Abstract
This study employed the Soil and Water Assessment Tool (SWAT) model to analyze the water budget components and water yield of the Upper Awash River sub-basin in Central Ethiopia. Utilizing data from 1986 to 2013, the model was calibrated from 1988 to 2008 following a three-year warm-up period and subsequently validated over five years at two gauging stations. Sensitivity analyses were conducted using t-stat and p-values, while model uncertainty was assessed using the p-factor and r-factor indices. The model's performance was evaluated using Nash-Sutcliffe efficiency (NSE), coefficient of determination (R²), and Percent Bias (PBIAS). Calibration results yielded p-factors and r-factors of 0.801 and 0.9 for Hombele, and 0.808 and 0.98 for Melkakuntro. The calibration R², NSE, and PBIAS values were 0.82, 0.82, and-2.3, respectively, for Hombele, and 0.79, 0.78, and-13.1, respectively. Validation R², NSE, and PBIAS values were 0.71, 0.67, 11.2 for Hombele, and 0.7, 0.66, 1.9 for Melkakuntro. The average annual groundwater recharge rate ranged from 0 to 904.3 mm, averaging 181.1 mm/yr, which accounts for 19.1% of the mean annual rainfall. The simulated mean annual surface runoff and evapotranspiration were 93.4 mm and 682.5 mm, respectively, constituting 9.8% and 71.8% of the mean annual rainfall. The average annual water yield of the study area was 233.4 mm. These findings provide important insights into the hydrological dynamics of the Upper Awash River sub-basin, deepening our understanding of this water system. This information is essential for establishing sustainable water management practices and optimizing resource use for socioeconomic growth.
References
UN-Water. Integrated Monitoring Guide for Sustainable Development Goal 6. Water Sanit. 2018;
FAO. Coping with water scarcity: An action framework for agriculture and food security. 2012.
Luttinen A, Kurhila M, Puttonen R, Whitehouse M, Andersen T. Periodicity of Karoo rift zone magmatism inferred from zircon ages of silicic rocks: Implications for the origin and environmental impact of the large igneous province. J Afr Earth Sci. 2008; 52(3): 165-73. http://doi:10.1016/j.jafrearsci.2008.06.002
Liang C, Zhang X, Xia J, Xu J, She D. The effect of sponge city construction for reducing directly connected impervious areas on hydrological responses at the urban catchment scale. Water. 2020; 12(4): 1163. http://doi:10.3390/w12041163
Siekmann T, Siekmann M. Resilient urban drainage – Options of an optimized area-management. Urban Water J. 2021; 18(4): 247-64. http://doi:10.1080/1573062X.2021.1886430
Aboelnour M, Engel BA, Frisbee M, Gitau M. Impacts of watershed physical properties and land use on baseflow at regional scales. J Hydrol Reg Stud. 2021; 35: 100810. http://doi:10.1016/j.ejrh.2021.100810
Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, et al. SWAT: Model use, calibration, and validation. Trans ASABE. 2012; 55(4): 1491-508. https://doi.org/10.13031/2013.42256
Gassman PW, Reyes MR, Green CH, Arnold JG. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Trans ASABE. 2007; 50(4): 1211-50. http://dx.doi.org/10.13031/2013.23637
Roushangar K, Alizadeh F. Using multi-temporal analysis to classify monthly precipitation based on maximal overlap discrete wavelet transform. Hydrol Res. 2019; 50(5): 1451-68. http://doi:10.2166/nh.2019.021
Bewket W, Conway D. A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. Int J Climatol. 2007; 27(11): 1467-77. https://doi.org/10.1002/joc.1481
Dile YT, Berndtsson R, Setegn SG. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin – Upper Blue Nile Basin of Ethiopia. PLoS One. 2013; 8(10): e79296. http://doi:10.1371/journal.pone.0079296
Sola F, Vallejos A, López-Geta JA, Pulido-Bosch A. The role of aquifer media in improving the quality of seawater feed to desalination plants. Water Resour Manage. 2013; 27(5): 1377-92. https://doi.org/10.1007/s11269-012-0243-6
Sanchez R, Rodriguez L, Tortajada C. Transboundary aquifers between Chihuahua, Coahuila, Nuevo Leon and Tamaulipas, Mexico, and Texas, USA: Identification and categorization. J Hydrol Reg Stud. 2018; 20: 74-102. https://doi.org/10.1016/j.ejrh.2018.04.004
Lyon SW, Laudon H, Seibert J, Mörth M, Tetzlaff D, Bishop KH. Controls on snowmelt water mean transit times in northern boreal catchments. Hydrol Process. 2010; 24(12): 1672-84. doi:10.1002/hyp.7577
Zubieta R, Molina-Carpio J, Laqui W, Sulca J, Ilbay M. Comparative analysis of climate change impacts on meteorological, hydrological, and agricultural droughts in the Lake Titicaca basin. Water. 2021; 13(2): 175. https://doi.org/10.3390/w13020175
Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, et al. Global threats to human water security and river. Nature. 2010; 555-61. https://doi.org/10.1038/nature09440
Wada Y, van Beek LPH, Bierkens MFP. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol Earth Syst Sci. 2011; 15(12): 3785-808. https://doi.org/10.5194/hess-15-3785-2011
Rani S, Sreekesh S. Evaluating the responses of streamflow under future climate change scenarios in a Western Indian Himalaya watershed. Environ Process. 2019; 6: 155-74. https://doi.org/10.1007/s40710-019-00361-2
Gleeson, T, Wada, Y, Bierkens M, van Beek LPH. Water balance of global aquifers revealed by groundwater footprint. Nature. 2012; 488: 197-200. https://doi.org/10.1038/nature11295
Alifujiang Y, Lu N, Feng P, Jiang Y. China's urban water utilization based on the water footprint methodology. Water. 2024; 16(3): 462. https://doi.org/10.3390/w16030462
Kebede S, Travi Y, Alemayehu T, Ayenew T. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia. Appl Geochem. 2005; 20(9): 1658-76. https://doi.org/10.1016/j.apgeochem.2005.04.016
Hanasaki T, Fujimori S, Yamamoto T, Yoshikawa S, Masaki Y, Hijioka Y et al. A global water scarcity assessment under shared socioeconomic pathways–Part 1. Hydrol Earth Syst Sci. 2013; 17: 2375-91. https://doi.org/10.5194/hess-17-2375-2013
Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Room: FAO - Food and Agriculture Organization of the United Nations; 1998 Jan 1, M-56. Available from: http://www.fao.org/3/x0490e/x0490e00.htm
Gulakhmadov T, Kienzler KM, Eschanov R, Akramkhanov A, Toderich KN, Martius C Assessing the potential impacts of climate change on water resources using SWAT model: a case study from the Amudarya River Basin, Central Asia. Environ Earth Sci. 2020; 79: 177. http://doi: 10.1007/s12665-020-08914-7
Monteith JL. Evaporation and environment. In: Fogg GE, Ed. The State and Movement of Water in Living Organisms. Symposium of the Society for Experimental Biology, vol. 19; London: Academic Press Inc.; 1965, pp. 205-34.
Arnold JG, Allen. PM. Automated methods for estimating baseflow and groundwater recharge from stream flow records. J Amer Water Resour Assoc. 1999; 35(2): 411-24. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
Winchell M, Srinivasan R, Di Luzio M, Arnold JG. ArcSWAT interface for SWAT2005: User’s guide. Temple, TX: Blackland Research Center, Texas Agricultural Experiment Station, USDA‑ARS; 2007.
Neitsch SL, Arnold JG, Kiniry JR, Williams JR. Soil and Water Assessment Tool: Theoretical Documentation, Version 2005. Temple, TX: Grassland, Soil and Water Research Laboratory; Agricultural Research Service; January 2005. Available from: https://swat.tamu.edu/media/1292/swat2005theory.pdf
Nachtergaele F, van Velthuizen H, Verelst L BN. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy IIASA, Laxenburg, Austria [Internet]. 2012;1–50. Available from: http://www.fao.org/nr/water/docs/harm-world-soil-dbv7cv.Pdf
Chow VT, Maidment DR, Mays LW. Applied Hydrology. New York: McGraw‑Hill; 1988. P. 572.
van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol. 2006; 324(1-4): 10-23. https://doi.org/10.1016/j.jhydrol.2005.09.008
Karim C. Abbaspour, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol. 2007; 333(2-4): 413-30. https://doi.org/10.1016/j.jhydrol.2006.09.014
Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Klove B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol. 2015; 524: 733-52. https://doi.org/10.1016/j.jhydrol.2015.03.027
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE. 2007; 50(3): 885-900. https://doi.org/10.13031/2013.23153
Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. Validation of the SWAT model on a large river basin with point and nonpoint sources. JAWRA J Am Water Resour Assoc. 2001; 37: 1169-88. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
Nash JE, Sutcliffe JV. River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol. 1970; 10(3): 282-90. https://doi.org/10.1016/0022-1694(70)90255-6
Gupta HV, Sorooshian S, Yapo PO. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng. 1999; 4(2): 135-43. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
Neitsch SL, Arnold JG, Kiniry JR, Williams JR. Soil & Water Assessment Tool Theoretical Documentation Version 2009. Soil & Water Assessment Tool Theoretical Documentation Version 2009; 2011; TR No. 406. Available from: https://swat.tamu.edu/media/99192/swat2009-theory.pdf
Mockus V, McKeever V, Owen W, Rallison R. Section 4: Hydrology. In: National Engineering Handbook, Part 630: Hydrology. Washington DC: U.S. Soil Conservation Service; 1969.
Arnold JG, Muttiah RS, Srinivasan R, Allen PM. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J Hydrol. 2000; 227: 21-40. https://doi.org/10.1016/S0022-1694(99)00139-0
Venetis C. A study of the recession of unconfined aquifers. Assoc Sci Hydrol. 1969; 14(4): 119-25. https://doi.org/10.1080/02626666909493759
Wang Y, Gu X, Yang G, Yao J, Liao N. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China. J Arid Land. 2021; 13: 581-98. https://doi.org/10.1007/s40333-021-0067-4

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Muauz A. Redda, Behailu B. Wolde, Bedru H. Mohamed