Stress Regimes and Stress Fields Analysis Using Fault-Slip Data; Eastern Iran
Abstract - 131
PDF

Keywords

Eastern Iran
Fault-slip data
Stress regime
Sistan suture zone
Stress ellipsoid shape

How to Cite

1.
Ezati M, Gholami E, Mousavi SM, Ezati M. Stress Regimes and Stress Fields Analysis Using Fault-Slip Data; Eastern Iran. Glob. J. Earth Sci. Eng. [Internet]. 2023 Dec. 30 [cited 2025 Apr. 20];10:71-92. Available from: https://avantipublishers.com/index.php/gjese/article/view/1508

Abstract

In this paper direction of stress tensors and stress ellipsoids shape in Neogene, Paleogene, and older units were investigated. Moreover, relationship between shape of stress ellipsoid and exhumation of igneous units were determined using analysis of stress tensors. Analysis of relationships between stress regime and uplifting indicate that in the areas we observed the uplifting of the igneous units the shape of stress ellipsoid has been displaced locally from prolate to oblate which is due to local change of stress regime. Hence, local variation of stress regime in the eastern part of Shekarab Mountains caused boarder outcrops of igneous units. In the western part of study area shape of stress ellipsoid is prolate and it's due to existing reverse fault with strike-slip component. Comparison shape of stress ellipsoid in Eocene units indicate that shape of stress ellipsoid in the western, middle and eastern Shekarab Mountains is prolate, and as local there is oblate stress ellipsoid shape in eastern part. Results of this research indicate that direction of major stress axis had clockwise rotation from Cretaceous times to the present.

https://doi.org/10.15377/2409-5710.2023.10.5
PDF

References

Jackson J, Mc Kenzie D. Active tectonics of the Alpine-Himalayan Belt between Turkey and Pakistan. Geophys J Royal Astronom Soc. 1984; 77: 185-264. https://doi.org/10.1111/j.1365-246X.1984.tb01931.x

Vernant P, Nilforoushan F, Hatzfeld D, Abbassi MR, Vigny C, Masson F, et al. Presentday crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int. 2004; 157: 381-98. http://dx.doi.org/10.1111/j.1365-246X.2004.02222.x

Hollingsworth J. Active tectonics of NE Iran. Ph.D Thesis, University of Cambridge; 2007.

Ezati M, Gholami E. Neotectonics of the Central Kopeh Dagh drainage basins, NE Iran. Arab J Geosci. 2022; 15: 995.

Tirrul R, Bell IR, Griffis RJ, Camp VE. The Sistan suture zone of eastern Iran. Geol Soc Am Bull. 1983; 94: 134-50. https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2

Hu W, Zheng Y, McSaveney M, Xu Q, Huang R, Zhou L. Evolution of the strain localization and shear-zone internal structure in the granular material: Insights from ring-shear experiments. Eng Geol. 2023; 325: 107283.‏ https://doi.org/10.1016/j.enggeo.2023.107283

Molnar P, Tapponnier P. Cenozoic tectonics of Asia: effect collision of a continental. Science. 1975; 189: 419-26.

Lin Y, Zong Z, Bi K, Hao H, Lin J, Chen Y. Experimental and numerical studies of the seismic behavior of a steel-concrete composite rigid-frame bridge subjected to the surface rupture at a thrust fault. Eng Struct. 2020; 205: 110105.‏ https://doi.org/10.1016/j.engstruct.2019.110105

Parlangeau C, Lacombe O, Schueller S, Daniel JM. Inversion of calcite twin data for paleostress orientations and magnitudes: A new technique tested and calibrated on numerically-generated and natural data. Tectonophysics, 2017; 722: 462-85. https://doi.org/10.1016/j.tecto.2017.09.023

Li Q, Song D, Yuan C, Nie W. An image recognition method for the deformation area of open-pit rock slopes under variable rainfall. Measurement. 2022; 188: 110544.‏ https://doi.org/10.1016/j.measurement.2021.110544

Li X, Li Q, Wang Y, Liu W, Hou D, Zheng W, et al. Experimental study on instability mechanism and critical intensity of rainfall of high-steep rock slopes under unsaturated conditions. Int J Min Sci Technol. 2023; 33(10): 1243-60.‏ https://doi.org/10.1016/j.ijmst.2023.07.009

Mameri L, Tommasi A, Vauchez A, Signorelli J, Hassani R. Structural inheritance controlled by olivine viscous anisotropy in fossil mantle shear zones with different past kinematics. Tectonophysics. 2023; 863: 229982. https://doi.org/10.1016/j.tecto.2023.229982

Angelier J. Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV—a new method free of choice among nodal planes. Geophys J Int. 2002; 150: 588-609. https://doi.org/10.1046/j.1365-246X.2002.01713.x

Sasvári Á, Baharev A. SG2PS (structural geology to postscript converter) – A graphical solution for brittle structural data evaluation and paleostress calculation. Comput Geosci. 2014; 66: 81-93. https://doi.org/10.1016/j.cageo.2013.12.010

Mercier J, Carey-Gailhardis LE, Sebrier M, Stein S, Mercier JL, Hancock P. Palaeostress determinations from fault kinematics: Application to the neotectonics of the Himalayas-Tibet and the Central Andes [and discussion], Philos Trans R Soc A. 1991; 337: 41-52. https://doi.org/10.1098/rsta.1991.0105

Rowan MG, Muñoz JA, Roca E, Ferrer O, Santolaria P, Granado P, et al. Linked detachment folds, thrust faults, and salt diapirs: observations and analog models. J Struct Geol. 2022; 155: 104509.‏ https://doi.org/10.1016/j.jsg.2022.104509

Jackson J. Partitioning of strike-slip and convergent motion between Eurasia and Arabia in eastern Turkey and the Caucasus. J Geophys Res: Solid Earth. 1992; 97(B9): 12471-9.‏ https://doi.org/10.1029/92JB00944

Kaymakci N. Kinematic development and paleostress analysis of the Denizli Basin (Western Turkey): implications of spatial variation of relative paleostress magnitudes and orientations. J Asian Earth Sci. 2006; 27: 207–22. https://doi.org/10.1016/j.jseaes.2005.03.003

Sippel J, Saintot A, Heeremans M, Scheck-Wenderoth M. Paleostress field reconstruction in the Oslo region. Marine Pet Geol. 2009; 27: 682-708. https://doi.org/10.1016/j.marpetgeo.2009.08.010

Bhattacharyya K, Dwivedi HV, Das JP, Damania S. Structural geometry, microstructural and strain analyses of L-tectonites from Paleoproterozoic orthogneiss: Insights into local transport-parallel constrictional strain in the Sikkim Himalayan fold thrust belt. J Asian Earth Sci. 2015; 107: 212-31.‏ https://doi.org/10.1016/j.jseaes.2015.04.038

Ezati M, Agh-Atabi M. Active tectonic analysis of Atrak river subbasin located in NE Iran (East Alborz). J Tethys. 2013; 1: 177-88.

Ezati M, Agh-Atabi M. Estimating rate of tectonic activity in central Kopeh dagh using morphometric indices. J Tethys. 2014: 4: 314-26.

Coubal M, Málek J, Adamovic J, Stepancíková P. Late Cretaceous and Cenozoic dynamics inferred of the Bohemian Massif from the paleostress history of the Lusatian Fault Belt. J Geodyn. 2015; 87: 26-49. http://dx.doi.org/10.1016/j.jog.2015.02.006

Heuberger S, Célérier B, Burg JP, Chaudhry NM, Dawood H, Hussain S. Paleostress regimes from brittle structures of the Karakoram–Kohistan Suture Zone and surrounding areas of NW Pakistan. J Asian Earth Sci. 2010; 38: 307-35. https://doi.org/10.1016/j.jseaes.2010.01.004

Tripathy V, Saha D. Inversion of calcite twin data, Paleostress reconstruction and multiphase weak deformation in cratonic interior- Evidence from the protrozoic Caddapah basin, India. J Struct. Geol. 2015; 77, 62-81. https://doi.org/10.1016/j.jsg.2015.05.009

Shi G, Shen C, Zattin M, Wang H, Yang C, Liang C. Late Cretaceous-Cenozoic exhumation of the Helanshan Mt Range, western Ordos fold-thrust belt, China: Insights from structural and apatite fission track analyses. J Asian Earth Sci. 2019; 176: 196-208.‏ https://doi.org/10.1016/j.jseaes.2019.02.016

Arai N, Chigira M. Distribution of gravitational slope deformation and deep-seated landslides controlled by thrust faults in the Shimanto accretionary complex. Engineering Geology, 2019; 260: 105236.‏ https://doi.org/10.1016/j.enggeo.2019.105236

Bose S, Das A, Samantaray S, Banerjee S, Gupta S. Late tectonic reorientation of lineaments and fabrics in the northern Eastern Ghats Province, India: Evaluating the role of the Mahanadi Shear Zone. J Asian Earth Sci. 2020; 201: 104071.‏ https://doi.org/10.1016/j.jseaes.2019.104071

Ezati M, Gholami E, Mousavi SM, Rashidi A, Derakhshani R. Active Deformation Patterns in the Northern Birjand Mountains of the Sistan Suture Zone, Iran. Appl Sci. 2022a; 12: 6625. https://doi.org/10.3390/app12136625

Ezati M, Gholami E, Mousavi SM, Rashidi A, Ezati, M. Structural style and kinematic analysis of the northern Birjand Mountain range, Sistan suture zone, Eastern Iran. Arab J Geosci. 2023; 16: 389. https://doi.org/10.1007/s12517-023-11504-z

Ezati M, Gholami E, Mousavi SM. Paleostress regime reconstruction based on brittle structures analysis in the Shekarab Mountain, Eastern Iran. Arab J Geosci. 2020; 13: 1232. https://doi.org/10.1007/s12517-020-06235-4

Ezati M, Gholami E, Mousavi SM. Tectonic activity level evaluation using geomorphic indices in the Shekarab Mountains, Eastern Iran. Arab J Geosci. 2021; 14: 385. https://doi.org/10.1007/s12517-021-06724-0

Ezati M, Rashidi A, Gholami E, Mousavi SM, Nemati M, Shafieibafti S, et al. Paleostress Analysis in the Northern Birjand, East of Iran: Insights from Inversion of Fault-Slip Data, minerals 2022b; 12: 1606. https://doi.org/10.3390/min12121606

Smeraglia L, Fabbi S, Maffucci R, Albanesi L, Carminati E, Billi A, et al. The role of post-orogenic normal faulting in hydrocarbon migration in fold-and-thrust belts: Insights from the central Apennines, Italy. Marine Pet Geol. 2022; 136: 105429.‏ https://doi.org/10.1016/j.marpetgeo.2021.105429

Elitez İ, Yaltırak, C. Miocene to Quaternary geodynamic evolution of the southern section of the Burdur-Fethiye Shear Zone and its offshore continuation, eastern Mediterranean. Tectonophysics. 2023; 857: 229866.‏ https://doi.org/10.1016/j.tecto.2023.229866

Li Y, Xu WL, Zhang XM, Tang J. Petrogenesis of Jurassic granitic plutons in the Yanbian area NE China: Implications for the subduction history of the Paleo-Pacific Plate. J Asian Earth Sci. 2023; 259: 105940.‏ https://doi.org/10.1016/j.jseaes.2023.105940

Martin AK. Opposite rotations in the Central Andes Bend: Tectonic scenario compared to other cases of opposite rotations and implications for long-term subduction at continental arcs. J South Am Earth Sci. 2023; 104698.‏ https://doi.org/10.1016/j.jsames.2023.104698

McFadden RR, Taylor JM, Whitney DL, Teyssier C, Seaton NCA, Schroeder H. Deformation conditions and kinematic vorticity within the footwall shear zone of the Wildhorse detachment system, Pioneer metamorphic core complex, Idaho. J Struct Geol. 2023; 105031.‏ https://doi.org/10.1016/j.jsg.2023.105031

Rashidi A, Shafieibafti Sh, Nemati M, Ezati M, Gholami E, Mousavi SM. Flexural-slip folding in buckling phases of orogenic belts: insight into the tectonic evolution of fault splays in the East Iran Orogen. Front Earth Sci. 2023; 11: 531. https://doi.org/10.3389/feart.2023.1169667

Simonetti M, Langone A, Bonazzi M, Corvò S, Maino M. Tectono-metamorphic evolution of a post-variscan mid-crustal shear zone in relation to the Tethyan rifting (Ivrea-Verbano Zone, Southern Alps). J Struct Geol. 2023; 173: 104896.‏ https://doi.org/10.1016/j.jsg.2023.104896

Su J. Accelerated subduction of the western Pacific Plate promotes the intracontinental uplift and magmatism in late Jurassic South China. Tectonophysics. 2023; 230136.‏ https://doi.org/10.1016/j.tecto.2023.230136

Camp VE, Griffis, RJ. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos. 1982; 3: 221-39. https://doi.org/10.1016/0024-4937(82)90014-7

Berberian M, Yeats RS. 1999. Patterns of historical earthquake rupture in the Iranian plateau. Bull Seismol Soc Am. 1999; 89: 120-39. https://doi.org/10.1785/BSSA0890010120

Khatib MM. Structural analysis of southern Birjand Mountains. PhD Thesis. Shahid Beheshti University; Tehran: 1998.

Vahdati Daneshmand F, Kholghi MH. 1/100000 Geological map of Khusf. Geol Surv Tehran Iran, 1986.

Simón JL. Forty years of paleostress analysis: has it attained maturity? J Struct Geol. 2018; 1-35. https://doi.org/10.1016/j.jsg.2018.02.011

Wakabayashi J. Subducted sedimentary serpentinite mélanges: Record of multiple burial–exhumation cycles and subduction erosion. Tectonophysics. 2012; 568: 230-47.

Delvaux D. Win-Tensor, an interactive computer program for fracture analysis and crustal stress reconstruction. Geophys Res Abs. 2011; 13: 4018.

Navabpour P, Angelier J, Barrier E. Brittle tectonic reconstruction of palaeo-extension inherited from Mesozoic rifting in West Zagros (Kermanshah, Iran). J Geol Soc. 2011; 168: 979-94.‏ https://doi.org/10.1144/0016-76492010-108

Navabpour P, Malz A, Kley J, Siegburg M, Kasch N, Ustaszewski K. Intraplate brittle deformation and states of paleostress constrained by fault kinematics in the central German platform. Tectonophysics. 2017; 694: 146-63.‏ https://doi.org/10.1016/j.tecto.2016.11.033

Gürer ÖF, Sangu E, Özburan M, Gürbüz A, Gürer A, Sinir H. Plio-Quaternary kinematic development and paleostress pattern of the Edremit Basin, western Turkey. Tectonophysics. 2016; 679: 199-210. https://doi.org/10.1016/j.tecto.2016.05.007

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Maryam Ezati, Ebrahim Gholami , Seyed M. Mousavi , Mohsen Ezati

Downloads

Download data is not yet available.