Dynamic Analysis and Modeling Movement Transmission of Soil Construction Interaction


Limit component
Dynamic analysis
Finite component
Movement transmission

How to Cite

Hamidatou M, Lebdioui S, Hallal N, Matos JC, Tinoco J. Dynamic Analysis and Modeling Movement Transmission of Soil Construction Interaction. Glob. J. Earth Sci. Eng. [Internet]. 2022 Apr. 28 [cited 2022 Jul. 5];9:34-50. Available from: https://avantipublishers.com/index.php/gjese/article/view/1001


This paper defines the dynamic analysis and geometric demonstration of movement transmission and the dynamic soil-structure interaction using two different approaches: the finite component process and the limit component approach (EM). This mathematical process is an influential geometric approach right for dynamic tasks. In this item, we used very advanced and effective computer geometric converter approaches to study multifaceted difficulties. The fractional difference equation leading the motion is outcoming and resolved by EM. The influence of 3 dimensions on the movement transmission imitation (1D and 2D) has a conversed captivating effect, dependent on the different finite components kinds (triangles, rectangles, tall degree components). Geometric modeling of stifling is too discussed (Rayleigh checking). The finite component technique then treats a model of movement transmission owing to the vibration of a foundation. The limit component technique's capacities are remembered, and outcomes found through 2D and 3D mockups are planned. Numerous cases of dynamic soil-structure interaction (building, tunnel) are formerly pickled. The outcomes of these properties are discussed here.



Eringen AC, Şuhubi ES. Elastodynamics, 2nd ed. Academic press: New York 1975.

Bourbié T, Coussy O, Zinsner B. Acoustique des milieux poreux, Technip-IFP ed: France 1986.

Chazelas JL, Guéguen P, Bard PY, Semblat JF. Modeling of the site-city effect in a centrifugal reduced model. Validation of experimental techniques, 6th National Symposium on Earthquake Engineering, École Polytechnique, Palaiseau 2003; pp. 245-252.

Semblat JF, Luong MP. Movement transmission through soils in centrifuge experiments. J Earthq Eng 1998; 2 (1):147-171. https://doi.org/10.1142/S1363246998000071

Bui HD. Introduction to inverse complications in materials mechanics, Eyrolles: Paris 1993.

Chammas R, Abraham O, Côte P, Pedersen H, Semblat JF. Characterization of heterogeneous soils using surface movements: homogenization and geometric modeling. Int J Geomech (ASCE) 2003; 3(1):55-63. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(55)

Moczo P, Bard PY. Movement diffraction, intensification and differential motion near strong lateral dis- continuities. Bull Seismol Soc Am 1993; 83:85-106.

Virieux J. P-SV Movement transmission in heterogeneous media: velocity-stress finite-difference Approache. Geophys 1986; 51:889-901. https://doi.org/10.1190/1.1442147

Jol P. Digital Rayleigh movements. Res Rep INRIA 1982; 107.

Semblat JF. Checking and scattering of movements: physical and digital points of view. Fr Civ Eng J 1998; 2 (1):91-111. https://doi.org/10.1142/S1363246998000071

Bonnet M. Limit integral equation approaches for solids and fluids, Wiley: Chichester UK 1999.

Dangla P. Coupling finite components-integral equations in dynamic elasto and soil-structure interaction, Doctoral thesis of ENPC 1989.

Faccioli E, Maggio F, Paolucci R, Quarteroni A. 2D and 3D elastic movement transmission by a pseudo-spectral domain decomposition approache. J Seismol 1997; 1:237-251. https://doi.org/10.1023/A:1009758820546

Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sanchez-Sesma FJ. The spectral component approache for elastic movement equations. Application to 2D and 3D seismic complications. Int J Geom Appr Eng 1999; 45:1139-1164. https://doi.org/10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T

Aki K, Richards PG. Quantitative seismology, Freeman éd: San Francisco 1980.

Hughes TJR. Linear static and dynamic finite component analysis, Prentice Hall, Engle wood Cliffs N-J 1987.

Bamberger A, Chavent G, Lailly P. Study of geometric diagrams for the equations of linear elastodynamics, Res Rep INRIA1980; 41.

Ihlenburg F, Babuška I. Distribution analysis and mistake estimation of Galerkin finite component approaches for the Helmholtz equation. Int J Num Meth Eng 1995; 38:3745-3774. https://doi.org/10.1002/nme.1620382203

Semblat JF, Brioist JJ. Efficiency of higher order finite components for the analysis of seismic movement transmission. J Sound Vib 2000; 231:460-467. https://doi.org/10.1006/jsvi.1999.2636

Cohen G. High order finite components with mass condensation for the dimension 1 movement equation. Res Rep INRIA1994; 2323.

Imbert JF. Analyse des structures par éléments finis, Cépadues: Toulouse 1979.

Bisch PH, Langeoire A, Prat M, Semblat JF. Ouvrages en interaction (emploi des éléments finis en génie civil), Chap. 7: Modélisation des ouvrages en zone sismique transmission d'ondes, Hermès: Paris 1999; pp. 467-562.

Semblat JF. Rheological interpretation of Rayleigh checking. J Sound Vib 1997; 206 (5):741-744. https://doi.org/10.1006/jsvi.1997.1067

Chadwick E, Bettess P, Laghrouche O. Diffraction of short movements modelled using new mapped movement envelope finite and unlimited components. Int J Num Meth Eng 1999; 45:335-354. https://doi.org/10.1002/(SICI)1097-0207(19990530)45:3<335::AID-NME591>3.0.CO;2-A

Modaressi H, Benzenati I. An absorbing limit component for dynamic analysis of two phase media, 10th World Conf. on Earthquake Engineering, Madrid 1992; pp. 1157-116.

Humbert P, Fezans G, Dubouchet A, Remaud D. CESAR-LCPC, a software package dedicated to civil engineering. Bull Lab Ponts et Chaussées 2005; 256-257.

Pecker A. Soil dynamics, Presses de ENPC 1984.

Guéguen P, Bard PY, Semblat JF. Site-city interaction: a new aspect of seismic hazard. Bull Lab Ponts et Chaussées 2002; 236:17-36.

Bonnet M. Integral equations and limit components, CNRS Editions/Editions Eyrolles, Engineering Sciences and Techniques Collection 1995.

Dangla P. A flat strain soil-structure interaction model. Earthq Eng Struct Dyn 1988; 16:1115-1128. https://doi.org/10.1002/eqe.4290160803

Xiao HH, Dangla P, Semblat JF, Kham M. Modelling seismic movement transmission in the frequency domain with investigatively regularized limit integral equations, 5th European Conf. on Geometric Approaches in Geotechnical Eng: Paris 2002.

Collino F. High order absorbing limit conditions for the 3D movement equation. Research Report. INRIA 1996; 2932.

Bard PY, Bouchon M. The two dimensional resonance of sediment filled valleys. Bull Seismol Soc Am 1985; 75:519-541. https://doi.org/10.1785/BSSA0750020519

Pitilakis KD, Raptakis DG, Makra KA. Site effects: recent considerations and design provisions, 2nd Int. Conf. on Earthquake Geotechnical Engineering, Balkema ed: Lisbon 1999; pp. 901-912.

Dobry R, Oweis I, Urzua A. Simplified procedures for estimating the fundamental period of a soil profile. Bull Seismol Soc Am 1976; 66:1293-1321.

Semblat JF, Kham M, Parara E, Bard PY, Pitilakis K, Makra K et al. Seismic movement intensification: Basin geometry vs soil layering. Soil Dyn Earthq Eng 2005; 25:529-538. https://doi.org/10.1016/j.soildyn.2004.11.003

Semblat JF, Duval AM, Dangla P. Geometric analysis of seismic movement intensification in Nice and comparisons with experiments. Soil Dyn Earthq Eng 2000; 19(5):347-362. https://doi.org/10.1016/S0267-7261(00)00016-6

Dangla P, Semblat JF, Xiao HH, Delépine N. A simple and efficient regularization approache for 3D BEM: application to frequency domain elastodynamics. Bull Seismol Soc Am 2005; 95(5):1916-1927. https://doi.org/10.1785/0120050012

Kham M. Transmission of seismic movements in alluvial basins: from site effects to site-city interaction, Doctoral thesis l'ENPC 2004.

Lokmane N, Bonnet G, Semblat JF, Driad-Lebeau. Seismic stresses due to mining: intensification of movements and vibrations of surface structures, National Geotechnical and Geology Days: Lille 2004.

Guéguen P, Bard PY, Chazelas JL, Semblat JF. Earthquakes in the city. For sci 2003; 310:56-61.

Clouteau D, Aubry D. Modifications of the ground motion in dense urban areas. J Comput Acoust 2001; 9:1659-1675. https://doi.org/10.1142/S0218396X01001509

Tsogka C, Wirgin A. Seismic response of a set of blocks partially embedded in soft soil. Mech Rev 2003; 331 (3):217-224. https://doi.org/10.1016/S1631-0721(03)00041-X

Lombaert G, Clouteau D, Ishizawa O, Mezher N. The city-site effect: a fuzzy substructure approach and geometric imitations, 11th Int. Conf. on Soil Dynamics and Earthquake Engineering, University of California at Berkeley 2004, January 7-9, pp. 68-75.

Semblat JF, Kham M, Bard PY. Could Site-City Interaction modify site effects in urban areas 13th World Conf. on Earthquake Engineering, Vancouver 2004.

Luco JE, De barros FCP. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space. Earthq Eng Struct Dyn 1994; 23:321-340. https://doi.org/10.1002/eqe.4290230307

Semblat JF, Kham M, Kurose A, Xiao HH, Dangla P. (2002). Movement/cavity interaction: investigative and BEM approaches, 12th European Conf. on Earthquake Engineering, London, 9-13 Septembre.

Kurose A. Effects of earthquakes on underground structures, Doctoral thesis from the Polytechnique 2000.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Mouloud Hamidatou, Saad Lebdioui, Nassim Hallal, José Campos Matos, Joaquim Tinoco