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ABSTRACT 
This paper presents the study on the current developments of oxy-combustion 
thermodynamic cycles, which use the CO2 produced by combustion within the cycle 
itself without releases into the atmosphere. This is the cause of the attention paid to 
this type of technology and which makes these cycles one of the avant-gardes of power 
plants. In particular, this study focuses on the analysis of the Allam cycle with the aim of 
evaluating its performance and therefore investigating whether it may be an alternative 
to the series of CO2 control technologies. In this paper, a first principle efficiency of 
54.6% and a second principle efficiency of 55.7% are estimated, confirming the 
outstanding prospect of the NET Power cycle. 

 

© 2021 Mariani et al. Published by Avanti Publishers. This is an open access article licensed under the terms of the Creative Commons Attribution 
Non-Commercial License which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is 
properly cited. (http://creativecommons.org/licenses/by-nc/4.0/) 
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1. Introduction 

The carbon dioxide (CO2) produced by the combustion of fossil fuels is an important contributor to the 
greenhouse effect. Therefore, decarbonisation is the simplest way to reduce carbon emissions in the coming years 
and is considered one of the most promising technologies for tackling CO2 emissions from fossil fuel-fired power 
plants. With nearly zero-emission power plants, you can have control over CO2 released into the atmosphere, 
while continuing to burn fossil fuels. This is possible using cycles that have carbon dioxide itself as a working fluid. 

The fuel considered in this analysis is methane and the oxidant is 99.5% purity oxygen, produced in an Air 
Separation Unit (ASU). Consequently, the combustion reaction is expressed by equation 1. 

𝐶𝐻 + 2𝑂 → 𝐶𝑂 + 2𝐻 𝑂 (1) 

The fuel is burned in the oxygen produced by the air separation unit (ASU) and the resulting fumes consist 
mainly of CO2 and water. Then CO2 can be easily separated from water by removing the latter by condensation. 
The oxy-fuel system that uses gaseous fuel (as natural gas) and high purity oxygen is also called the “oxyturbine” 
system. A variety of such systems have been proposed in recent decades including the Matiant cycle and the 
Allam cycle. The new CO2 is captured and sent into the cycle as a working fluid, nothing is released into the 
atmosphere: a zero-emission system is created. 

Regarding the water and CO2 produced by combustion, the first is removed by condensation, regarding the 
second one, since it is introduced into the power cycle, a part of it must be constantly removed from the process. 
The purge stream contains approximately 97% CO2 and can be used in other applications [5]. 

Furthermore, if water-based cycles have as a disadvantage the loss of exergy during evaporation and 
condensation of water (penalizing the net efficiency of the cycle), using CO2 as the working fluid, the loss of exergy 
during the change phase can be avoided: since its critical temperature is lower (31 °C) than that of water (374 °C), 
the cycle is carried out without encountering the phase transition “bell”. 

2. Presentation of E-Matiant and Allam Cycles 

2.1. E-Matiant Cycle Layout 

 

Figure 1: E-Matiant cycle layout. 

It is a CO2 cycle similar to the Ericsson one with 2 quasi-isothermal processes (inter-refrigerated compression 
and expansion with reheating) and 2 isobaric processes (in the heat exchangers and the combustion chamber). 
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Starting from point 1, in atmospheric conditions, a flow of almost pure CO2 is compressed, through a three-stage 
intercooler compressor, up to 80 bar and 35 °C (point 7), where it is in a liquid state. 

Since 80 bar is a supercritical pressure, the working fluid reaches the liquid state without entering the 
saturation line; this leads to two main advantages: there are no problems concerning non-condensable gases and 
a condenser is not necessary. 

From point 7, the liquid CO2 is compressed by a pump at the maximum cycle pressure, about 150 bar (point 8). 
After the pump, the fluid enters the regenerative heat exchanger, where it reaches a temperature of about 800 °C, 
recovering the heat of the fumes leaving the low-pressure turbine. The first combustion brings the gas to the 
maximum temperature of the cycle (about 1300 °C). Then the fluid expands in the high pressure (HP) turbine up 
to a pressure of 40 bar. In post-combustion the fluid reaches a temperature of 1300 °C again and subsequently 
expands in the low-pressure turbine, producing power. Then it cools by passing through the warm side of the 
regenerator heat exchanger (RHE), points 13-14. The water produced in the two combustion processes is almost 
completely separated from the CO2 in a condensing water separator and then removed from the cycle. The excess 
CO2, produced in the combustion processes, is removed in the liquid state through a valve before entering the 
pump (point 7). 

 
Figure 2: T-s diagram Matiant cycle [3].  

2.2. Allam Cycle Layout 

 
Figure 3: Allam cycle layout. 
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The nearly pure oxygen (99.5% purity, molar base) pressurized at 120 bar is supplied by a Cryogenic Air 
Separation Unit (ASU) (flow 2) and then is mixed with the CO2 flow 3 (120 bar, 26 °C, 551 kg / s), then compressed 
up to the pressure of the combustor (5) (300 bar, 45 °C, 612.8 kg / s), preheated in the RHE to about 720 °C (6) and 
finally sent to the combustor (oxygen is mixed with CO2 before being preheated in the regenerator for safety 
reasons). The combustor operates at about 300 bar and the temperature is moderate by injecting a recycling 
stream of CO2 (stream 9). The hot combustion gases (14), at temperatures around 1150 °C, enter a single gas 
turbine that operates at high pressure and low-pressure ratio, limited between 6 and 12 [8].  

 
Figure 4: T-s diagram Allam cycle. 

The fumes (15) at approximately 750 °C and 34 bar (1409.6 kg / s) then enter a multi-flow heat exchanger (the 
regenerator) which allows to efficiently recover the available heat by preheating flows 8 (300 bar, 50 °C) and 5 (45 
°C, 300 bar) and the cooling flow of the turbine (flow 10). At the outlet of the regenerator, the exhaust stream (16) 
is cooled close to ambient temperature (17) in a chiller that condenses and separates the water (30). The 
remaining stream (17) is essentially pure CO2 in the gaseous phase (T = 26 °C). Part of this stream is separated and 
sent to the purification, compression and storage of CO2, while the majority (stream 19, approximately 95% of 
stream 17) is compressed. The intercooler compressor pressurizes the recycle flow to approximately 80 bar and 
the aftercooler brings it close to ambient temperature (20). Since these conditions are supercritical (dense phase 
CO2) and correspond to a very high-density value of about 700 kg / m3, compression from 80 bar to the 
combustor pressure is performed with multistage centrifugal pumps. 

A 120 bar CO2 stream (stream 3) is extracted and mixed with pressurized O2 supplied by the ASU. Through a 
compressor, it is pressurized up to 300 bar (5). 

In the regenerator, the heat released by the flow at the turbine exhaust (point 15, 34 bar) is lower than that 
required by the high-pressure flow 5 to reach the temperature 𝑇  and be introduced into the combustion 
chamber. The cause of this difference is that the constant pressure specific heat of CO2 increases with pressure, 
especially at low temperatures. Part of the heat required is provided by the condensation of the water in the 
turbine exhaust gases (at temperatures below 120 °C), the remainder is supplied by the ASU cooler via a heat 
transfer fluid circuit, in this case, it is assumed that it was air (AR-1). 

2.2.1. Regenerator 

It involves multiple hot and cold flows: the exhaust flow from the turbine (15), the recycled CO2-rich flow (5), the 
flow that moderates the temperature in the combustion chamber (8), the cooling flow of the turbine (10) and the 
heat transfer fluid that transfers heat from the ASU (AR-1). 

The CO2 regenerator is considerably influenced by the change in the thermodynamic properties of the flows 
involved therein: by the condensation of the vapor below the dew point of flow 15 and by the different 
temperatures with which the hot and cold flows enter and leave the regenerator (the flows 5,8,10 enter the 
regenerator at temperatures of 𝑇 =47, 𝑇 =54 e 𝑇 =54°C respectively, and leave at temperatures 𝑇 =721, 𝑇 =721 e 
𝑇 =183°C; hot flows 15 and AR-1 enter at temperatures 𝑇 = 741°𝐶 and 𝑇 = 275°𝐶 and exit at the temperature 
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of 62 °C). The regenerator is therefore modeled as a heat exchanger between a cold composite curve and a hot 
composite curve, HX1 and HX2, (with variable thermal capacities). 

 
Figure 5: T-q diagram Allam cycle regenerator [9]. 

 

Figure 6: Flowsheet model of Allam cycle regenerator [7]. 

There are three possible pinch points in the regenerator, as shown in the Temperature-Enthalpy (heat output) 
diagram: one at the dew point of the turbine exhaust flow, a second on the hot side at the start of fluid cooling of 
the ASU and one third at the exit of the cold flows. 

In particular, with the data assumed in this analysis, the pinch occurs at the dew temperature for hot flows and 
the ∆𝑇 = 5°𝐶, while the temperature difference between the two curves on the hot side ∆𝑇 = 20°𝐶. 



Mariani et al. Global Journal of Energy Technology Research Updates, 8, 2021 
 

24 

 

Figure 7: Regenerator T-q diagram versions [9]. 

 

Figure 8: Possible T-Q diagram of the regenerator [7]. 

Thanks to the regenerator, efficient exploitation of the heat available in the fumes is possible: the outlet 
temperature of the flows sent to the combustor is raised, giving the cooling flow of the turbine only the remaining 
heat. The high temperature at the combustor inlet leads to a great advantage in terms of fuel savings. Heating the 
turbine cooling flow has the advantage of increasing the turbine power but also the drawback of causing an 
increase in turbine head losses. 

2.2.2. ASU 

As the purpose of this study is to focus on the Allam cycle, the detailed air separation process has not been 
reported, therefore the ASU is modeled as a black box. 

Inside the ASU, multistage compression with interstage cooling is used. The heat released in the cooling is also 
used in the RHE regenerator to preheat the flow entering the combustion chamber using a heat transfer fluid (in 
such a way as to provide additional heat to add to the one released by the gases at the turbine exhaust). 

2.3. Comparison between Allam-Matiant Cycles 

Both cycles use carbon dioxide as a working fluid and pure oxygen as an oxidizer, and, since they do not 
release anything into the atmosphere, they can be considered zero-emission. The layouts differ because in the 
Matiant cycle there is the presence of reheat and therefore of high and low-pressure turbine bodies, while the 
Allam cycle has single combustion and a single turbine body. 

Both cycles have a regenerative exchanger that preheats the flow destined for combustion, but in the Allam 
cycle not only the fumes coming out of the turbine and the flow directed to the combustor is involved, but also the 
cooling flows of the turbine (11) and of the combustor (9) and the heat transfer fluid that cools the ASU (AR-1). 

Regarding the pressures, those ones in the Matiant cycle are lower, reaching the outlet of the LP turbine up to 
atmospheric pressure, instead of in the Allam cycle the minimum pressure is equal to 30 bar and the maximum 
one is 300 bar (about double that of the Matiant). 
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Table 1: Comparison between Allam-Matiant cycles. 

Allam Cycle E-Matiant Cycle 

CO2 working fluid CO2 working fluid 

Pure oxygen oxidizing fluid Pure oxygen oxidizing fluid 

Zero-emission cycle Zero-emission cycle 

Layout Layout 

Inter-refrigerated compression (4 stages) Inter-refrigerated compression (3 stages) 

Pump Pump 

Regenerative heat exchanger Regenerative heat exchanger 

Combustion Combustion and afterburning 

Turbine High and low pressure turbine 

Condensation water separator Condensation water separator 

Removal of excess CO2 in the gaseous phase (before intercooled 
compression) 

Removal of excess CO2 in the liquid phase (after intercooled 
compression) 

Maximum cycle pressure: 300 bar Maximum cycle pressure: 150 bar 

Minimum pressure: 30-60 bar Minimum pressure :1 bar 

Efficiency: 55-59% Efficiency: 44-45% 

 

The efficiency of the Allam cycle is around 55-59%, the Matiant cycle is around 44-45%. Some studies have 
confirmed the advantages of the Allam cycle both in terms of efficiency and economy. 

3. Methodology 

3.1. Cycle Modeling 

 The cycle analysis was carried out using the EES (Engineering Equation Solver) program. 

 As regards the modeling of the cycle, the following have been assumed as known data: 

 the pressure values at each point; 

 the maximum temperature (𝑇 = 1150 °C) and minimum (𝑇 = 𝑇  = 𝑇 = 𝑇 = 𝑇 = 𝑇 = 26 °C) of the 
cycle; 

 the temperature of the cooling air of the turbine (𝑇 = 183 °C); 

 the ∆𝑇  and the ∆𝑇  of the regenerator (respectively equal to 5 and 20 °C); 

 the air temperature of the ASU entering the regenerative exchanger (𝑇 , ); 

 the isentropic efficiencies of the compressors and turbines; 

 the mass flow rate �̇� , �̇� , �̇� . 

 The fuel flow rate was obtained by imposing the energy balance in the combustor. The oxygen flow 
rate was obtained assuming stoichiometric combustion of the fuel. 

 For the calculation of the enthalpies and entropies, the temperature 𝑇 = 25 °C and the 
pressure 𝑃 = 101325 Pa were taken as reference conditions, to which the standard enthalpy and 
entropy values of formation were then added respectively. 
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3.2. Assumption 

The pressure losses inside the regenerator are neglected. 

The ASU is considered as a component external to the cycle, therefore the power required by it has not been 
taken into consideration, but the heat transferred by the air inside the regenerative exchanger has been taken into 
account by inserting its contribution inside of efficiencies. 

3.3. Turbine Modeling 

In the modeling of the turbine, the presence of two incoming flows (the main flow (14) and the cooling flow 
(11)) and an outgoing flow (15) was considered. Since the temperatures in this part of the cycle are very high, it 
was assumed to consider the mixture of CO2 and steam as perfect gases, it was, therefore, possible to apply the 
correlations 2 and 3. 

𝑇 , = 𝑇
𝑃

𝑃
 (2) 

𝑇 = 𝑇 + 𝜂 , 𝑇 , − 𝑇  (3) 

Through these ones, having known the temperatures 𝑇  and 𝑇 , it was possible to obtain 𝑇 . 

3.4. Regenerator Modeling 

The regenerator was modeled by dividing the regenerator into 4 sections, in relation to the entry/exit of the 
flows involved. In each section it was assumed to have flows with constant specific heats and equal to the average 
values of the specific heats at the inlet and outlet temperatures, however, since the purpose was to determine the 
temperatures at the ends of the sections, an iterative calculation was performed. On the other hand, regarding 
section 4, where water condensation occurs in the flow of CO2 and steam coming out of the turbine, due to the 
complexity of the calculations, the Refprop program was used for the calculation of the properties of the blends. 

 

Figure 9: T-Q diagram of the regenerator. 

Section 1  

Table 2: Hot and cold streams of section 1 of the RHE. 

Hot Streams Turbine Exhaust Flow 

Cold streams Oxidant stream to the combustor 
Temperature moderating stream in the combustion chamber 
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Table 3: Unknown and known parameters of section 1 of the RHE. 

Known Parameters Unknown Parameters 

𝑇  𝑇  

𝑇  (inlet temperature of the air coming from the ASU) 𝑇  

∆𝑇  𝑇  

�̇� , = �̇�   

�̇� , = �̇� + �̇�   

 

The solution of section 1 is carried out by applying the following equations: 

𝑇 = 𝑇 − ∆𝑇  (4) 

𝑇 = 𝑇 − ∆𝑇   (5) 

𝑐𝑝 , =
𝑐𝑝 , (𝑇 ) + 𝑐𝑝 , (𝑇 )

2
 (6) 

𝑐𝑝 , =
𝑐𝑝 , (𝑇 ) + 𝑐𝑝 , (𝑇 )

2
 (7) 

𝑇 = 𝑇 −
�̇� , ∙ 𝑐𝑝 , ∙ (𝑇 − 𝑇  )

�̇� , ∙ 𝑐𝑝 ,  
 (8) 

Sections 2 and 3 

Table 4: Hot and cold streams of sections 2 and 3 of the RHE. 

Hot streams section 2 e 3 Turbine exhaust flow 
Air from ASU 

Cold streams section 2 Oxidant stream to the combustor 
Temperature moderating stream in the combustion chamber 

Cold streams section 3 Oxidant stream to the combustor 
Temperature moderating stream in the combustion chamber 

Cooling flow of the turbine 

 

Table 5: Unknown and known parameters of sections 2 and 3 of the RHE. 

Known Parameters Unknown Parameters 

𝑇  (inlet temperature of the air coming from the ASU)  𝑇  (temperature of the cold streams at pinch point) 

𝑇  (dew temperature of the flow exiting the turbine, obtained by 
imposing the saturation condition on the partial pressure of the 

steam contained in the flow) 

𝑇  

𝑇  �̇�  (mass flow rate of air from the ASU) 

𝑇 (turbine cooling flow temperature)  

∆𝑇   

�̇� , = �̇� + �̇�   
�̇� , = �̇� + �̇� + �̇�   
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The solution of sections 2 and 3 is obtained as follows: 

𝑇 = 𝑇 − ∆𝑇  (9) 

𝑐𝑝 , =
𝑐𝑝 , (𝑇 ) + 𝑐𝑝 , (𝑇 )

2
 (10) 

𝑐𝑝 , =
𝑐𝑝 , (𝑇 ) + 𝑐𝑝 , (𝑇 )

2
 (11) 

𝑐𝑝 , =
𝑐𝑝 (𝑇 ) + 𝑐𝑝 (𝑇 )

2
 (12) 

�̇� =
�̇� , ∙ 𝑐𝑝 , ∙ ( 𝑇 − 𝑇 ) +  �̇� , ∙ 𝑐𝑝 , ∙ ( 𝑇 − 𝑇 ) −  �̇� ∙ 𝑐𝑝 , ∙ (𝑇 − 𝑇 )

𝑐𝑝 ∙ (𝑇 − 𝑇 )
 (13) 

�̇� , = �̇� + �̇�  (14) 

𝑐𝑝 , =
𝑐𝑝 , ∙ �̇� + 𝑐𝑝  ∙ �̇�

�̇� ,

 (15) 

𝑇 = 𝑇 −
�̇� , ∙ 𝑐𝑝 , ∙ (𝑇 − 𝑇  )

�̇� , ∙ 𝑐𝑝 ,  
 (16) 

Section 4  

Table 6: Hot and cold streams of section 4 of the RHE. 

Hot streams Turbine exhaust flow with condensation 
Air from ASU 

Cold streams Oxidant stream to the combustor 
Temperature moderating stream in the combustion chamber 

Cooling flow of the turbine 

 
Table 7: Unknown and known parameters of section 4 of the RHE. 

Known Parameters Unknown Parameters 

𝑇  𝑇  

𝑇     

𝑇 = 𝑇   

𝑇   

�̇� , = �̇� + �̇�    

�̇� , = �̇� + �̇� + �̇�    

 
The resolution of section 4 is carried out by applying the following equations: 

𝑐𝑝 , = , ( ) , ( ) (17)  

𝑐𝑝 , = , ( ) , ( ) (18) 

𝑇 = 𝑇 −
�̇� , ∙ 𝑐𝑝 , ∙ (𝑇 − 𝑇  )

�̇� , ∙ 𝑐𝑝 ,  
 (19) 
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3.5. Combustor Modeling 

The combustor was analyzed by imposing the energy balance between the fuel flow (13), the main flow of CO2 
and O2 (6) and the temperature moderating flow (9). Since the outlet temperature was known (1150 °C) and the 
temperatures of flows 6 and 9 were obtained by imposing the ∆𝑇  of the regenerator (𝑇 = 𝑇 =𝑇 -∆𝑇 ), the used 
flow rates of fuel and oxygen can be calculated. 

3.6. Compressor Modeling 

The compressors have been studied by imposing the compression ratio and the isentropic efficiency. 

𝑃 = 𝛽 ∙ 𝑃  (20) 

ℎ = ℎ +
1

𝜂 ,

(ℎ , − ℎ ) (21) 

3.7. Modeling of Heat Exchangers and Water Separator 

The intercooling heat exchangers were analyzed by imposing the outlet temperature T = 26 °C and the 
pressure loss (equal to 2%). Instead, the analysis of the refrigerant fluid was neglected. 

As regards the water separator, complete condensation of the steam produced in the combustion chamber 
and cooling down to a temperature of 26 °C was assumed. 

3.8. Thermodynamic Analysis 

Once the points of the cycle and the related enthalpies and entropies had been determined, the efficiency of 
the cycle was calculated, both directly and inversely. 

𝜂 =
𝑊

𝑄 + ∑ 𝑚 ℎ − ∑ 𝑚 ℎ
 (22) 

𝜂 = 1 −
𝑄

𝑄 + ∑ 𝑚 ℎ − ∑ 𝑚 ℎ
 (23) 

Where W is the net work of the cycle (turbine work minus that of pumps and compressors), 𝑄  is the heat that 
is transferred to the outside. The denominator is the heat supplied by the ASU and the difference between the 
enthalpies of the incoming flows (2 and 12) and the outgoing flows (30 and 18). 

3.9. Exergetic Analysis 

In the exergetic analysis, the contributions of both physical exergy and chemical exergy were taken into 
account using equations 24 and 25: 

𝐸 = �̇� ℎ − ℎ , − 𝑇 𝑠 − 𝑠 ,  (24) 

𝐸 = (�̇� 𝑅 𝑇 ln 𝑥 + �̇� 𝜀 , ) (25) 

Where 𝜀 ,  are the standard chemical exergies and 𝑥  the molar fractions of the i-th chemical species [2]. 

First, the exergy of each point of the cycle was calculated. Subsequently, the exergetic losses/destruction for 
each component of the cycle were calculated, finally, the yield of the second principle, both direct and inverse, was 
calculated, verifying their equality. 

𝜂 , =
𝑊

𝑄 + ∑ 𝐸
 (26) 
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𝜂 , = 1 −
∑(𝐸𝑑 + 𝐸𝑙 )

𝑄 + ∑ 𝐸
 (27) 

Where W is the net work of the cycle (turbine work minus that of pumps and compressors), 𝐸𝑑  and 𝐸𝑙  are and 
destruction and exergy losses (including 𝐸  and 𝐸 ). In the denominator we have the exergies of the incoming 
flows (12 and 2) and the heat provided by the ASU. 

4. Results 
The results shown in Table 8 are deduced from the analysis of the cycle.  

Table 8: Thermodinamic and exergetic analysis resutsresult. 

 

m[i] 
[kg/s] 

p[i] 
[Pa] 

T[i] 
[°C] 

h[i] 
[J/(kg)] 

s[i] 
[J/(kg*K)] 

s0[i] 
[J/(kg*K)] 

h0[i] 
[J/(kg)] 

ex[i] 
[J/kg] 

ext[i] 
[W] 

1 Air entering the ASU  

2 61,49 1,20E+07 15 -39351 -1356,13 -0,00 0,005425 480623 2,96E+07 

3 551,10 1,20E+07 26 -9,19E+06 3274,19 4852,80 -8,94E+06 671190 3,70E+08 

4 612,59 1,20E+07 23,69 -8,27E+06 2868,77 4442,90 -8,04E+06 634332 3,89E+08 

5 612,59 3,00E+07 51,12 -8,23E+06 2923,08 4442,90 -8,04E+06 659818 4,04E+08 

6 612,59 3,00E+07 717,8 -7,31E+06 4553,86 4442,90 -8,04E+06 1,10E+06 6,71E+08 

7 741,30 1,20E+07 26 -9,19E+06 3274,19 4852,80 -8,94E+06 671190 4,98E+08 

8 641,90 3,00E+07 49,71 -9,16E+06 3317,32 4852,80 -8,94E+06 692765 4,45E+08 

9 641,90 3,00E+07 717,8 -8,21E+06 5006,08 4852,80 -8,94E+06 1,14E+06 7,34E+08 

10 99,40 3,00E+07 49,71 -9,16E+06 3317,32 4852,80 -8,94E+06 692765 6,89E+07 

11 99,40 3,00E+07 183 -8,90E+06 3981,32 4852,80 -8,94E+06 749159 7,45E+07 

12 15,41 7,00E+06 15 -4,67E+06 9338,57 11609,45 -4,65E+06 5,25E+07 8,09E+08 

13 15,41 3,00E+07 133 -4,39E+06 9401,10 11609,46 -4,65E+06 5,28E+07 8,13E+08 

14 1269,90 3,00E+07 1150 -7,73E+06 5681,61 4873,10 -9,13E+06 1,60E+06 2,04E+09 

15 1369,30 3,30E+06 737,8 -8,27E+06 5661,00 4872,50 -9,12E+06 1,06E+06 1,45E+09 

16 1369,30 3,30E+06 60,68 -9,10E+06 4259,50 4872,50 -9,12E+06 637985 8,74E+08 

17 1334,68 3,30E+06 26 -8,98E+06 4112,16 4852,80 -8,94E+06 638129 8,52E+08 

18 42,28 3,30E+06 26 -8,98E+06 4112,16 4852,80 -8,94E+06 638129 2,70E+07 

19 1292,40 3,30E+06 26 -8,98E+06 4112,16 4852,80 -8,94E+06 638129 8,25E+08 

20 1292,40 8,00E+06 26 -9,18E+06 3330,36 4852,80 -8,94E+06 666284 8,61E+08 

21 1292,40 1,22E+07 33,43 -9,17E+06 3338,40 4852,80 -8,94E+06 671790 8,68E+08 

22 1292,40 1,20E+07 26 -9,19E+06 3274,19 4852,80 -8,94E+06 671190 8,67E+08 

23 1292,40 4,55E+06 51,9 -8,96E+06 4117,41 4852,80 -8,94E+06 653595 8,45E+08 

24 1292,40 4,46E+06 26 -8,99E+06 4009,74 4852,80 -8,94E+06 651243 8,42E+08 

25 1292,40 5,79E+06 46,81 -8,98E+06 4013,57 4852,80 -8,94E+06 662340 8,56E+08 

26 1292,40 5,67E+06 26 -9,02E+06 3895,22 4852,80 -8,94E+06 660299 8,53E+08 

27 1292,40 6,82E+06 40,1 -9,01E+06 3897,53 4852,80 -8,94E+06 666846 8,62E+08 

28 1292,40 6,58E+06 26 -9,06E+06 3751,26 4852,80 -8,94E+06 664775 8,59E+08 

29 1292,40 8,16E+06 40,16 -9,05E+06 3753,29 4852,80 -8,94E+06 670514 8,67E+08 

30 34,62   26 -1,60E+07 3896,07 3882,93 -1,59E+07 422722 1,46E+07 
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The parameter of the air entering the ASU is not specified as this component is considered external to the 
Allam cycle. 

The values obtained from this analysis were compared with those achieved by Scaccabarozzi et al. [7] and by 
Mancuso et al. [4]; from this comparison, it can be seen that the results of the investigations agree with each other 
as the variations in the values of the main thermodynamic parameters are contained. 

From the exergetic analysis for each component, the destruction/losses shown in Table 9 are obtained. In the 
column on the right, the values divided by the incoming exergy are shown. 

Table 9: Exergetic losses / destructions in Allam cycle components. 

 Component$[i] 
Ed[i] 
[W] Ed_r[i] 

1 1  compressor 2,02E+06 0,002259 

2 2  compressor 1,48E+06 0,001648 

3 3  compressor 890674 0,0009944 

4 4  compressor 780247 0,0008711 

5 5  compressor 9,92E+06 0,01107 

6 2  pump 3,10E+06 0,00346 

7 1  pump 9,53E+06 0,01064 

8 𝐶𝐻  compressor 287358 0,0003208 

9 turbine 4,20E+07 0,04686 

10 1  intercooler 3,04E+06 0,003395 

11 2 intercooler 2,64E+06 0,002945 

12 3  intercooler 2,68E+06 0,002988 

13 4  intercooler 5,47E+06 0,006104 

14 5  intercooler 775761 0,0008661 

15 water condensator 7,26E+06 0,008104 

16 mixer of flows 2 and 3 1,09E+07 0,01213 

17 splitter of flows 3 and 7 0 0 

18 splitter of flows 18 and 19 0 0 

19 𝐶𝑂  removal 2,70E+07 0,03012 

20 𝐻 𝑂 removal 1,46E+07 0,01634 

21 regenerator 6,86E+07 0,07654 

22 combustor 1,83E+08 0,2048 

23 splitter of flows 8 and 10 0 0 

 

The results show that the greatest exergetic losses / destructions occur in the combustor (about 20% of the 
incoming exergy) and in the regenerator (about 7,6%). Therefore, these two components are the ones on which 
the most attention must be paid. 

From the thermodynamic analysis of the cycle, it can be concluded that the net power of the cycle is W=499.4 
MW. 

In addition, a first principle efficiency is obtained in line with expectations: η = 0.5459. 
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From the exergetic analysis, a second principle efficiency 𝜂  = 0.5575 was obtained. 

These values are interesting because they show that with this type of technology it is possible to create plants 
that, in addition to being zero-emission ones, have good efficiencies when compared to those of conventional 
plants. Further studies in this area and the creation of prototypes are therefore encouraged so that these plants 
can be used for energy production in the near future. 

5. Conclusions 

In this study, research on the Allam cycle was conducted. It started with the presentation of the reasons for the 
implementation of cycles with oxy-combustion having carbon dioxide as a working fluid, such as the reduction of 
emissions into the atmosphere and the greenhouse effect. A comparison was then made between the layouts of 
the Matiant and Allam cycles, showing similarities and differences in the management of flows and the pressures 
involved. Finally, the thermodynamic and exergetic analysis of the cycle was carried out following the modeling 
criteria reported in paragraph 3. The values of the thermodynamic parameters obtained are in agreement with 
those reported in other studies and it leads us to think the analysis and the assumptions made are correct. 
However, the model developed requires further improvements, in particular, it would be good for a turbine cooled 
in stages, rather than in a point-like way, and to carry out a parametric analysis of the main thermodynamic 
quantities in order to achieve an optimization of the cycle. 

The calculated thermodynamic efficiency confirms the advantages deriving from this cycle and therefore the 
interest in this area. From the exergetic analysis, it is clear that the main components in which exergetic 
destruction/losses occur are combustor and regenerator and for this reason, they are the components whose 
management must be subjected to particular attention. 

Nomenclature 

ASU  Air Separation Unit 

𝑐𝑝   Constant pressure specific heat of air from the ASU, 
 

 

𝑐𝑝 ,   Constant pressure specific heat of cold streams in the i-th section of RHE, 
 

 

𝑐𝑝 ,   Constant pressure specific heat of hot streams in the i-th section of RHE, 
 

 

𝑐𝑝   Constant pressure specific heat, 
 

 

𝑐𝑝   Constant pressure specific heat of turbine exhaust flow 
 

 

𝐸   Chemical exergy, W  

𝐸𝑑   Exergy destruction, W 

𝐸   Exergy, W 

𝐸   Inlet exergy, W 

𝐸𝑙   Exergy losses, W 

𝐸   Physical exergy  

ℎ ,   Enthalpy in reference conditions,  

ℎ   Inlet enthalpy,  

ℎ ,   Outlet enthalpy in isoentropic conditions,   

ℎ   Outlet enthalpy,  

�̇�   Mass flow rate,  

�̇� ,   Mass flow rate of cold streams in the i-th section of RHE,  

�̇� ,   Mass flow rate of hot streams in the i-th section of RHE,  

�̇�   Molar flow rate,  
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𝑃   Ambient pressure, Pa 

𝑃   Pressure, Pa 

𝑃   Inlet pressure, Pa 

𝑃   Outlet pressure, Pa 

𝑄   ASU thermal power 

RHE  Regenerator heat exchanger 

𝑅   Universal gas constant, 
 

 

𝑠 ,   Entropy in reference conditions, 
 

 

𝑠   Entropy, 
 

 

𝑇   Reference temperature, °C 

𝑇   Ambient temperature, °C 

𝑇   Temperature, °C 

𝑇 ,   Temperature in isoentropic conditions, °C 

𝑊  Net power output 

𝑥    Molar fraction 

𝛽  Pressure ratio 
 

∆𝑇   Regenerator hot side ∆𝑇 

∆𝑇   Regenerator pinch point ∆𝑇 

𝜀  Exponent isentropic transformations 

𝜀 ,    Standard chemical exergy,  

𝜂  Efficiency 

𝜂   Direct efficiency 

𝜂 ,   Direct exergetic efficiency 

𝜂 ,   Indirect exergetic efficiency 

𝜂   Exergetic efficiency 

𝜂   Indirect efficiency 

𝜂 ,   Compressor isoentropic efficiency 

𝜂 ,   Turbine isoentropic efficiency 
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