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Abstract: Herbivores experience an unprecedented variously impacts of climate warming. Besides, arbuscular 
mycorrhiza fungi(AMF) also is influence on herbivores through their common host plants. Surprisingly, there are no 
reports about how AMF affect the responses of herbivores to warming. To close this gap, we conducted a two factors 
experiment to research the effects of warming, fungicide (AMF suppression), and their interaction on the development of 
Gynaephora menyuanensis larvae, an endemic generalist herbivore species in northeastern Tibetan Plateau, and 
nitrogen content of Elymus nutans, which was the main food of G. menyuanensis. Warming significantly advanced the 
pupation time (PT), expanded the phenomena of protandry and increased the growth rate (GR) of G. menyuanensis 
larvae. Fungicide not affected the development of G. menyuanensis larvae, despite their negative effects on the content 
of E. nutans. Warming with fungicide decreased the GR of G. menyuanensis compared with warming treatment. In other 
words, AMF strengthen the beneficial effects of warming to G. menyuanensis. This study provides the first evidence of 
the impacts of AMF on the response of herbivore to warming. 
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1. INTRODUCTION 

Since 1850s, the global surface temperature has 
increased by about 0.76 °C and is recently predicted to 
increase 1.1-6.4°C within this century (IPCC 2007). 
Recent studies have shown that elevated temperatures 
are beneficial to herbivores by strengthening their 
predation [2], but these effects depended highly upon 
herbivores species [3] and the optimum temperature 
[4]. In addition, other abiotic and biotic factors, such as 
soil fertility [5, 6], precipitation [7], wind strengthens [8], 
the belowground insect [9], enemies of herbivores [10], 
and arbuscular mycorrhiza fungi (AMF) [11-13] can 
also affect the growth of herbivores through changing 
interspecific interactions between predations. Among 
all these factors, AMF is one of the most widely 
distributed soil organisms, which can form mutualistic 
associations with the roots of land plant species [14]. 
AMF can facilitate host plant to uptake mineral 
elements (N, P etc) in exchange for photosynthesis  
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from host plant [15]. Most of studies have been showed 
that AMF affect indirectly the growth of insect 
herbivores through changing plant growth [16-18]. 
However, individual effects of elevated temperature or 
AMF on growth of the insect herbivores have been well 
reported, but it is little that the interactive effects of 
elevated temperature and AMF on growth of the insect 
herbivores. Based on these, we studied the effects of 
warming and AMF on larvae of grassland caterpillar G. 
menyuanensis by a field controlled experimental 
system consisting on the Qinghai-Tibetan Plateau 
(QTP). This is because that the Qinghai-Tibetan 
Plateau (QTP) covers 2.5 million km2 in China, where 
alpine meadow is the dominant vegetation, and is very 
sensitive to the climate warming [19].. In this system, 
Gynaephora menyuanensis is an endemic species in 
the northeastern on QTP, and uses Elymus nutans for 
its food [19]. We predicted that AMF strengthen the 
beneficial effects of warming on the growth and 
develpment of Gynaephora menyuanensis larvae.  

2. MATERIALS AND METHODS 

2.1. Filed Site and Experimental Design 

This study was conducted at the Haibei Alpine 
Meadow Ecosystem Research Station, which is located 
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in the northeastern Qinghai-Tibet Plateau of China 
(37°37′N, 101°12′E, 3,200m a.s.l.). The climate is 
characterized with short-cool summer, and long-
severely cold winter. The annual mean temperature is -
2℃. The annual mean precipitation is 500mm, and > 
80% of which occurs during summer. The vegetation in 
this region is dominated by Kobresia humilis, Festuca 
ovina, Elymus nutans, Poa pratensis, Carex 
scabrirostris, Scirpus distigmaticus, Gentiana 
straminea, Gentiana farreri, Blysmus sinocompressus, 
and Potentilla nivea. A detailed information refer to the 
description of Zhao et al. [22]. 

We designed a two factors experiment consisting of 
four treatments in March, 2016: no warming and no 
fungicide (NWNF), no warming and fungicide (NWF), 
warming and no fungicide (WNF), warming and 
fungicide (WF). Each treatment has five replicates. The 
open top chambers (OTCs) had been used to simulate 
climate warming [23]. We manipulated AMF 
colonization through applying the fungicide benomyl, 
which have been used widely to suppress the AMF 
colonization with minimal effects on other soil 
microflora in the filed system [24, 25]. In order to 
suppress the AMF colonization in short-term, we 
transplanted the plant community into flowerpots (32cm 
diameter×23cm height) in situ, and used syringes 
(50ml) to inject 1L benomyl (20g/L) in each pot every 5 
days from March until October, 2016.  

At 3 April, we caught 1st instar larval Gynaephora 
menyuanensis, and then set G. menyuanensis with 
equal body mass into each pot. Synchronize with this, 
two circular steel rings were installed at bottom and top 
of flowerpots, and covered by steel screen with mesh 
size of 0.2mm×0.2mm, which can prevent the 
caterpilars from escaping during the experiment.  

2.2. Measurement of AMF Colonization and G. 
Menyuanensis 

Three soil cores (2.5cm diameter×14cm deep) were 
sampled in October 2016 from each pot. Then, we 
washed the roots free of soil and estimated the AMF 
colonization according to Liu and Chen [26]. 
Development situation of G. menyuanensis was 
recorded every day since the mid of March, 2016. Both 
weight of the larvae and number of pupation were 
recorded at 3 July before their pupation. The growth 
rate (GR) was calculated using the function: GR= (Mf-
Mi)/d, where Mf and Mi were final weight and initial 
weight, and d represented the days between two 
weighting. Then, we record the pupation time (PT) and 

weight the pupae according to Cao et al. [27]. After 
pupation of all caterpillars, we collected the leaves of 
Elymus nutans, a representative graminoid plant in 
each treatment. They were sun-dried in the field, and 
oven-dried at 60℃ on returning to our laboratory.  

2.3. Statistical Analyses 

All data met the normal distribution and 
homogeneity of variance. Two-way analyses of 
variance (ANOVA) were used to test the effects of 
warming, benomyl and their interaction on AMF 
colonization, PT and GR of G. menyuanensis. The post 
hoc multiple comparison was used to illustrate the 
differences of each variable between treatments at the 
95% confidence level (P ≤ 0.05). All analyses were 
conducted using IBM SPSS Statistics 22.0 (SPSS Inc). 

3. RESULTS 

3.1. AMF Colonization Rate 

Fungicide significantly reduced mycorrhiza 
colonization (F = 57.373, P＜0.001, Table 1). 
Colonization rate of AMF in all fungicide pot was 29% 
lower than that in no fungicide pot (Figure 1). 

 

Figure 1: Colonization rate of AMF under different 
treatments.  
F: fungicide, NF: no fungicide. Letters indicate significant difference 
at P＜0.05 in descending order. 

3.2. PT and GR of Caterpillars 

Warming significantly affected the PT of both female 
and male pupal weight (F1,14 = 22.188, P1,14 ＜ 0.001, 
F1,16 = 69.597, P1,16 ＜ 0.001). The advancing of 
pupation time of female (2%) and male (4%) in the W 
treatment was stronger than that in NW treatment 
(Figure 2). The expanding of difference between the 
pupation of female and male caterpillars in the W 
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treatment was larger by 25% than that in the NW 
treatment (Figure 2). The effects of warming (F = 
56.109, P＜0.001), fungicide (F = 9.292, P = 0.003) 
and their interaction (F = 4.345, P = 0.040) on GR of 
caterpillars were significant. GRs in the both WNF and 
WF treatments were higher by 34% and 16% than that 
tin NWNF treatment (Figure 3). The GR under WF was 
lower by 13% than that under WNF (Figure 3).  

 

Figure 2: Pupation time of male (open bars) and female 
(filled bars) under different treatments.  
W: warming, NW: no warming. Letters indicate significant difference 
at P＜0.05 in descending order. 

 

Figure 3: Growth rate of caterpillars under different 
treatments.  
NWNF: no warming with no fungicide, NWF: no warming with 
fungicide, WNF: warming with no fungicide, WF: warming with 
fungicide. Letters indicate significant difference at P＜0.05 in 
descending order. 

DISCUSSIONS 

The life cycle of G. menyuanensis consist of larva, 
pupa, adult and egg [29]. As a holometabola species, 
they acquire enough energy for their subsequent 
development and reproduction through their larvae. 
However, during larva stage, there are some factors 
threatening their survivability such as extreme 

environment, prey of enemy and amensalism [27, 30]. 
Our results showed that warming advanced the 
pupation time of G. menyuanensis, suggesting 
warming can help G. menyuanensis avoid the some 
threats of extreme environment, and then increase their 
generation number and expand their population over 
the long term [27]. In addition, protandry, as an 
evolution phenomena under natural selection, is helpful 
to mate successfully for insects [31]. So, protandry can 
effectively increased mating success. Although there 
was no direct protandry evidence of G. menyuanensis, 
the advancing of pupation can indirectly imply its ahead 
protandry in our study, suggesting that warming could 
enlarge mating success of G. Menyuanensis .  

GR represent the energy converting ability of 
insects. The higher GR means that insects are likely to 
prevail in competition [33]. There is an optimum 
temperature range for each insect species, and either 
the high or low temperature is adverse to their 
development and reproduction [34]. Considering the 
cold environment, warming properly is always favorable 
for the improvement of net primary productivity and the 
surviving of organism on the QTP [35]. The beneficial 
impacts of warming on GR of G. menyuanensis in this 
study was in accordance with Yu et al. [23]. 

Previous studies showed also that insects were 
more sensitive to elevated temperatures in comparison 
with plant. So, the impacts of warming on herbivores 
are mainly depended on its direct effects of AMF rather 
than its indirect effects of through their host plants [2]. 
The higher nitrogen content of food is, the more rapidly 
G. menyuanensis development [28], but the reduced 
nitrogen content of E. nutans induced by fungicide had 
no influence on the GR of G. menyuanensis (data not 
shown). However, the combined treatments of both 
warming and fungicide significantly suppressed the GR 
of G. menyuanensis. It was likely that warming 
accelerated the growth of G. menyuanensis, and then 
increased their demand for the nutrition of changing 
food [36], and enlarge the impacts of fungicide on G. 
menyuanensis. In other words, AMF strengthen the 
beneficial effects of warming on G. menyuanensis by 
providing them with much nitrogen nutrient. It indicated 
that elevated fitness of G. menyuanensis induced by 
AMF would exacerbate the grassland degeneration 
under the condition of warming [28]. However，AMF 
can increased plant nutrition and the adaption of the 
majority of grasses in the long run,, meaning the much 
quantity and higher quality of food for insect, which in 
part alleviate the disequilibrium of relation between 
plants and herbivores [37, 38]. Our findings suggested 
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that AMF might buffer the adverse impacts of warming 
on growth of G. menyuanensis.  
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