the Jiangsu province. An increase in temperature affected the total rice yield in 

the Jiangsu province negatively, but it had a positive impact on the yield in HAHY. The increase in solar radiation 

value, i.e., sunshine duration, exerted a negative impact on the rice yield of sites located in the north and west of 

Jiangsu province; however, it had a positive effect on the rice yield of sites located in the south and east of the 

province. With respect to the total rice yield in the Jiangsu province, the increase in solar radiation had a 

promoting effect. 

To cope with the adverse impact of climate change on rice production in the Jiangsu province and enhance the 

comprehensive production capacity of rice, it is possible to formulate regionally differentiated countermeasures 

that are based on local conditions; these include promoting double-cropping rice, cultivating new varieties and 

advanced technology, rationally adjusting rice distribution, strengthening the construction of farmland water 

conservancy facilities, promoting effective water and fertilizer management practices, and adjusting the sowing 

date in line with the meteorological forecast. 

Acknowledgment 

This work was supported by the National Key Research and Development Plan (Grant No. 2017YFB0504205) 

and National Natural Science Foundation of China (41801298). 

References 

[1] Chen S. Study on Integration of Remote Sensing Information and Crop Model based on Ensemnle Kalman Filter_A Case Study of Maize 

Yield Estimation in Northeast China[D]. Nanjing University of information Science & Technology, 2012. (in Chinese) 

[2] Cao J. Research on Spatio-terporal Coupling Relationship between Grain Production Capacity and Quality of Cultivated Land[D]. Central 

China Normal University, 2013. (in Chinese) 

[3] Cheng Z, Meng J. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-

Agriculture,2015,23(04): 402-415. (in Chinese) 

[4] Yang X. Research on evaluation of Chinese food security based on the perspective of sustainable development[D]. Jilin University,2010. 

(in Chinese) 

[5] Zhao C. Advances of Research and Application in Remote Sensing for Agriculture[J]. Transactions of the Chinese Society for Agricultural 

Machinery, 2014, 45(12): 277-293. (in Chinese) 

[6] Wang F, Wang F, Hu J, Xie L, Xie J. Estimating and Mapping Rice Yield Using UAV-Hyperspectral Imager based Relative Spectral Variates[J]. 

Remote Sensing Technology and Application, 2020, 35(02): 458-468. (in Chinese) 

[7] Quarmby NA, Milnes M, Hindle TL, et al. The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and 

prediction[J]. International Journal of Remote Sensing, 1993, 14(2). https://doi.org/10.1080/01431169308904332 

 

https://doi.org/10.1080/01431169308904332


Yuqi et al. Global Journal of Agricultural Innovation, Research & Development, 9, 2022 

 

98 

[8] Wang C, Lin W. Winter wheat yield estimation based on MODIS EVI[J]. Transactions of the CASE, 2005, (10): 90-94. (in Chinese) 

[9] Cheng l. Irrigation management decision and response study to climate changes for winter wheat based on DSSAT in Henan 

province[D]. Nanjing University of Information Science & Technology, 2008. (in Chinese) 

[10] Jiang Z. Study on remote sensing data assimilation technology for regional winter wheat yield estimation[D]. Chinese academy of 

agricultural sciences,2012. (in Chinese) 

[11] Drury CF, Hoogenboom G. Optimizing Parameters of CSM-CERES-Maize Model to Improve Simulation Performance of Maize Growth 

and Nitrogen Uptake in Northeast China[J]. Journal of Integrative Agriculture, 2012, 11(11): 1898-1913. https://doi.org/10.1016/S2095-

3119(12)60196-8 

[12] Jiang Z, Chen Z, Ren J, Zhou Q. Estimation of crop yield using CERES-Wheat model based on particle filter data assimilation method[J]. 

Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(14): 138-146. (in Chinese) 

[13] Liu Z, Yang X, Wang J, Lu S, Li K, Xun X, et al. Adaptability of APSIM Maize Model in Northeast China[J]. Acta Agronomica Sinica, 2012, 

38(04): 740-746. (in Chinese) https://doi.org/10.3724/SP.J.1006.2012.00740 

[14] Wang W, Feng H. The progress and problems in the development of foreign crop models[J]. Water Saving Irrigation, 2012, (08): 63-

68+73. 

[15] Zhang S, Zhang J, Li J, Cheng Y, Li G. Calibration and validation of WOFOST in main Maize-Producing regions in Henan[J]. Journal of 

Henan Agricultural Sciences, 2014, 43(08): 152-156. (in Chinese) 

[16] Zhang T, Fu C, Li J, Gu W, Xu W, Lu Y, et al. The Adaptability Test Analysis of AquaCrop and WOFOST Model Based on the Cold Spring 

Wheat[J]. Crops, 2013, (03): 121-126. (in Chinese) 

[17] Castrignanò A, Katerji N, Karam F, et al. A modified version of CERES-Maize model for predicting crop response to salinity stress[J]. 

Ecological Modelling, 1998, 111(2). https://doi.org/10.1016/S0304-3800(98)00084-2 

[18] Dettori M, Cesaraccio C, Motroni A, et al. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, 

Italy [J]. Field Crops Research, 2010, 120(1). https://doi.org/10.1016/j.fcr.2010.09.008 

[19] Quiring SM, Legates DR. Application of CERES-Maize for within-season prediction of rainfed corn yields in Delaware, USA[J]. Agricultural 

and Forest Meteorology, 2008, 148(6). https://doi.org/10.1016/j.agrformet.2008.01.009 

[20] Timsina J, Humphreys E. Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review[J]. Agricultural Systems, 

2005, 90(1). https://doi.org/10.1016/j.agsy.2005.11.007 

[21] Bhatia VS, Piara S, Wani SP, et al. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean 

model[J]. Agricultural and Forest Meteorology, 2008, 148(8). https://doi.org/10.1016/j.agrformet.2008.03.004 

[22] Cabrera VE, Jagtap SS, Hildebrand PE. Strategies to limit (minimize) nitrogen leaching on dairy farms driven by seasonal climate 

forecasts[J]. Agriculture, Ecosystems and Environment, 2007, 122(4). https://doi.org/10.1016/j.agee.2007.03.005 

[23] Eitzinger J, Štastná M, Žalud Z, et al. A simulation study of the effect of soil water balance and water stress on winter wheat production 

under different climate change scenarios[J]. Agricultural Water Management, 2003, 61(3). https://doi.org/10.1016/S0378-

3774(03)00024-6 

[24] Garcia AGY, Guerra LC, Hoogenboom G. Water use and water use efficiency of sweet corn under different weather conditions and soil 

moisture regimes[J]. Agricultural Water Management, 2009, 96(10). https://doi.org/10.1016/j.agwat.2009.04.022 

[25] Jones JW, Hoogenboom G, Porter CH, et al. The DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18(3). 

https://doi.org/10.1016/S1161-0301(02)00107-7 

[26] Heinemann AB, Hoogenboom G, Faria RTD. Determination of spatial water requirements at county and regional levels using crop 

models and GIS[J]. Agricultural Water Management, 2002, 52(3). https://doi.org/10.1016/S0378-3774(01)00137-8 

[27] O'neal MR, Frankenberger JR, Ess DR. Use of CERES-Maize to study effect of spatial precipitation variability on yield [J]. Agricultural 

Systems, 2002, 73(2). https://doi.org/10.1016/S0308-521X(01)00095-6 

[28] Xu K, Yang H, Zhang H, Gong J, Shen X, Tao X, et al. Latitudinal Difference of Rice Varieties Productivity in the Lower Yangtze and Huai 

Valleys and Its Rational Utilization[J]. Acta Agronomica Sinica, 2014, 40(05): 871-890. (in Chinese) 

https://doi.org/10.3724/SP.J.1006.2014.00871 

[29] Du J. Study on the modeling effect of conservation tillage on soil water and crop productivity in arid region[D]. Chinese Academy of 

Agricultural Sciences, 2008. (in Chinese) 

[30] Li J, Shao M, Fan T, Wang L. Databases creation of crop growth model DSSAT3 on the loess plateau region of China[J]. Agricultural 

Research in the Arid Areas, 2001, (01): 120-126. (in Chinese) 

[31] Zhou S, Zhu H. Economic Analysis of Climate Change Impact on the Rice Yield in Southern China and Its Adaptive Strategy[J]. China 

Population,Resources and Environment, 2010, 20(10): 152-157. (in Chinese) 

[32] Jin-Xia W, Ji-Kun H, Ting-Ting Y. Impacts of Climate Change on Water and Agricultural Production in Ten Large River Basins in China[J], 

2013, 12(07): 1267-1278. https://doi.org/10.1016/S2095-3119(13)60421-9 

[33] Tian Y, Zhang J, He K, Feng J. Analysis on Farmers' agricultural low-carbon production behavior and its influencing factors -- Taking the 

application of chemical fertilizer and pesticide as an example[J]. China Rural Survey, 2015, (04): 61-70. (in Chinese) 

[34] Xu X, Sun M, Fang Y, He X, Xue F, Fu W, et al. Impact of Climatic Change on Rice Production and Response Strategies in Anhui Province[J]. 

Journal of Agro-Environment Science, 2011, 30(09): 1755-1763. (in Chinese) 

https://doi.org/10.1016/S2095-3119(12)60196-8
https://doi.org/10.1016/S2095-3119(12)60196-8
https://doi.org/10.3724/SP.J.1006.2012.00740
https://doi.org/10.1016/S0304-3800(98)00084-2
https://doi.org/10.1016/j.fcr.2010.09.008
https://doi.org/10.1016/j.agrformet.2008.01.009
https://doi.org/10.1016/j.agsy.2005.11.007
https://doi.org/10.1016/j.agrformet.2008.03.004
https://doi.org/10.1016/j.agee.2007.03.005
https://doi.org/10.1016/S0378-3774(03)00024-6
https://doi.org/10.1016/S0378-3774(03)00024-6
https://doi.org/10.1016/j.agwat.2009.04.022
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S0378-3774(01)00137-8
https://doi.org/10.1016/S0308-521X(01)00095-6
https://doi.org/10.3724/SP.J.1006.2014.00871
https://doi.org/10.1016/S2095-3119(13)60421-9


Temporal Variation Analysis of Rice Yield Yuqi et al. 

 

99 

[35] Cui D. The scenario analysis of possible effect of warming climate on rice growing period[J]. Journal of Applied Meteorological Science, 

1995, (03): 361-365. (in Chinese) 

[36] Shen C. Meteorological effects on rice yields in Jiangsu Province[J]. Acta Ecologica Sinica, 2015, 35(12): 4155-4167. (in Chinese) 

https://doi.org/10.5846/stxb201309212315 

[37] Wu C, Cui K. Progress on effect of high temperature on rice yield formation[J]. Journal of Agricultural Science and Technology, 2014, 

16(03): 103-111. (in Chinese) 

 

https://doi.org/10.5846/stxb201309212315

