Evidence of a Large Debris Avalanche Event (22.0 Ma) from the Comondú Group on the Baja California Sur Peninsula, Mexico
Abstract - 159
PDF

Keywords

Miocene
Comondú group
Debris avalanche
Baja California Sur Peninsula

How to Cite

1.
Alquiza MJ, Aviles RM, Kshirsagar PV, Zanor GA. Evidence of a Large Debris Avalanche Event (22.0 Ma) from the Comondú Group on the Baja California Sur Peninsula, Mexico. Glob. J. Earth Sci. Eng. [Internet]. 2024 Aug. 27 [cited 2025 Jan. 22];11:19-35. Available from: https://avantipublishers.com/index.php/gjese/article/view/1521

Abstract

The morphological, sedimentological, and microtextural characteristics of Miocene debris avalanche deposits which extend from the Punta Coyote to the vicinity of the city of La Paz, were studied along the eastern of the Baja California Peninsula. The debris avalanche deposits studied include a mixture of angular mega blocks whose composition comes from the deposits that make up the Comondú Group: pre-Comondú (red sandstones and conglomerates with intercalated ignimbrites), the Upper Unit (brownish sandstones, shales, and conglomerate), and breccia, with a predominance of jigsaw cracks, injection structures, and fault structures. These deposits were studied and analyzed considering the stratigraphic relationships between the rock formations present in the mega-blocks. Six stratigraphic sections were measured to describe the composition and morphology of the clastic components present in the mega-blocks of the debris avalanche. Two different units (m1 and m2), were identified in the debris avalanche deposits. Unit m1 is the oldest, with a thickness of 100m, and consists of a chaotic set of mega-blocks up to 100 m in diameter derived from the pre-Comondú Group, and Upper Unit. The deposits are highly heterolithic, with angular and highly fractured clasts at different scales. While the unit m2 consists principally of 20-100 m thick volcaniclastic layers dominated by poorly sorted, breccias and minor epiclastic deposits. According to stratigraphic relationships, the collapse occurred at 22.0 Ma. The debris deposit covers an area of 150 km2 and has an estimated volume of 1.3 km3. The characteristic suggests a transport mechanism with a disintegration of the mega-blocks and a contact/collision interaction. Where mega-blocks moved within a dense flow in a buffered manner, remaining consistent over long distances. The observed structures and textures suggest that the mega-blocks were mainly produced by the alteration and ingestion of older substrates by the avalanche of moving debris. The avalanche flowed over pre-existing topography excavated in the Comondú Group sequence, and flow indicators reveal a west-southwest direction, exhibiting a typical mountainous avalanche topography. The study of ancient debris avalanche events not only provides a deeper understanding of these natural phenomena but also contributes to the development of tools to predict, mitigate, and manage risk areas.

https://doi.org/10.15377/2409-5710.2024.11.2
PDF

References

Ui T, Takarada S, Yoshimoto M. Debris avalanches. In: Sigurdsson H, Ed., Encyclopedia of Volcanoes. Academic Press; 2000, pp. 617-26. https://doi.org/10.1007/978-1-4020-4399-4_84

Carrasco-Nuñe, G, Siebert L, Capra-Pedol L. Hazards from volcanic avalanche. In: Veress B, Szigethy J, Eds., Horizons in Earth Science Research. 2011; 3(10): pp.199-227.

Van Wyk de Vries B, Davies T. Landslides, debris Avalanches, and Volcanic Gravitational Deformation. In Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S, Eds., Encyclopedia of volcanoes, 2nd ed. London: Academic Press; 2015, pp. 665-85. https://doi.org/10.1016/B978-0-12-385938-9.00038-9

Voight B, Glicken H, Janda RJ, Douglass PM. Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR, Eds. The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol Surv Prof Pap 1981; 1250: pp. 347-77.

Glicken H. Rockslide Debris Avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. Open file Report 1996; pp. 96-677.

Sosio R, Crosta GB, Chen JH, Hunger O. Runout prediction of rock avalanches in volcanic and glacial terrains. In Landslide science and practice, vol. 3. Berlin, Heidelberg: Springer; 2013, pp. 285-91. https://doi.org/10.1007/978-3-642-31310-3-38

Ui T. Volcanic dry avalanche deposits: Identification and comparison with nonvolcanic debris stream deposits: J Vol Geoth Res. 1983; 18: 135-50. https://doi.org/10.1016/0377-0273(83)90006-9

Schuster RL, Crandell DR. Catastrophic debris avalanches from volcanoes. In: IV International Symposium on Landslides Proceedings, Toranto: University of Toronto; 1984; pp. 567-72.

Siebert L. Large volcanic debris avalanches characteristics of source areas, deposits, and associated eruptions: J Vol Geoth Res. 1984; 22: 163-97. https://doi.org/10.1016/0377-0273(84)90002-7

Palmer BA, Alloway BV, Neall VE. Volcanic-debris-avalanche deposits in New Zealand- Lithofacies organization in unconfined, wet-avalanche flows. In: Fisher RV, Smith GA, Eds., Sedimentation in Volcanic Settings. vol. 45, Oklahoma, USA: SEPM Special Publication; 1991, pp. 89-98. https://doi.org/10.2110/pec.91.45.0089

Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG. Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology. 1984; 12(3): 143-6. https://doi.org/10.1130/0091-7613(1984)12<143:CDAFAM>2.0.CO;2

Moreno-Alfonso SC, Sánchez JJ, Murcia H. Evidences of an unknown debris avalanche event (< 0.58 Ma), in the active Azufral volcano (Nariño, Colombia). J South Am Earth Sci. 2021, 107: 103138. https://doi.org/10.1016/j.jsames.2020.103138

Glicken H. Sedimentary architecture of large volcanic-debris avalanches. In: Fisher RV, Smith GA, Eds., Sedimentation in Volcanic Settings, vol. 45. Oklahoma, USA: SEPM Special Publication 1991; 99-106. https://doi.org/10.2110/pec.91.45.0099

Rochet L. Application des modèles numériques de propagation à l’étude des éboulements rocheux, Bull. Liaison Lab. PontsChaussées 1987, 150: 84-95. Available from: http://worldcat.org/issn/04585860

Crandell DR, Miller CD, Glicken H, Christiansen RL, Newhall CG. Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology. 1984, 12: 143-6. https://doi.org/10.1130/0091-7613(1984)12<143:CDAFAM>2.0.CO;2

Shreve RL. The Blackhawk landslide. Geol Soc Am Spec. 1968, 108: 1-47. https://doi.org/10.1016/B978-0-444-41507-3.50022-2

Fahnestock RK. Little Tahoma Peak rockfalls and avalanches, Mount Rainier, Washington, USA. In Voight B, Ed., Rockslides and avalanches: natural phenomena, vol. 1, Amsterdam: Elsevier; 1978, 181-96. https://doi.org/10.1016/B978-0-444-41507-3.50013-1

Johnson B. Blackhawk landslide, California, USA. In Voight B, Ed., Rockslides and avalanches: natural phenomena, vol. 1, Amsterdam: Elsevier; 1978, pp. 481-504. https://doi.org/10.1016/B978-0-444-41507-3.50022-2

Voight B, Sousa J. Lessons from Ontake-san: A comparative analysis of debris avalanche dynamics. Eng Geol. 1994, 38: 261-97. https://doi.org/10.1016/0013-7952(94)90042-6

Erismann TH. Mechanisms of large landslides. Rock Mech. 1979; 12: 15-46. https://doi.org/10.1007/BF01241087

Schneider JL, Fisher RV. Transport and emplacement mechanisms of large volcanic debris avalanche: Evidence from the northwest sector of Cantal Volcano (France). J Volcano Geothem Res. 1998; 83: 141-65. https://doi.org/10.1016/S0377-0273(98)00016-X

Davies TRH, McSaveney MJ. Runout of rock avalanches and volcanic debris avalanche. In Picarelli L, Ed., Proceedings of the International Conference on Fast Slope Movements: Prediction and Prevention for Risk Mitigation, vol. 2, Naples: 11-13 May 2003, pp. 113-32.

Linkov AM. Rockburst and the instability of rock masses. Int J Rock Mech. 1996; 33(7): 727-32. https://doi.org/10.1016/0148-9062(96)00021-6

Irme B. Micromechanical Analyses of Sturzstroms (Rock Avalanches) on Earth and Mars, VDF Verlag, Zürich, Switzerland: 2012, p. 172.

Roverato M, Capra L, Sulpizio R, Norini G. Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): Insights into pre-failure conditions and climate influence. J Volcanol Geotherm Res. 2011; 207: 33-46. https://doi.org/10.1016/j.jvolgeores.2011.07.003

Borselli L, Capra L, Sarocchi D, De la Cruz-Reyna S. Flank collapse scenarios at Volcán de Colima, Mexico: A relative instability analysis. J Volcanol Geoth Res. 2011; 208(1-2): 51-65. https://doi.org/10.1016/j.jvolgeores.2011.08.004

Capra L, Macías JL. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico. J Volcanol Geotherm Res. 2000; 102: 149-68. https://doi.org/10.1016/S0377-0273(00)00186-4

Komorowski JC, Navarro C, Cortes A, Saucedo R, Gavilanes JC, Siebe C, Espíndola JM, Rodriguez-Elizarrarás SR. The Colima Volcanic Complex. Field guide 3. In: IAVCEI, General Assembly, Puerto Vallarta, 1997.

Komorowski JC, Navarro C, Cortes A, Siebe C. The repetitive collapsing nature of Colima volcanoes (Mexico). In: Problems related to the distinction of multiple deposits and the interpretation of 14C ages with implications for future hazards. Colima volcano Fourth International Meeting, Mexico 1994; pp. 12-18.

Macías JL, Garcia-Palomo A, Aece JL, Siebe C, Espindola JM, Komorowski JC, Scout KM. Late Pleistocene- Holocene Cataclysmic Eruptions at Nevado de Toluca and Jocotitlán Volcanoes, Central Mexico. Brigham Young University Geology Studies. 1997; 42(1): 493-528.

Sieb, C, Komorowski JC, Sheridan MF. Morphology and emplacement of an unusual debris avalanche deposit at Jocotitlán volcano, Central Mexico. Bull Volcanol. 1992; 54: 573-89. https://doi.org/10.1007/BF00569941

Stoopes GR, Sheridan MF. Giant debris avalanches from the Colima Volcanic Complex, Mexico: Implication for long-runout landslides (>100km). Geology. 1992; 20: 299-302. https://doi.org/10.1130/0091-7613(1992)020<0299:GDAFTC>2.3.CO;2

Robin C, Komorowski JC, Boudal C, Mossand P. Mixed-magma pyroclastic surge deposits associated with debris avalanche deposits at Colima volcanoes, Mexico. Bull. Volcanol. 1990; 52: 391-403. https://doi.org/10.1007/BF00302051

Luhr JF, Prestegaard KL. Caldera formation at Volcán de Colima, Mexico, by large Holocene volcanic debris avalanche. J Volcanol Geotherm Res. 1988; 35: 335-48. https://doi.org/10.1016/0377-0273(88)90027-3

Cas R, Wright J. Volcanic successions are modern and ancient: A geological approach to processes, products, and successions. Springer Dordrecht; 2012. https://doi.org/10.1007/978-94-009-3167-1

Carreras-Soriano LM, Capra-Pedol L. Estudio granulométrico comparativo de los depósitos epiclásticos en ambientes volcánicos. Rev mex cien geol, 2008; 25(1): 97-114.

Atwater T, Stock J. Pacific North America plate tectonics of the Neogene Southwestern United States. An Update. Int Geol Rev. 1998; 40: 375-402. https://doi.org/10.1080/00206819809465216

Ui T, Kawachi S, Neall VE. Fragmentation of debris avalanche material during flowage — Evidence from the Pungarehu Formation, Mount Egmont, New Zealand. J Volcanol Geotherm Res. 1986; 27: 255-64. https://doi.org/10.1016/0377-0273(86)90016-8

Clément JP, Legendre C, Caroff M, Guillou H, Cotten J, Bollinger C, et al. Epiclastic deposits and ‘horseshoe-shaped’calderas in Tahiti (Society Islands) and Ua Huka (Marquesas Archipelago), French Polynesia. J Volcanol Geotherm Res. 2003; 120(1-2): 87-101. https://doi.org/10.1016/S0377-0273(02)00366-9

Atwater T. Implications are of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol Soc Am Bull. 1970; 81: 3513-35. https://doi.org/10.1130/0016-7606(1970)81[3513:IOPTFT]2.0.CO;2

Gastil RG, Morgan GL, Krummenacher D. The tectonic history of peninsular California and adjacent Mexico. In Ernst WG, Ed., The geotectonic development of California. New Jersey, Prentice-Hall: Englewood Cliffs; 1981; pp. 285-306.

Umhoefer PJ, Dorsey RJ, Willsey S, Mayer L, Renne P. Stratigraphy and geochronology of the Comondú Group near Loreto, Baja California Sur, Mexico. Sed Geol. 2001; 144: 125-47. https://doi.org/10.1016/S0037-0738(01)00138-5

Barajas AM. Volcanismo y extensión en la Provincia Extensional del Golfo de California. Bol Soc Geol Mexicana. 2000; 53(1): 72-83. https://doi.org/10.18268/BSGM2000v53n1a4

Nieto-Samaniego AF, Ferrari L, Alaniz-Álvarez SA, Labarthe-Hernández G, Rosas-Elguera J. Variation of Cenozoic extensión and volcanism across the southern Sierra Madre Occidental volcanic province, Mexico. Geol Soc Ame Bull. 1999; 111; 347-63. https://doi.org/10.1130/0016-7606(1999)111<0347:VOCEAV>2.3.CO;2

Sawlan MG, Smith JG. Petrologic characteristics age and tectonic setting of Neogene volcanic rocks in northern Baja California Sur, Mexico. In Frizzell VF, Ed., Geology of the Baja California Peninsula. SEPM; 1984, pp. 237-51.

Sawlan MG. Magmatic evolution of the Gulf of California rift. In Dauphin JP, Simoneit JP, Eds., The Gulf and peninsula province of the Californias, Vol. 47. American Association of Petroleum Geologists; 1991; pp. 217-29. https://doi.org/10.1306/M47542C17

Hausback BP. Cenozoic volcanic and tectonic Evolution of Baja California Sur, México. In Frizzell VF, Ed., Geology of the Baja California Peninsula. SEPM; 1984, pp. 219-236.

Demant A. Caracteres químicos principales del vulcanismo terciario y cuaternario de Baja California Sur. Relaciones con la evolución del margen continental pacifico de México. Revista lnst Geol U.N.A.M. 1975; 75: 21-71.

Ferrari L, Orozco-Esquivel T, Bryan, SE, Lopez-Martinez M, Silva-Fragoso A. Cenozoic magmatism and extension in western Mexico: Linking the Sierra Madre Occidental silicic large igneous province and the Comondú Group with the Gulf of California rift. Earth Sci Rev. 2018, 183: 115-52. https://doi.org/10.1016/j.earscirev.2017.04.006

Drake WR, Umhoefer PJ, Griffiths A, Vlad A, Peters L, McIntosh W. Tectono-stratigraphic evolution of the Comondú Group from Bahía de La Paz to Loreto, Baja California Sur, Mexico. Tectonophysics 2017; 719: 107-34. https://doi.org/10.1016/j.tecto.2017.04.020

Mclean H. Reconnaissance geologic map of the Loreto and part of the San Javier quadrangles Baja California Sur, Mexico. Reston, VA: U.S. Geological Survey; 1988. https://doi.org/10.3133/mf2000

McFall CC. Reconnaissance geology of the Concepción Bay area, Baja California, Mexico, vol. 10. School of Earth Sciences, Stanford University; 1968, pp.1-25.

Mora-Álvarez G, McDowell FM. Miocene volcanism during late subduction and early rifting in the Sierra Santa Ursula of western, Sonora, Mexico. In Delgado-Granados H, Aguirre-Diaz G, Stock JM, Eds., Cenozoic Tectonics and Volcanism of Mexico. Geological Society of America; 2000; pp. 123-41. https://doi.org/10.1130/0-8137-2334-5.123

Schwennicke T, Plata-Hernández Elvia, Vázquez-Balderas José Francisco. Stratigraphy of Oligocene-Miocene Red beds in central Baja California Sur, México (extended abstract). In XVII Simposio sobre la Geología de Latinoamérica, 2000; 18: p. 6.

Vessel RG, Davies DK. Nonmarine sedimentation in active fore arc basins. In Ethridge FG, Flores RM, Eds., Recent and ancient nonmarine depositional environments: models for exploration, vol. 31. SEPM; 1981, pp. 31-45. https://doi.org/10.2110/pec.81.31.0031

Aranda Gómez JJ, Pérez –Venzor J.A. Estudio geológico de Punta Coyotes, Baja California Sur. Univ Nal Autón México Inst Geología Revista. 1988; 7(1): 11-21.

Puy- Alquiza MJ, Miranda Aviles R, López-Martínez M. Revisión estratigráfica de Punta Coyote (Baja California Sur, México) e implicaciones para el volcanismo de la Sierra Madre Occidental y el arco Comondú. Estudios Geologicos. 2010; 66(2), 193-208.

Branney MJ, Kokelaar P, Kokelaar BP. Pyroclastic density currents and the sedimentation of ignimbrites, vol 27. Geological Society of London; 2002. https://doi.org/10.1144/GSL.MEM.2003.0

Sheridan MF, Updike RG. Sugarloaf Mountain Tephra—A Pleistocene rhyolitic deposit of base-surge origin in northern Arizona. Geol Soc Am Bull. 1975; 86: 571-81. https://doi.org/10.1130/0016-7606(1975)86<571:SMTAPR>2.0.CO;2

Fisher RV. Models for pyroclastic surges and pyroclastic flows. J Volcanol Geotherm Res. 1979; 6: 305-18. https://doi.org/10.1016/0377-0273(79)90008-8

Wilson CJN, Walker GPL. Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc London. 1982; 139: 581-92.

Hidetsugu Y, Toshihiko S, Hiroo O. Size–distance relationships for hummocks on volcanic rockslide-debris avalanche deposits in Japan. Geomorphology. 2012; 136: 76-87. https://doi.org/10.1016/j.geomorph.2011.04.044

Belousov A, Belousova M, Voight B. Multiple Edificio failures, debris avalanches, and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Rusia. Bull Volcanol. 1999; 61: 324-42. https://doi.org/10.1007/s004450050300

Aranda Gómez JJ, Henry CD, Luhr JF. Evolucion tectonomagmatica post-paleocenica de la Sierra Madre Occidental y de la porcion meridional de la provincial tectonica de Cuencas y Sierras. Boletín de la Sociedad Geológica Mexicana. 2000; 53: 59-71.

Moore JG, Normark WR, Holcomb RT. Giant Hawaiian Landslides. Ann Rev Earth Planetary Sci. 1994; 22: 119-144. https://doi.org/10.1146/annurev.ea.22.050194.001003

Smith RL. Zones and zonal variations in welded ash flows. US Geological Survey Professional Paper 1960; 354-F:149-59.

Sheridan MF. Emplacement of pyroclastic flows. A review. In Chopin CE, Elston WE, Eds., Ash-Flow Tuffs. Geological Society of America; 1979, pp. 125-36. https://doi.org/10.1130/SPE180-p125

McGuire WJ. Volcano instability: a review of contemporary themes. Geological Society, London, Special Publication. 1996; 110: 1-23. https://doi.org/10.1144/GSL.SP.1996.110.01.01

Kieffer G. Evolution structurale et dynamique d´un grand volcan polygenetique: stades d´edification et activite actuelle de l´Etna. Scientific annals of the University of Clermont-Ferrand 1985; 1: 497.

Tibaldi A, Pasquare G, Francalanci L, Garduno VK. Collapse type and recurrence at Stromboli volcano, associated volcano activity, and sea-level changes. Atti dei Convegni Lincei. 1994; 112: 143-51.

Hausback BP, Swanson DA. Structure and avalanche history of the north flank of Mount St. Helens, Washington. EOS Trans AGU. 1989; 70: 1422.

Perinotto H, Schneider JL, Bachèlery P, Le Bourdonnec FX, Famin V, Michon L. The extreme mobility of debris avalanches: A new model of transport mechanism. J. Geophys. Res. 2015; 120(12): 8110-9. https://doi.org/10.1002/2015JB011994

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 María J.P. Alquiza, Raúl M. Aviles, Pooja V. Kshirsagar, Gabriela A. Zanor

Downloads

Download data is not yet available.