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ABSTRACT 

This study employed the Soil and Water Assessment Tool (SWAT) model to analyze the water 

budget components and water yield of the Upper Awash River sub-basin in Central Ethiopia. 

Utilizing data from 1986 to 2013, the model was calibrated from 1988 to 2008 following a 

three-year warm-up period and subsequently validated over five years at two gauging 

stations. Sensitivity analyses were conducted using t-stat and p-values, while model 

uncertainty was assessed using the p-factor and r-factor indices. The model's performance 

was evaluated using Nash-Sutcliffe efficiency (NSE), coefficient of determination (R²), and 

Percent Bias (PBIAS). Calibration results yielded p-factors and r-factors of 0.801 and 0.9 for 

Hombele, and 0.808 and 0.98 for Melkakuntro. The calibration R², NSE, and PBIAS values 

were 0.82, 0.82, and-2.3, respectively, for Hombele, and 0.79, 0.78, and-13.1, respectively. 

Validation R², NSE, and PBIAS values were 0.71, 0.67, 11.2 for Hombele, and 0.7, 0.66, 1.9 for 

Melkakuntro. The average annual groundwater recharge rate ranged from 0 to 904.3 mm, 

averaging 181.1 mm/yr, which accounts for 19.1% of the mean annual rainfall. The simulated 

mean annual surface runoff and evapotranspiration were 93.4 mm and 682.5 mm, 

respectively, constituting 9.8% and 71.8% of the mean annual rainfall. The average annual 

water yield of the study area was 233.4 mm. These findings provide important insights into 

the hydrological dynamics of the Upper Awash River sub-basin, deepening our 

understanding of this water system. This information is essential for establishing sustainable 

water management practices and optimizing resource use for socioeconomic growth. 
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1. Introduction 

Sustainable management of water resources has become increasingly challenging owing to the uneven 

distribution of water and the rapidly growing demand driven by factors such as population growth, urbanization, 

industrialization, and agricultural expansion [1, 2]. In many regions, especially those prone to water scarcity, these 

pressures exacerbate the already strained water systems.  

Ethiopia, located in the Horn of Africa, faces significant challenges in managing its water resources, owing to its 

diverse meteorological and geographical characteristics. The country's varied topography and rainfall patterns 

contribute to the uneven distribution of water resources [3]. In arid and semi-arid regions, the link between 

precipitation and aquifer recharge is often characterized by high spatial and temporal variability. Recharge occurs 

primarily during intense, short-duration rainfall events, with mechanisms including focused recharge through 

ephemeral streambeds, and diffuse infiltration. Factors such as vegetation cover, soil texture, and landform 

influence the recharge efficiency. Studies from regions including North Africa, the Middle East, and Central 

Australia have revealed that even minimal rainfall can contribute significantly to recharge under favorable 

conditions. This variability complicates efforts to ensure sustainable water management, especially in regions 

such as the Upper Awash River sub-basin in central Ethiopia, which is a vital watershed that provides water for 

domestic, agricultural, and industrial uses. However, the area is experiencing increasing water scarcity owing to 

rapid population growth, agricultural expansion, and climate change [4-6]. Urbanization and industrialization 

further intensify water demand, highlighting the urgent need for effective management strategies. 

The total water yield, which represents the total volume of water exiting a given hydrological unit and 

contributing to the downstream flow, is a critical component for understanding the overall water balance within a 

watershed. It is an essential metric for assessing the availability of water resources for various uses such as 

agriculture, industry, and urban supply, particularly in regions experiencing water scarcity [7]. Studies have shown 

that an accurate estimation of water yield is vital for sustainable water resource management, as it helps identify 

the quantity of water that can be reliably extracted from a watershed without adversely affecting the ecosystem or 

downstream users [8]. 

Previous studies across global and Ethiopian river basins have examined water budget components, with a 

focus on availability, usage, and management under increasing anthropogenic and climatic pressures. For 

example, in Ethiopia [9, 10], rainfall variability and hydrological responses to land use and climate change have 

been explored using models, such as SWAT. Similarly, [11, 12], [13], and [14] conducted regional-scale assessments 

of flow dynamics and water yield, offering insights into basin-level resource allocation. On a broader scale, studies 

by [15-17] analyzed global water stress patterns, emphasizing the implications of climate variability on 

hydrological regimes. Hydrological modeling techniques, often integrated with remote sensing and geospatial 

analysis [18-20], have facilitated the quantification of key components, such as precipitation, evapotranspiration, 

runoff, and recharge. In the context of Eastern Africa, contributions by [21] and [22] provide evidence of 

groundwater-surface water interactions and modeled water scarcity scenarios. Collectively, these works 

underscore the necessity of incorporating spatiotemporal variability and climate-induced uncertainty into 

sustainable water resource planning in Ethiopia, which has traditionally been performed on a lumped scale and 

can result in inaccurate estimates of water volume in specific hydrological components. To address this limitation, 

it is essential to develop a methodology that accurately simulates the spatial distribution of the available and 

required water within a basin, considering the assumptions and constraints of global water budget models. Such 

methodologies are crucial for supporting decision-making processes that aim to ensure sustainable water 

resource management [23]. 

This study focuses on developing a spatially semi-distributed water budget model for the Upper Awash sub-

basin using daily hydrometeorological data. The model is grounded in geographic information systems (GIS) and 

calculates groundwater recharge, surface runoff, evapotranspiration, and water yield based on variables such as 

land use, soil texture, topography, and hydrometeorological data. By providing a detailed understanding of the 

hydrological dynamics of this economically and socially significant region, this study aims to offer critical insights 

into sustainable water management practices. Despite existing research, a comprehensive understanding of the 

spatial distribution of water budget components in the upper wash sub-basin using long-term calibrated SWAT 
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modeling remains limited. This study aimed to fill this gap by applying the SWAT model to estimate groundwater 

recharge, surface runoff, evapotranspiration, and water yield using spatially explicit data and robust calibration 

techniques. The novelty of this study lies in its use of long-term data (1986-2013) for calibration and validation, 

which enhances the reliability and robustness of the findings. Additionally, the incorporation of advanced 

sensitivity analyses and model uncertainty assessments, complex volcanic terrain, and large areas that are not 

commonly included in similar studies, advanced hydrological modeling techniques provide a foundation for 

improved water management strategies in the region. 

Hydrological models such as the Soil and Water Assessment Tool (SWAT) are crucial for evaluating and 

managing water resources by simulating various water-related processes and predicting the potential impacts of 

future climate and land-use changes [24]. 

These studies significantly contribute to the understanding of the regional and temporal variability of water 

resources and inform the development of management strategies and policies. They also highlight the need to 

account for the effects of climate change on the sustainability and availability of water resources in Ethiopia. 

The objectives of this study were as follows:  

(i)  To estimate and evaluate the major water budget components (recharge, runoff, evapotranspiration, and 

yield) in the Upper Awash sub-basin using the SWAT model. 

(ii)  Assessing spatial and temporal variations in these components. 

(iii)  Calibration and validation of the model outputs using performance indices. 

(iv)  Perform sensitivity and uncertainty analyses to identify the key influencing parameters. 

The remainder of this paper is structured as follows: Section 2 describes the study area and methodology; 

Section 3 presents the results and discussion, including model performance and water budget analysis; and 

Section 4 summarizes the main findings and provides recommendations. 

2. Materials and Methods 

2.1. Description of the Study Area 

The Upper Awash River Sub-Basin, which covers an area of 11,697 km², is situated in Central Ethiopia Fig. (1) 

and is part of the larger Awash River Basin. It is bordered by mountainous terrain to the west and rift valley 

depressions to the east. The elevation in this region varies significantly, ranging from 1,579 m to 3,557 m above 

sea level. The area experiences a unimodal rainfall pattern, with an average annual precipitation of 1,078 mm and 

average annual temperature of 18.6°C. 

The spatial distribution of mean annual precipitation, spanning the period from 1986 to 2013, within the Upper 

Awash River Sub-Basin was meticulously derived using discrete point data acquired from meteorological stations 

and subsequently interpolated through the application of the Inverse Distance Weighted (IDW) methodology. As 

depicted in Fig. (2), the basin demonstrates conspicuous spatial heterogeneity in its rainfall patterns. The annual 

precipitation values fluctuated considerably, ranging from approximately 775 mm to 1326 mm. The highest 

precipitation levels were observed within the southwestern and northern highland regions, which may be 

attributable to orographic influence. Conversely, the central, southern, and eastern zones manifest low 

precipitation levels, a phenomenon potentially governed by rain-shadow dynamics and topographic shielding. IDW 

interpolation effectively delineates these spatial gradients, thereby elucidating the profound impact of topography, 

elevation, and proximity to meteorological stations on the distribution of rainfall throughout the basin. This 

inherent heterogeneity in precipitation patterns has significant implications for hydrological modeling, the 

generation of surface runoff, , and the strategic allocation of water resources within the basin. 
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Figure 1: Location, elevation, gauging and meteorological stations map of the study area. 

 

Figure 2: Describing the spatial distribution of average annual precipitation (1986-2013) across the Upper Awash River Sub-

Basin, derived from station data and Inverse Distance Weighted (IDW) interpolation. 
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In terms of hydrology, the Awash River and its major tributaries, including the Akaki and Mojo Rivers, drain into 

the basin. Streamflow is monitored at key stations such as Hombole and Melkakuntro. The hydrological regime of 

this area is characterized by seasonal variability, with peak discharges occurring during the main rainy season, 

which lasts from June to September. 

The lithostratigraphic units of the sub-basin are notably characterized by Tertiary-Quaternary volcanic rocks 

covering a substantial area. Additionally, minor intertrappean sediments, quaternary lacustrine sediments, and 

surface deposits were identified. Primary groundwater reservoirs were found within the fractured regions of 

volcanic rocks. The flowchart is shown in (Fig. 3) provides a comprehensive overview of the methodological 

framework adopted for this study, illustrating the sequential steps and processes involved in analyzing the 

hydrological dynamics of the Upper Awash River sub-basin. 

 

Figure 3: A flowchart to describe the methodology. 
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Geomorphology: The basin is located within the Ethiopian Highlands and the Central Rift Valley and is 

characterized by rugged hills, plateaus, and deeply incised valleys. The slopes varied significantly, with over 40% of 

the area classified in the 0-5% slope category (Fig. 4). This terrain has a substantial impact on the surface runoff 

and infiltration dynamics. 

Soils: The primary soil types in the basin included Eutric Vertisols (49.8%), Haplic Phaeozems, Cambisols, and 

Nitosols. These soils exhibit varying hydrological properties such as infiltration capacity and available water 

content, which play crucial roles in influencing runoff and groundwater recharge (Fig. 5). 

Land Use: Agricultural land constitutes 69.1% of the basin, followed by rangelands, forests, urban areas, and 

water bodies (Fig. 6). The various land cover types affected hydrological responses and were utilized to define 

hydrological response units (HRUs) in the Soil and Water Assessment Tool (SWAT). 

2.2. Model Description  

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, process-based model that simulates the 

impact of land use and climate variability on watershed hydrology [7]. It divides a watershed into sub-basins and 

Hydrologic Response Units (HRUs) based on land use, soil, and slope, allowing the spatially explicit simulation of 

hydrological processes. 

In this study, SWAT was used to simulate the streamflow, surface runoff, evapotranspiration, groundwater 

recharge, and water yield. Surface runoff was estimated using the modified SCS Curve Number method, while 

evapotranspiration was calculated using the Penman–Monteith method, which requires inputs such as 

temperature, solar radiation, wind speed, and humidity [25]. Percolation, lateral flow, and base flow were 

simulated through soil-layer interactions and shallow aquifer contributions [26]. 

 

Figure 4: Slope classification. 
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Figure 5: Soil-distributed map. 

 

Figure 6: Land use/ cover map (Ethiopian land cover map 2013). 
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The model setup and simulations were conducted using the ArcSWAT interface integrated with ArcGIS, enabling 

the use of spatial datasets to represent the watershed's heterogeneity [27]. The theoretical framework is 

described in detail in the SWAT documentation [8, 28].  

2.3. Input Parameters 

The SWAT model requires spatial and temporal data inputs including topography, land use, soil, and climate. 

Watershed delineation was performed using a 30 m × 30 m DEM from the SRTM (USGS), selected because of its 

adequate spatial detail for sub-basin delineation, broad availability, and successful application in previous 

Ethiopian hydrological studies with elevations ranging from 1579 to 3564 meters. Slopes were mostly gentle, with 

72.1% of the basin falling under 0–10% (Fig. 4), influencing surface runoff and infiltration behavior. These data 

were collected from various sources and databases, as summarized in Table 1, providing the minimum necessary 

information for the SWAT model. 

The computer simulation was conducted using ArcGIS 10.2.2 ARC SWAT interface, paired with SWAT version 

2012 [7]. The physically based SWAT model requires extensive detailed data about the basin to accurately simulate 

complex hydrological processes. The data necessary for the SWAT model, including the topography, land use, soil 

quality, and meteorological data, were collected from various sources and databases. Table 1 presents these data 

and sources. 

Table 1: The available data set for setting the SWAT model. 

Sn Spatial Data Description Source 

1 Digital Elevation Model 
30 m×30 m grid DEM has been used to delineate the boundary of  

the watershed and analyze the drainage patterns of the terrain. 

Shuttle Radar Topography 

Mission (SRTM) of USGS 

2 Land use and land cover Africa Land Use 2013 Ethiopian Map Agency 

3 Soils data The soil data has been obtained from FAO 
Ministry of Agriculture, 

Government of Ethiopia 

4 Weather data All-weather parameters Ethiopian Meteorological Agency 

5 Hydrological data Gauge data in the study area gauge station 
Ministry of Water, Irrigation and 

Energy, Government of Ethiopia 

 

Land use data from 2013 show that agricultural land covers 69.1% of the basin, followed by rangeland (20.6%), 

forests (5.4%), and smaller extents of urban areas and water bodies (Fig. 6). Soil characteristics were derived from 

the FAO-UNESCO database [29], dominated by Eutric Vertisols (49.8%) and complemented by Nitosols, Cambisols, 

and Phaeozems (Fig. 5), which affect infiltration, percolation, and baseflow processes. Table 2 presents the cover 

area and percentage distribution of the 12 soil groups in the watershed of the study area, providing a detailed 

understanding of soil composition and distribution. Climate data (rainfall, temperature, wind speed, solar 

radiation, and relative humidity) were obtained from 19 meteorological stations covering 1986–2013. These inputs 

were used to simulate the hydrological processes through HRU discretization.  

The SWAT simulates water movement using four main storage components: snowpack, soil profile, shallow 

aquifer, and deep aquifer. Surface runoff was calculated using a modified SCS Curve Number method, peak runoff 

using a modified Rational Formula [30], evapotranspiration using the Penman–Monteith equation [25], and 

baseflow through groundwater flow algorithms [26]. Soil moisture dynamics, lateral flow, and percolation were 

computed across multiple soil layers, and HRUs enabled spatially variable simulations of these processes based 

on land use, soil, and slope combinations. 

2.4. Sensitivity Analysis  

Calibration is an important step in optimizing the model parameters to reduce uncertainty in the model 

outputs. However, it can be challenging to determining which parameters to be calibrated in models with multiple 
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parameters can be challenging. Sensitivity analysis is a useful tool for identifying and ranking parameters that 

significantly affect desired model outputs [31].  

Table 2: Characteristics of the modelled upper Awash sub-basin. 

Parameter Type/Class Area (Km2) Basin Area (%) 

LANDUSE 

Agricultural Land Generic (AGRL) 8077 69.09 

Range-Grasses (RNGE) 2408 20.60 

Forest-Evergreen (FRSE) 625 5.35 

Residential (URBN) 394 3.37 

Water body(WATR) 164 1.40 

Range-Brush (RNGB) 15 0.13 

Wetlands(WETF) 8 0.07 

SOIL 

Haplic Nitosols (NTH) 606 5.13 

Lithic Leptosols (LPQ) 393 3.33 

Chromic Luvisols (LVX) 22 0.19 

Haplic Luvisols (LVH) 796 6.75 

Eutric fluvisols (FLE) 438 3.71 

Vertic Cambisols (CVE) 656 5.56 

Rock outcrops 142 1.20 

Haplic Phaeozems (PHH) 811 6.87 

Vitric Andosols (ANZ) 19 0.16 

Mollic Andosols (ANM) 251 2.13 

Eutric Vertisols (VRE) 5878 49.81 

Eutric Cambisols (CME) 1596 13.53 

SLOP (%) 

< 5 4804.03 41.1 

5_10 3623.96 31 

10_20 2209.13 18.9 

20_30 621.74 5.32 

> 30 430.43 3.68 

 

The SWAT Calibration and Uncertainty Programs (SWAT-CUP) use the Sequential Uncertainty Fitting Version 2 

(SUFI2) technique to assess the sensitivity of SWAT parameters. This process, carried out alongside the calibration 

procedure, requires the inclusion of SWAT-estimated and-monitored flows. This is necessary because the objective 

function, which evaluates the success of the model calibration, bases its sensitivity estimates on the fluctuations in 

these flows. 

Equation 1, which provides the values of the parameters obtained by Latin hypercube sampling versus the 

objective function values, was used to calculate the sensitivity of the parameters [32].  

 𝑔 = 𝛼 + ∑ 𝛽𝑖𝑏𝑖  
𝑚
𝑖=1   1  

where g is the objective function value; b is a parameter; α is the regression constant; β corresponds to the 

technical coefficient attached to variable b; and m is the number of parameters.  
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The variance mean of the goal function calculates the sensitivity by changing each parameter individually, while 

keeping the other parameters constant. Sensitivity was assessed using t-statistics (t-stat) and p values. A 

parameter is considered more sensitive when the absolute value of the t-stat is higher and the p-value is smaller 

[32]. Sensitivity analysis begins by selecting parameters based on the t-stat and p-value. Following this analysis, 

the model calibration was performed using the parameters identified as the most sensitive. These parameters are 

listed in Table 3 as the final parameters of this study. 

Table 3: Parameters considered in the sensitivity analysis. 

Parameter Name Description 

CN2 SCS runoff curve number 

ESCO  Soil evaporation compensation factor 

GWQMN  The threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) 

SOL_AWC Soil available water storage capacity (mm H2O/mm soil) 

GW_REVAP  Groundwater revap coefficient 

SOL_Z  Soil depth (mm) 

SURLAG  Surface runoff lag coefficient (days) 

SOL_K  Soil conductivity (mm/h) 

CH_K2  Effective hydraulic conductivity in the main channel (mm/h) 

ALPHA_BF  Baseflow alpha-factor (days) 

GW_DELAY  Groundwater delay (days) 

REVAPMN  Threshold depth of water in the shallow aquifer for “revamp” to occur (mm) 

CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/hr) 

OV_N Manning’s n value for overland flow 

CH_N2 Manning’s coefficient for channels 

BIOMIX Biological mixing efficiency 

 

t-stat was calculated by dividing the regression coefficient of a parameter by its standard error. A parameter is 

deemed sensitive if its coefficient value exceeds its standard error and the t-stat is greater than zero [33]. The p-

value was calculated by comparing the t-stat to the values in the student’s t-test distribution table, testing the null 

hypothesis that the regression coefficient equals zero. 

The analysis used variables that affect the water output of a river basin, which can be modified. These 

parameters are listed in the SWAT database, including their value ranges, action plans (basin, sub-basin, or HRU), 

type of value variation (specific value replacement, addition to the existing parameter value, or multiplication of an 

existing parameter value), and sensitivity analysis groups (water production, sediment yield, or water quality). 

2.5. Uncertainty Analysis 

Hydrological modeling necessitates an uncertainty analysis to quantify and understand the uncertainties 

inherent in model predictions. This analysis primarily involves the r-factor and p-factor, which reveal uncertainties 

in peak flows and volume predictions, respectively. 

The r-factor is the ratio of the simulated to the observed flow volume, which assesses the uncertainty 

associated with the magnitude of the flow predictions. A low r-factor signifies good agreement between the 

simulated and observed volumes, indicating lower uncertainty. Conversely, a high r-factor indicates a significant 

discrepancy between the simulated and observed volumes, suggesting higher uncertainty in the model 

predictions. 
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In contrast, the p-factor is the ratio of the simulated to the observed peak flows. It evaluates the uncertainty 

associated with the timing of the peak flows. Similar to the r-factor, a low p-factor denotes good agreement 

between the simulated and observed peak flows, suggesting lower uncertainty. However, a high p-factor indicates 

a significant discrepancy in the timing of the peak flows, implying higher uncertainty in the model predictions. 

Our evaluation of the reliability and accuracy of hydrological models entails an analysis of these factors in 

uncertainty analysis. The r and p factors are instrumental in identifying potential sources of uncertainty by 

measuring the agreement between the observed and simulated flow characteristics. 

2.6. Model Calibration and Validation  

The first step in calibrating the watershed model involved splitting the measured streamflow time series into 

two segments: calibration and validation. The calibration period (1988 – 2008) involved adjusting the model inputs, 

such as rainfall, land use, and soil characteristics, to ensure that the simulated streamflow matched the observed 

flow at the basin outlet. This iterative process fine-tunes the model parameters to reflect the hydrological 

conditions of the basin. Once calibration was complete, the model was tested during the validation period (2009 – 

2013) using the same input parameters without further adjustments. The purpose of this study was to evaluate 

the ability of the model to accurately predict streamflow for periods beyond the calibration phase, ensuring that it 

is robust and reliable for simulating future hydrological scenarios. The predictive capability of the model was 

assessed by maintaining consistent parameters during validation and determining its effectiveness in 

representing the watershed’s hydrological processes over time. 

2.7. Model Performance Evaluation  

To assess the behavior of the model, p and r factors were utilized to estimate the uncertainty performance. 

The p-factor represents the proportion of data covered by the 95PPU (with a maximum value of 100%), whereas 

the r-factor signifies the average width of the band divided by the standard deviation of the corresponding 

measured variable. To assess the effectiveness of the model during calibration and validation, we used widely 

accepted statistical metrics: coefficient of determination (R²), Nash–Sutcliffe Efficiency (NSE), and Percent Bias 

(PBIAS). The performance thresholds are based on the guidelines proposed in [34]. According to these criteria, the 

model performance is rated as “very good” when R² and NSE are greater than 0.75, and PBIAS is less than ±10%. A 

“good” performance corresponds to 0.60 < R² and NSE < 0.75 and ±10% < PBIAS < ±15%. These standards are well 

suited for evaluating hydrological models and were used consistently in this study to interpret the simulation 

results at the Hombele and Melkakuntro gauging stations. The coefficient of determination (R²) illustrates the 

percentage of variation in the model in the measured data, indicating the magnitude of the linear relationship 

between the simulated and observed values. Higher numbers suggest less error variance, with values larger than 

0.6 generally considered acceptable. R² ranges from 0, indicating a poor model, to 1, indicating a good model [35]. 

Equation 2 can be used to determine the R2 value: 

 𝑅2 = [
∑ (𝑶𝒊−𝑺𝒊)(𝑺𝒊−𝑺̅)𝒏

𝒊=𝟏

(∑ (𝑶𝒊−𝑶̅)𝟎.𝟓𝒏
𝒊=𝟏 )(∑ (𝑺𝒊−𝑺̅)𝟐𝒏

𝒊=𝟏 )
𝟎.𝟓]

𝟐

  2 

Where, 𝑂𝑖  – measured value (m3/s)  

𝑂̅ is the verage measured value (m3/s).  

𝑆𝑖: simulated value (m3/s), and  

𝑆̅ – Average simulated value (m3/s)  

The Nash Sutcliffe efficiency (NSE), a normalized statistic that assesses the amount of residual variation 

(additionally recognized as "noise") there is about the variance of the measured data (also known as 

"information") [36] . The NSE represents how well the 1:1 line fits the observed versus simulated data plot. The 

NSE was calculated using Equation 3: 
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 𝑁𝑆𝐸 = 1 − [
∑ (𝑶𝑶𝒊𝒊−𝑺𝑰)𝟐𝒏

𝒊=𝟏

∑ (𝑶𝑰−𝑶𝒊̅̅̅̅ )𝟐𝒏
𝑰=𝟏

]    3 

NSE has a value between negative infinity and one (best), or [-, 1]. An NSE value of 0 denotes poor performance, 

because it indicates that the mean observed value is a better predictor than the simulated value. When NSE values 

are greater than 0.5, the simulated value is a better predictor than the mean measured value, and is generally 

viewed as an acceptable performance [35]. 

The average tendency of the simulated data to be greater or smaller than their observed equivalents is 

represented by percentage bias [37]. The low-magnitude values of PBIAS indicate an accurate model simulation, 

with 0.0 being the ideal value. Positive values denote bias in the model's underestimation, whereas negative 

values denote bias in the model's overestimation [37]. Equation 4, PBIAS, is calculated as follows: 

 𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑶𝑰−𝑺𝒊)∗𝟏𝟎𝟎𝒏

𝒏=𝟏

∑ (𝑶𝒊)𝒏
𝒊𝒊=𝟏

] 4 

Where PBIAS is the deviation of data being evaluated, expressed as a percentage. 

2.8. Water Budget Components and Water Yield 

In the SWAT model, the components of the water budget are critical drivers of watershed processes that 

influence everything from plant growth to the movement of sediments, nutrients, pesticides, and pathogens [38]. 

Watersheds in the SWAT model were divided into sub-watersheds, which were further subdivided into hydrologic 

response units (HRUs). Each HRU is defined by consistent land-use, slope, and soil characteristics [28]. The SWAT 

model simulates the hydrological cycle using water budget equation 5 to track these processes across different 

spatial scales [28]. 

 𝑆𝑊𝑡 = 𝑆𝑊𝑂 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑆𝑆𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1   5 

where SWt is the final soil water content (mm); SWo is the initial soil water content on day i (mm); t is the time 

(days); Rday is the measure of precipitation on day i (mm); Qsurf is the measure of surface runoff on day i (mm); Ea 

is the amount of ET on day i (mm); Wseep is the measure of water entering the vadose zone from the soil profile on 

day i (mm); and Qgw is the measure of groundwater discharge on day i (mm). 

The simulated annual water budget components represent different water inputs and outputs in a specific 

area over a year. These components include precipitation, evapotranspiration, surface runoff, infiltration, and 

groundwater recharge. Analyzing the ratio of rainfall to each of these components helps to provide a clearer 

understanding of the distribution and utilization of water within the area. For example, it reveals how much 

precipitation is consumed by vegetation, lost through evaporation, and contributes to surface runoff and 

groundwater recharge. A high ratio of rainfall to evapotranspiration could indicate a densely vegetated area where 

much of the precipitation is used by plants. Conversely, a low ratio of rainfall to runoff might suggest drought 

conditions where little precipitation reaches rivers or surface water bodies. 

2.8.1. Surface Runoff 

The Soil and Water Assessment Tool (SWAT) uses a modified Soil Conservation Service-Curve Number (SCS-CN) 

[39] to quantify surface runoff. This popular technique combines important hydrological components, making it a 

reliable method for calculating the runoff in various environments. Daily precipitation data input is the first step in 

the process and is the main source of information used to estimate the surface runoff. Next, for every sub-basin 

or Hydrologic Response Unit (HRU) in the watershed, SWAT designates a Curve Number (CN). The CN value, which 

ranged from 30 to 100, was determined based on the soil type, antecedent moisture conditions (AMC), and land 

use. A lower CN denotes higher infiltration and a reduced potential for runoff, whereas a larger CN suggests a 

higher potential for runoff. 

Before calculating the runoff, SWAT accounts for the initial abstraction (Ia), which includes water loss due to 

infiltration, evaporation, and storage in surface depressions. This initial abstraction was calculated as a fraction of 
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the potential maximum retention (S), using the relationship Ia = 0.2S. The maximum potential retention was 

determined using Equation 6: 

 𝑆 =
1000

𝐶𝑁
− 10  6 

Where S represents the amount of rainfall retained by the soil before runoff is generated. Using these 

parameters, SWAT calculates the surface runoff (Q) using Equation 7: 

 𝑄 =
(𝑃−𝐼𝑎)2

(𝑃−𝐼𝑎)+𝑆
  7 

Where P is the total rainfall, and Ia is the initial abstraction. This approach allows SWAT to accurately simulate 

surface runoff by accounting for various landscape characteristics and hydrological processes, making it a 

powerful tool for water resource management and planning in complex watershed systems. 

2.8.2. Evapotranspiration 

Evapotranspiration, the combined process of water loss through evaporation from soil and water surfaces and 

transpiration from plants, is a critical component of the water balance and a key factor in the hydrological cycle. 

However, the accurate estimation of evapotranspiration is challenging and often involves a degree of uncertainty. 

In the SWAT model, evapotranspiration was calculated using the FAO Penman-Monteith method (FAO56PM), a 

widely accepted approach developed by [40]. This method estimates the reference crop evapotranspiration (ET), 

which represents the rate of evapotranspiration from a well-watered reference crop, such as grass or alfalfa, 

under standard environmental conditions. 

The FAO56PM model incorporates various climatic factors such as temperature, humidity, solar radiation, and 

wind speed to calculate ET. The Equation 8: 

 𝐸𝑇 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇𝑎+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢2)
   8 

Where ET is the reference crop evapotranspiration (mm/d), γ is the psychrometric constant (kPa/°C), Rn is the 

net solar radiation at the crop surface (MJ/m2/d), G is the soil heat flux (MJ/m2/d), Δ is the slope of the saturation 

vapor pressure versus air temperature curve (kPa/°C), Ta is the mean air temperature at a 2m height (°C), u2 is the 

wind speed at a 2m height (m/s), es is the saturation vapor pressure (kPa), and ea is the actual vapor pressure 

(kPa).  

In SWAT, the calculated reference evapotranspiration is used along with the soil and plant characteristics to 

estimate the actual evapotranspiration across the watershed. The model calculates the annual water budget in 

each cell by considering the runoff and actual evapotranspiration. To simplify the calculations, percolation and 

deep percolation components are often not separately accounted for in the water budget of the model. This 

approach ensures a comprehensive understanding of water loss through evapotranspiration, thereby aiding in the 

accurate simulation of hydrological processes. 

2.8.3. Groundwater Recharge  

Groundwater recharge is an essential process in the water cycle, providing a consistent supply of water for 

various uses. The groundwater recharge in the SWAT model was calculated by modeling the flow of water from the 

surface through the soil and vadose zone to the water table, where it contributes to the aquifer. This flow is 

affected by various factors, including topography, soil properties, and the characteristics of the vadose zone, 

which is the area between the ground surface and water table that influences the downward movement of water 

[38]. The SWAT model uses an exponential decay function, originally proposed by [41] to estimate the 

groundwater recharge. According to this function, as water infiltrates deeper from the surface, the recharge rate 

decreases exponentially because of lower hydraulic conductivity and increased resistance to water flow. This 

relationship is particularly effective in areas where the vadose zone is relatively uniform, allowing the model to 

predict the groundwater recharge more accurately. The exponential decay function is expressed in Equation 9. 
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 𝑅𝑧 = 𝑅𝑜𝑒−𝛼𝑧 9 

Where Rz is the recharge rate at depth z, Ro is the recharge rate at the surface, α is a decay constant that 

depends on the hydraulic properties of the soil and the vadose zone, and z is the depth below the surface. This 

equation accounts for the hydraulic properties of the soil, including porosity, permeability, and depth to the water 

table, all of which influence how quickly the water reaches the aquifer. By incorporating land cover and climatic 

data, the SWAT uses this function to model the volume of water moving from the soil layers into the groundwater 

system. 

2.8.4. Total Water Yield 

Water yield is a key parameter for sustainable water resource management in the study area. Water yield 

refers to the total volume of water exiting a hydrologic response unit (HRU) and flowing into the main channel 

during each time step of the simulation [28]. This metric is crucial, as it provides insight into the available water 

resources within a watershed, aiding in the planning and allocation of water for various uses, such as agriculture, 

industry, and ecosystem services. The SWAT model evaluates water yield within a watershed based on the 

calculations outlined in Equation 10. This equation captures the interactions among precipitation, 

evapotranspiration, surface runoff, and other hydrological processes, allowing for a comprehensive understanding 

of water availability at different spatial and temporal scales. 

 𝑊𝑦𝑙𝑑 = 𝑄𝑠𝑢𝑟𝑓 + 𝑄𝑔𝑤 + 𝑄𝑙𝑎𝑡 − 𝑇𝑙𝑜𝑠𝑠  10 

Where Wyld represents the water yield (mm), which is the total water output from the hydrologic response unit 

(HRU). Qsurf: Surface runoff (mm), which is the portion of water flowing directly over the land surface into the 

stream. Qlat: Lateral flow (mm), indicating subsurface flow that moves horizontally through the soil and contributes 

to the streamflow. Qgw the groundwater flow (mm), which refers to water entering the stream from the 

groundwater system. Tloss: Transmission loss (mm), representing the water lost from the tributary as it infiltrates 

the streambed. 

3. Results and Discussion 

3.1. Watershed Delineation  

The watershed was segmented into 35 sub-basins using topographic and stream network analysis. Hombele 

(sub-basin 33) and Melkakuntro (sub-basin 20) were selected based on data availability, representativeness of the 

upper and lower watershed hydrology, and completeness of streamflow records. This segmentation is based on a 

digital elevation model (DEM) and stream network. Within each of these sub-basins, the SWAT model further 

subdivided the landscape into 1,415 hydrological response units (HRUs). These HRUs were differentiated based on 

variations in land use, soil type, and slope gradient. This methodology facilitated a more precise representation of 

spatial variability within the study area. Notably, the fluviometric station of Hombele was positioned in sub-basin 

number 33, and Melkakuntro was located in sub-basin number 20. 

3.2. Sensitivity Analysis 

The sensitivity analysis conducted in this study initially considered 16 parameters to identify the most 

influential factors affecting the streamflow in the study area. After analyzing the results, six parameters were 

found to have the lowest p-values and highest t-stat values, indicating their sensitivity to streamflow at both 

monitoring stations. The first parameter identified was the SCS runoff curve number (CN2), which represents the 

ability of soil to absorb water. This parameter is a critical factor for determining the amount of runoff generated 

during rainfall events. The second parameter, the alpha factor (ALPHA_BF), was largely responsible for the 

groundwater recharge rate. It measures the rate of water transfer from the surface to groundwater system. The 

third parameter, groundwater delay (GW_DELAY), represents the time required for the water to move from the 

surface to the groundwater system. This parameter is crucial for determining when and how quickly the 

groundwater recharges. The fourth parameter is the threshold depth of water in the shallow aquifer necessary for 
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return flow to occur (GWQMN). This denotes the minimum amount of water required in the shallow aquifer for 

water to return to the surface, as shown in Fig. (7) and (8). 

 

Figure 7: Sensitivity of flow parameters Hombele gauging station. 

 

Figure 8: Sensitivity of flow parameters at Melkakuntiro gauging station.  

3.3. Calibration, Validation, and Uncertainty Analysis 

Table 4 presents the initial ranges and calibrated sensitive parameters for the streamflow in the study area. It 

provides valuable information on the range of values for each parameter and the final calibrated values after 

sensitivity analysis. This information is crucial for understanding the factors that influence streamflow and 

developing sustainable water resource management strategies. Plots of daily simulated and observed streamflows 

were constructed for the gauging stations at Hombele and Melkakuntiro to assess the effectiveness of the 

calibrated model. The results showed good agreement between the datasets, with Nash Sutcliffe Efficiency (NSE) 

values of 0.82 and 0.78 and R2 values of 0.82 and 0.79 for the calibration period (1988–2008), respectively. During 

the validation period (2009-2013), NSE and R2 values were 0.67 and 0.66, and 0.71 and 0.7, respectively Fig. (9). 
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Table 4: Initial ranges and final calibrated sensitive parameters. 

Parameter Minimum Maximum Calibrated Value 

Alpha_Bf 0 1 0.048 

Biomix 0 1 0.2 

Ch_K2 0 150 0 

Ch_N2 0 1 0.014 

Cn2 35 98 71.2 

Epco 0 1 1 

Esco 0 1 0.95 

Gw_Delay 0 50 31 

Gw_Revap 0.02 0.2 0.02 

Gwqmn 0 5000 1000 

Revapmn 0 500 750 

Sol_Awc 0 1 0.1 

Sol_K 0 100 17.27 

Sol_Z 0 3000 204.03 

SURLAG 0 10 4 

OV_N 0 0.8 0.14 
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Fig. 9: contd…. 

      

          

Figure 9: The time series data for Hombele (a & b) and Melkakuntiro (c & d) are depicted for both the calibration and validation 

period and scatter plots illustrate the comparisons of daily streamflow between simulated and observed data at Hombele (e & 

f) and Melkakuntiro (g & h) during the calibration and validation processes. 

Considering the model performance statistics for the calibration periods at Hombele and Melkakuntro stations, 

and based on the criteria set out by Moriasi et al. for assessing model performance, the setup model was rated as 

“very good” and “good” respectively shown in Table 5. For the validation period, the ratings were “good.” These 

model performance measures indicate that the model accurately captured the observed streamflow at Hombele 

station. However, a comparison of the statistical measures for the calibration and validation periods revealed that 

the model performed better during the calibration period than the validation period. 

Table 5: Classification of statistical indices. 

R2 NSE PBIAS Classification 

0.75 < R2 < 1.00 0.75 < NSE < 1.00 PBIAS < + 10  Very Good  

0.60 < R2 < 0.75 0.60 < NSE < 0.75 + 10 < PBIAS < + 15 Good 

0.50 < R2 < 0.60 0.36 < NSE < 0.60 + 15 < PBIAS < + 25 Satisfactory 

0.60 < R2 < 0.50 0.00 < NSE < 0.36 + 25 < PBIAS < + 50 Bad 

R2 < 0.25 NSE < 0.00 + 50 < PBIAS  Inappropriate 

Source: Adapted from Moriasi et al. [34], 

The observed and simulated discharges matched well during the calibration and validation periods Table 6. 

However, during the calibration period at the Hombele and Melkakuntro gauging stations, the average 

underestimations of the observed discharge were 2.3% and 13.1%, respectively. During the validation period, the 

observed discharge was overestimated by 11.2% and 1.9% in Hombele and Melkakuntro, respectively. During the 

calibration period (1988–2008), the observed and simulated mean annual flow (MAF) were 1421 MCM/yr (45.03 

m3/s) and 1389 MCM/yr (44.01 m3/s), respectively, indicating an underestimation of the observed streamflow by 
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2.3% at the Hombele station. The observed and simulated MAF at Melkakuntro were 943 MCM/yr (29.88 m3/s) and 

819 MCM/yr (25.96 m3/s), respectively, representing a 13.1% underestimation of the observed streamflow. For the 

validation period (2009-2013), the observed and simulated flows (MAF) at Hombele and Melkakuntro were 1450 

MCM/yr (45.95 m3/s), 1612 MCM/yr (51.08 m3/s), 1140 MCM/yr (36.13 m3/s), and 1160 MCM/yr (36.8 m3/s), 

respectively, resulting in an overestimation of the observed discharge by 11.2% and 1.9%. 

Table 6: Performance indexes. 

Performance Indexes 

Gauging stations 

Hombele Melkakuntro 

Calibration Validation Calibration Validation 

R2 0.82 0.71 0.79 0.7 

NSE 0.82 0.63 0.63 0.66 

PBIAS 2.3 -11.2 13.1 -1.9 

 

For Hombele, the p- and r-factor ratios during calibration were 0.801 and 0.97, respectively. This indicates that 

the model was able to reasonably simulate the peak flow and volume of flow, capturing approximately 80.1% and 

97% of the observed values, respectively. Similarly, for Melkakuntro, the p- and r-factor ratios during calibration 

were 0.808 and 0.868, respectively, indicating a slightly lower but still acceptable level of performance, as shown in 

Table 7. 

Table 7: Uncertainty indexes. 

Uncertainty Indexes 

Gauging stations 

Hombele Melkakuntro 

Calibration Validation Calibration Validation 

p-factor 0.801 0.387 0.808 0.352 

r-factor 0.97 0.9 0.868 0.98 

 

 

Figure 10: The simulated annual water budget components and water yield in the upper Awash sub-basin. 
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3.4. Water Budget Components and Water Yield in the Upper Awash Sub-basin 

The components of the simulated annual water budget and water yield for the study area are shown in Fig. (10). 

These elements include annual amounts of precipitation, evapotranspiration, surface runoff, and groundwater 

recharge in the region. The annual rainfall in the study area is shown in Fig. (11). 

 

Figure 11: The simulated annual rainfall in the upper Awash sub-basin. 

3.4.1. Surface Runoff 

Fig. (12) shows the annual surface runoff in the study area. According to the data analysis, annual surface 

runoff in the sub-basin ranges from 0 mm to 240.5 mm, with a mean value of 93.4 mm/year and a standard 

deviation of 30.1 mm. These numbers reveal the variability in surface runoff and the capacity of the sub-basin to 

manage its water resources. The mean annual spatial pattern of the surface runoff in the sub-basin is shown in Fig. 

(13). The graph demonstrates that the Hombele area, owns, and cities had the most considerable surface runoff 

(149.7-240.5 mm).  

 

Figure 12: The simulated annual surface runoff in the upper Awash sub-basin. 

3.4.2. Evapotranspiration  

The annual evapotranspiration in the upper Awash sub-basin ranges from 22.6 mm to 2237.8 mm, 

demonstrating significant variation. With a standard deviation of 200 mm, the average annual evapotranspiration 
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in the basin was 682.5 mm. These figures highlight the critical role of evapotranspiration in the region's water 

budget, accounting for 71.8% of the annual rainfall. This indicates that a substantial portion of rainfall is lost to the 

atmosphere through evaporation and transpiration, affecting the management of water resources and the supply 

of water for both human and agricultural use. Fig. (14) shows the annual evapotranspiration occurring within the 

study area. The spatial distribution of mean annual evapotranspiration reveals that open water bodies, such as 

Koka, Abasamuel, and lakes around Debrezeit, have high evapotranspiration rates, ranging from 1171.1 to 2237.8 

mm, as shown in Fig. (15). 

 

Figure 13: The mean annual spatial distribution of surface runoff. 

 

Figure 14: The simulated annual evapotranspiration in the upper Awash sub-basin. 
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Figure 15: The mean annual spatial distribution of evapotranspiration. 

3.4.3. Groundwater Recharge 

The bar chart in Fig. (16) Shows the annual groundwater recharge in the study area. The annual groundwater 

recharge in the upper Awash River Basin exhibited significant spatial variation, with values ranging between 0 and 

904.3 mm, as depicted in Fig. (17). The recharge estimation indicated that the total aquifer recharge for the entire 

basin, calculated using the long-term (28 years) mean annual recharge, was 181.1 mm/year. This calculation had a 

standard deviation of 64.9 mm, representing 19.1% of the average annual rainfall. These figures highlight the 

variability in groundwater recharge in the study area and the potential for long-term groundwater management.  

 

Figure 16: The simulated annual groundwater recharge in the upper Awash sub-basin. 
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Figure 17: The mean annual spatial distribution of groundwater recharge. 

This study found that agricultural land, designated AGRL, exhibited the highest mean annual groundwater 

recharge value. This conclusion underscores the pivotal role of agricultural regions in sustaining water resources 

as they significantly contribute to groundwater recharge. In contrast, urban (URBN) land use types were 

associated with the highest surface runoff values, indicating that urban areas contribute more to runoff than 

other land use types. Furthermore, land use/cover types encompassing aquatic bodies displayed the highest 

evapotranspiration values, suggesting that these areas experienced elevated rates of water loss through 

evaporation and transpiration. Conversely, the land use/cover-type water bodies exhibited the lowest mean 

annual groundwater recharge and surface runoff values, implying that these areas make limited contributions to 

groundwater recharge and runoff. In contrast, urban (URBN) land use/cover types demonstrated the lowest 

evapotranspiration values, indicating that urban areas experience lower rates of water loss through evaporation 

and transpiration compared to other land use types. Fig. (18) visually represents these disparities in the mean 

annual groundwater recharge, surface runoff, and evapotranspiration values across different land-use types. 

3.4.4. Rainfall and its Partitioning 

Rainfall is the primary source of water entering watersheds, and is distributed among three key components: 

groundwater recharge, surface runoff, and evapotranspiration. The ratios of rainfall to groundwater recharge, 

surface runoff, and evapotranspiration provided critical insights into the hydrological dynamics of the Upper 

Awash River sub-basin. It is important to understand the ratio range of the constituents of the water budget, as 

shown in Fig. (19). 

The predominance of evapotranspiration in the Upper Awash River sub-basin, accounting for 71.8% of the total 

precipitation, suggests that a large portion of incoming water is lost to the atmosphere. This is common in regions 

with significant vegetative cover and high temperature. The sub-basin water cycle depends heavily on 

evapotranspiration, which significantly affects the amount of water available for surface runoff and groundwater 

recharging. This affects the overall water balance and resource management in the region. 
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Figure 18: Actual evapotranspiration, recharge, and surface runoff components in different land-cover use units. 

 

Figure 19: The ratio of rainfall to water budget components in the upper Awash sub-basin. 

Aquifer replenishment was moderately aided by groundwater recharge, which accounted for 19.1% of total 

precipitation. The region's industrial, agricultural, and domestic requirements depend on the groundwater supply 

that this water fraction helps to maintain. Conversely, the low 9.8% surface runoff ratio indicated that most of the 

precipitation was either absorbed by the soil or evaporated through evapotranspiration rather than runoff. It can 

be inferred that the porous soils and vegetation cover of the sub-basin significantly boosted infiltration, thereby 

reducing direct runoff. However, low surface runoff also makes the management of water resources challenging, 

particularly under arid or drought conditions. These findings underscore the necessity of implementing integrated 

approaches to water resource management that consider the vital functions of evapotranspiration and 

groundwater recharge in maintaining water supplies. 

3.4.5. Total Water Yield 

In addition to estimating the monthly discharge of the watershed, the SWAT model calculates other key 

components of the water balance. Water yield is a crucial parameter for effective water management and 

planning in the study area. The model was used to assess the contribution of each sub-watershed to the overall 

water yield during the simulation period, utilizing calibrated parameters to provide a detailed analysis of the water 

distribution across the watershed. This information is essential for understanding the water availability and 

guiding resource management decisions. 
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Sub-basin 5, dominated by agricultural land cover, recorded the lowest water yield in the watershed with an 

estimated 232.3 mm. In contrast, sub-basin 1, characterized by wetland land use, exhibited the highest water yield 

at 245.9 mm. The variation in water yield across the sub-basins highlights the influence of land-use and land-cover 

types on hydrological processes within the watershed. The overall average water yield for the study area was 

233.4 mm, reflecting the combined effect of different land cover types and hydrological dynamics across the 

watershed. 

A detailed breakdown of the average annual water budget components, including the water yield for each sub-

basin, is presented in Table 8. These data provide valuable insights into the spatial distribution of water availability 

and help inform decisions for sustainable water management and planning across various land-use types in the 

watershed. 

Table 8: Uncertainty indexes. 

Water Budget Components & Water Yield Depth(mm) 

Precipitation 1078 

Surface runoff 93.4 

Groundwater (Shallow aquifer) flow 165 

Till flow 0 

Evapotranspiration 682.5 

Transmission loss 27.2 

Total water yield 233.4 

 

Compared with similar watersheds globally, such as the Kaidu-Kongqi River Basin in arid Northwest China [42] 

and parts of the volcanic Upper Blue Nile Basin in Ethiopia [14], the water budget components observed in the 

upper wash sub-basin reflect comparable trends, especially in terms of high evapotranspiration ratios and 

moderate groundwater recharge. However, the Upper Awash showed lower surface runoff, likely due to its porous 

volcanic soils and land use characteristics. These insights suggest that water management in the region is 

moderately sustainable but requires improved conservation practices to address potential scarcity during dry 

periods. 

4. Conclusions and Perspectives 

This study successfully employed the Soil and Water Assessment Tool (SWAT) to conduct a detailed analysis of 

the water budget components within the Upper Awash River sub-basin in Central Ethiopia. Based on a significant 

quantity of data from 1986 to 2013, the calibration and validation of the model showed strong performance 

metrics, such as acceptable values for the p-factor, r-factor, NSE, R², and PBIAS at two gauging stations: Hombele 

and Melkakuntro. During the calibration phase, Hombele demonstrated p- and r-factor ratios of 0.801 and 0.97, 

respectively. This indicated that the model captured approximately 80.1% and 97% of the observed values for the 

peak flows and flow volume, respectively. In contrast, Melkakuntro had slightly lower, but still acceptable ratios of 

0.808 and 0.98, respectively. 

 The calibration results for Hombele showed R2, NSE, and PBIAS values of 0.82, 0.82, and -2.3, respectively. 

These figures signify a strong fit between the simulated and observed data, with a high level of agreement 

between the two despite a slight underestimation of the simulated data. Melkakuntro's calibration results 

displayed R2, NSE, and PBIAS values of 0.79, 0.78, and -13.1, respectively. This suggests a reasonably good fit, and 

explains approximately 79% of the variability in the observed data. However, the PBIAS value indicated a more 

significant underestimation of the simulated data than that of the observed values. 

 During the validation, both Hombele and Melkakuntro exhibited satisfactory results. The Hombele's R2, NSE, 

and PBIAS values were 0.71, 0.67, and 11.2, respectively, indicating a reasonable fit between the simulated and 
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observed data. Melkakuntro showed R2, NSE, and PBIAS values of 0.7, 0.66, and 1.9 respectively, demonstrating 

good agreement between the simulated and observed data. 

The SWAT model findings revealed that the mean annual recharge in the upper wash sub-basin is 

approximately 181.1 mm/year, accounting for 2.1 BCM/year and constituting approximately 19.1% of the total 

mean annual precipitation. The simulated mean annual surface runoff was 93.4 mm, or roughly 1.09 BCM, 

representing 9.4% of the mean annual precipitation. Evapotranspiration was estimated at 682.5 mm/year, making 

up 71.5% of the mean annual precipitation and the annual average total water yield was 233.5 mm in the upper 

Awash sub-basin. The ability of the model to represent processes spatially allows for an accurate depiction of 

spatial heterogeneity. These quantitative findings offer actionable insights into water allocation planning, drought 

preparedness, and ecosystem sustainability. 

The findings of this study contribute to a novel understanding of the temporal and spatial distribution of water 

budget components and water yield of the upper wash river subbasin. The hydrological sensitivity of the basin to 

land use, climate, and topographic properties was revealed using the SWAT model, which was calibrated with long-

term data. It is interesting that as groundwater recharge is low, surface runoff is small, and evapotranspiration 

dominates the water budget, the role of integrated land and water management practices is further emphasized, 

and further research is required to integrate climate change projections, land use scenario modelling, and socio-

hydrological interactions to develop adaptive water management. Inclusion of remote sensing-derived datasets 

and field-based recharge measurements and coupling with GW flow models may enhance estimates of recharge 

dynamics and storage sustainability. Their efforts will be a step forward in scientific analysis that will facilitate 

policy-making to alleviate water stress and ensure sustainable water yield under data-poor circumstances such as 

the Upper Awash. 

Highlights 

• Applied the SWAT model to assess water budget components in Ethiopia’s Upper Awash Sub-Basin using 28 

years of data. 

• Calibrated and validated SWAT at two stations with strong performance metrics (R² > 0.7, NSE > 0.66). 

• Sensitivity and uncertainty analyses identified the key parameters influencing the streamflow in a data-

scarce basin. 

• Evapotranspiration dominated the water budget, accounting for 71.8% of annual rainfall. 

• The results support sustainable water management and planning in the climate- and land-use-sensitive 

Ethiopian highlands. 
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