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ABSTRACT 
Coalbed methane (CBM) is produced before coal mining at the Qinshui Basin in China 
to utilize CBM and reduce CH4 volume fraction for coal mining. However, the volume 
fraction of CH4 often reaches the range between lower and upper explosion limits 
after CBM production, which is a great threat to coal mining safety. In previous work, 
we analyzed the feasibility of injecting CO2 into coalbeds to control CH4 volume 
fraction for mining safety and simultaneously enhancing CBM recovery. In this paper, 
we extended our work to propose a model to calculate the critical CO2 volume fraction 
for CO2 injection. We simplified the gas mixture during coal mining as the CO2/CH4/air 
mixture. The model of the critical CO2 volume fraction was then built based on the 
explosion limit formula for the CO2/CH4/N2 mixture. The formula for the critical CO2 
volume was derived using the critical CO2 volume fraction. The model of the critical 
CO2 volume fraction was applied in a CBM reservoir at the South Shizhuang Block in 
the Qinshui Basin. The CO2 injection rate for this block was optimized to obtain the 
highest CBM recovery using the reservoir simulation method. Results show that the 
critical CO2 volume fraction is 7.97%, which makes the CH4 volume fraction out of the 
explosion limits. The optimum CO2 injection rate for this block is 8000m3/d which 
improves the CBM recovery up to 86.24%. 
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1. Introduction 

The Qinshui Basin is the largest coal-producing area in China, which is located in the southeast of Shanxi 
Province. It is also a black spot of gas explosion in coal mines [1]. To reduce gas explosion accidents and make full 
use of CBM (coalbed methane) resources, CBM is usually produced before coal mining to avoid unexploited CH4 
emissions into the atmosphere during coal mining. However, the conventional dewatering method for CBM 
development fails to achieve high recovery. For example, the average CBM recovery in the Qinshui Basin is lower 
than 55% [2], which tends to induce the CH4 volume fraction between CBM explosion limits (upper explosion limit 
and lower explosion limit) [3,4] and leads to a gas explosion in coal mines. To solve these problems, we proposed 
to use CO2 injection to prevent a gas explosion and simultaneously enhance CBM recovery in this work [5]. 

Present explosion prevention technologies include passive explosion prevention technology and automatic 
explosion prevention technology. The former technology uses rock powder, water mist, porous material, etc., 
which cannot predict gas explosion and blast waves [6-8], because it works by responding to gas explosion waves. 
And its fire barrier materials need to be replaced periodically which is severely limited by environmental factors. 
The latter technology is easily affected by the environment and causes misoperation. It can only separate flame 
from combustible materials but cannot reduce the pressure and destructiveness of the blast waves [9-11]. Overall 
these technologies only provide countermeasures when a small-scale explosion has already occurred. They 
cannot substantially prevent an explosion. 

Previous researches showed that CO2 can reduce flame temperature and combustion velocity of the 
combustible gas mixture when an explosion occurs [12-17]. So CO2 can prevent gas explosion when its volume 
fraction reaches a specific value in CO2 and CH4 mixture [18-21]. This CO2 volume fraction can be acquired through 
the experiment at different temperatures and pressures, and several researchers have already got their values 
under different experiment conditions [22-25]. 

In addition, CO2 has a strong sorption capability [22,23]. The sorption capacity ratio of CO2 to CH4 is typically 
between 2 and 10 in coalbeds, depending on the thermal maturity of coal [26,27]. During CBM production, due to 
CO2 preferential sorption ability, CH4 is displaced from the coal matrix after CO2 injection. Meanwhile, the 
desorption and production of CH4 are improved due to this replacement process [28-30], which causes the CH4 
volume fraction to be lowered and CBM recovery is enhanced. Besides, CO2 capturing technology is also one of 
the most effective measures to control CO2 emissions. Injecting CO2 into coalbeds helps to reduce the greenhouse 
effect. 

In this work, we aimed to control CH4 volume fraction out of explosion limits by injecting CO2 during CBM 
production based on CO2 abilities of explosion prevention and preferential sorption. The model of the critical CO2 
volume fraction was built using explosion limit formulae of CO2/CH4/N2 mixture derived by Wang et al. [21]. Then 
we derived the critical CO2 volume formula using the model of the critical CO2 volume fraction. In order to achieve 
the peak CBM recovery during CBM production in the case study, the optimum CO2 injection rate was determined 
through the reservoir simulation method.  

2. Model of the critical CO2 volume fraction 

To determine the injected CO2 volume fraction for explosion prevention, CH4 explosion limits undermining 
conditions need to be studied. We suppose: 

(1) after injecting CO2, a gas mixture in coalbeds only contains two components: CH4 and CO2; after coal mining, 
the gas mixture in coalbeds is the CO2/CH4/air mixture; 

(2) injected CO2 is totally adsorbed on the surface of coal matrix; 

(3) the volume of CO2 production from CBM wells can be ignored. 
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Wang et al. [21] studied the influence of N2/CO2 mixture on the explosion of CO2/CH4/air mixture. During their 
research, explosion limits of CO2/CH4/N2 mixture were tested with different N2/CO2 ratios at 298.15K and 
101325Pa. Regression equations for CO2/CH4/N2 explosion limits are presented: 
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Where m is the volume fraction of N2/CO2 in the mixture, %; c (CH4) is critical methane volume fraction, which 
can be calculated by (Eq. (3)); UEL and LEL are the upper explosion limit and lower explosion limit of methane 
respectively, %. 

   4 2CH 7.48417 0.01079 Nc  
 

(3) 

Where (N2) is the N2 volume fraction in N2/CO2 mixture. 

Based on Wang et al. [21] research, we study the explosion limits of CO2/CH4/air mixture. 

We suppose that the air volume fraction in CO2/CH4/air mixture is n, %. The air only contains two components: 
N2 and O2, whose fractions are 79% and 21% respectively. The  (N2) can be expressed as: 
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Therefore in CO2/CH4/air mixture: 

0.21 100UEL m n    (5) 

0.21 100LEL m n    (6)
 

When the air begins to enter coal mines, the gas explosion can be prevented if the CH4 volume fraction is less 
than LEL. In this work, we suppose that CH4 volume fraction is LEL when the air starts to enter coal mines, and CH4 
burns completely when exploding (Eq. (7)): 

CH4+2O2=CO2+2H2O (7) 

According to Avogadro law, the air volume fraction is derived based on (Eq. (7)): 

2 / 0.21n LEL   (8) 

Combining Eqs. (2), (4), (6) and (8), we can obtain the values of c (CH4), m, n and LEL respectively. 

We define the minimum required CO2 volume fraction for explosion prevention as the critical CO2 volume 
fraction. If the CO2 volume fraction is below the critical CO2 volume fraction at the end of CBM production, the gas 
explosion will not occur during the whole coal mining process. The critical CO2 volume fraction at 298.15K and 
101325Pa is expressed as: 
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Based on the above equations, the critical CO2 volume fraction is 7.97% at 298.15K and 101325Pa. The ratio of 
injected CO2 volume to in-situ CH4 volume is 91.2%. To verify the calculated result, we compare it with the 
experimental result reported by Gant et al. [12] from an explosion experiment of CH4/CO2/air mixture. Gant et al. 
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[12] investigated the effect of different CO2 concentrations on the explosion behavior of CH4/CO2/air mixture. They 
found that a concentration of 70% CO2 made the gas mixture inert and unable to maintain a stable flame. 
Experimental CO2 concentration by Gant et al. [12] is lower than the calculated ratio of injected CO2 volume to in-
situ CH4 volume (91.2%). However, in their experiment, air volume exceeded the required volume for explosion by 
10%, while our calculation assumes that air volume is equal to the required volume for explosion (Eq. (7)), which is 
more in accordance with real conditions in coal mines. The air volume fraction in Gant et al. [12] experiments is 
higher than the assumption in our calculation. Because the specific heat of air is larger than CO2, which induces 
the higher the specific heat of the gas mixture. Therefore, our results are in accordance with Gant et al. [12] 
experimental results.  

During coal mining, the volume fraction of CO2 changes dynamically and relevant CO2 volume fraction is 
difficult to be calculated. But the result calculated in this work meets the requirement of explosion prevention at 
any air volume fraction. Moreover result from theoretical calculation also approximates the required CO2 volume 
fraction in relevant explosion experiments by Ma et al. [15] and Wang et al. [21], regardless of differences induced 
by different experimental conditions and calculation assumptions. Overall, these comparisons demonstrate that 
the critical CO2 volume fraction can provide a reliable reference for CO2 injection to prevent gas explosion in coal 
mines. 

To ensure the critical CO2 volume fraction in the coalbed, the critical CO2 volume Vc should be guaranteed. The 
gas mixture in the coal mine is assumed to consist of CO2, CH4 and air. Therefore, the critical CO2 volume is related 
to the volume of CH4 after CBM production, the critical CO2 volume fraction and the air volume fraction. We 
assume that the original CH4 volume in coalbed before CBM production is Vo and the ultimate CH4 cumulative 
production is Vp. The volume of CH4 after CBM production Vres is given by: 

res o pV V V   (10) 

Vo, Vp and Vres are all under the condition of 298.15K and 101325Pa. Vo can be easily obtained through 
geological data. But Vp needs to be determined by the reservoir simulation method which depends on various 
factors such as production years, production rate, production expenses, etc. Then based on the concept of CO2 
volume fraction, the critical CO2 volume Vc can be derived: 

 c c 2 resCO /V V LEL
 

(11) 

(Eq.(11)) is the equation for the critical CO2 volume. Therefore, the volume of CO2 Vinj should be higher than the 
critical CO2 volume Vc to control CH4 volume fraction below LEL (Eq.(12)): 

inj cV V
 

(12) 

3. Case study 

The Qinshui Basin is a large complex synclinal tectonic basin with an overall north-south direction. In the 
Qinshui Basin, the coal seam 3# is the main producing layer for natural gas and coal. In this section, we use the 
model of the critical CO2 volume fraction at the South Shizhuang Block in the 3# coal seam and built a simulation 
model to study the application of CO2 injection to enhance coalbed methane recovery and improve coal mining 
safety. 

3.1. Parameters for simulation 

The reservoir simulation software Eclipse was applied to study the optimum CO2 injection rate. A compositional 
simulation model was built to describe the multi-component gas mixture. The model size was 500m×500m×10m, 
using a five-point pattern. The basic data for the South Shizhuang Block was shown in Table 1. The 3D image of 
the coalbed model was shown in Fig. 1. And well spacing was set as follows: one injection well was located at the 
center of the coalbed to inject CO2, while four production wells were located around the injection well to produce 
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CBM. The well spacing between the injection well and the production well was 424.26m, and the well spacing 
between production wells was 300m.  

Table 1: Parameters for modeling 

Parameter value Parameter value 

Temperature(K) 298.15 CH4 viscosity(cp) 7.5×10-5 

Coalbed thickness(m) 10 Pressure(MPa) 3.5 

Coal density(kg/m3) 1447.5 CH4 specific density 0.678 

Permeability(mD) 5 Diffusion coefficient(m2/d) 0.022 

Gas content (m3/t) 17 CH4 Langmuir pressure(MPa) 4.689 

Water density(kg/m3) 990 CO2 Langmuir pressure(MPa) 1.903 

Water compressibility(MPa-1) 5.8×10-4 CH4 Langmuir volume(m3/t) 11.8 

Water viscosity(cp) 0.607 CO2 Langmuir volume(m3/t) 24.08 

 

 

Figure 1: A 3D image of a model for a coalbed with four production wells and one injection well. 

3.2. CO2 injection rate 

CO2 injection rate is defined as the injected CO2 volume per unit time. The best recovery can be predicted by 
studying the injection rate of CO2, which can affect CH4 desorption and diffusion velocity, further influence CH4 
production and volume fraction in coalbeds. A high CO2 injection rate leads to the increase of formation pressure 
which can suppress CH4 desorption. Moreover, excessive injection rate causes early CO2 breakthrough at the 
bottom hole of the production well, which means that the injected CO2 will be produced directly through the 
production well and flow much faster in a highly permeable zone. This results in poor development efficiency of 
CBM. On the contrary, the lower CO2 injection rate induces insufficient replacement and reduces CBM ultimate 
recovery. Consequently, an optimum CO2 injection rate needs to be determined based on CBM recovery. 

In order to accurately study the effect of CO2 injection rate on recovery efficiency, we design six schemes of CO2 
injection rates ranging from 0m3/d to 10000m3/d (Table 2) in the model: 

CBM production rate and cumulative production of the following 8 years are predicted through contrasting 
different CO2 injection rates, and the results are shown in Figs. 2 and 3. CBM recovery of different injection rates is 
presented in Table 3.  
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Table 2: Schemes of CO2 injection rates 

Scheme number CO2 injection rate(m3/d) 

1 0 

2 2000 

3 4000 

4 6000 

5 8000 

6 10000 

 

 

Figure 2: CBM production rate against time at different CO2 injection rates. 

 

Figure 3: CBM cumulative production against time at different CO2 injection rates. 
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Table 3: CBM recovery at different CO2 injection rates 

Scheme number Recovery (%) 

1 58.41 

2 64.82 

3 71.10 

4 78.86 

5 86.24 

6 109.51 

 

3.3. Discussion 

Figs. 2 and 3 indicate that more CH4 is produced with CO2 injection than without CO2 injection, which 
demonstrates that CO2 can replace CH4 on the coal matrix, thus enhancing CBM recovery. Fig. 2 also shows that 
the gas production rate decreases with the increase of CO2 injection rate in the early production stage (the first six 
months). This is because only the free gas is produced, and the injection effect is not obvious due to the short 
injection time. However in the later production stage (after the first six months), the gas production rate rises with 
the increase of CO2 injection rate. At this moment, the injected CO2 starts to work. The CH4 adsorbed at coal 
matrix is gradually desorbed and becomes the free gas with the decrease of the pressure. As the free gas is easy 
to be produced, the gas production rate rises obviously.  

The comparison of recovery between six CO2 injection rates is shown in Table 3. It is noticeable that when CO2 
injection rate reaches 10000m3/d, the gas production rate increases sharply compared with other injection rates, 
and the CBM recovery rises to 109.51% (higher than 100%). Because at the injection rate of 10000m3/d, the 
injected CO2 is produced along with CBM, causing the calculated value of CBM recovery to exceed 100%. 
Consequently, the CO2 injection rate of 8000m3/d is the optimum injection rate in this case, which can achieve the 
best CBM recovery 86.24%. 

However, injected CO2 brings an environmental problem. It can diffuse to the atmosphere directly due to coal 
structure damages during coal mining. In order to reduce CO2 emission, several suggestions are proposed: 

(1) Inject CO2 according to the critical CO2 volume 

In order to prevent gas explosion, CH4 volume fraction should be controlled lower than LEL. However, injected 
CO2 can diffuse into the atmosphere which contributes to the greenhouse effect. Consequently, we hope to inject 
CO2 into coalbeds as little as possible to reduce CO2 emissions. Because the air volume fraction in coal mines is 
definitely larger than the required air volume fraction for CH4 combustion, we can easily ensure CO2 volume 
fraction below LEL by injecting the critical volume of CO2. Therefore we suggest injecting CO2 according to the 
critical CO2 volume. In this way, we can meet the requirements of explosion prevention. Simultaneously, the cost is 
cut, because less CO2 is needed. 

(2) Turn valueless coalbeds into CO2 storage places rather than coal mining resources 

For the deep coalbeds with an active aquifer, they are easy to collapse. Therefore, we suggest not to mine at 
these coal seams. Instead, use them for carbon dioxide storage. This method can cut down the production cost, 
avoid the mining risk, and reduce CO2 emissions. 

4. Conclusions 
(1) The model of the critical CO2 volume fraction can be used to ensure CH4 volume fraction out of the 

explosion limits and prevent gas explosion during coal mining. It is proved to be reasonable through comparisons 
with experimental results from other researches. 
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(2) The reservoir simulation method can be used to optimize the CO2 injection rate. The case study 
demonstrates that the optimum CO2 injection rate is 8000m3/d, which achieves the peak recovery of 86.24% after 
8 years of production. 

(3) In order to reduce CO2 emission in the process of coal mining and acquire high economic benefits, CO2 
injection based on critical injected CO2 volume is recommended. For the valueless coalbeds, we suggest 
abandoning mining and use them for CO2 storage. 
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