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ABSTRACT 

Methods to determine static bottom-hole pressure (BHP) from surface measurements 

include the average temperature and z-factor method, the Sukkar-Cornell method, the 

Cullender-Smith method, and the Poettmann method. Among these methods, the 

Poettmann method is preferable in the petroleum industry but with a concern for 

software developers, as the integral values to determine the static BHP are tabular. In 

this study, neural network-based models to predict the integral values using pseudo-

reduced pressures and temperatures were developed. The 2-3-1, 2-4-1, and 2-5-1 

neural-based models had overall correlation coefficients (R) of 0.9974, 0.99835, and 

0.99745, respectively, for the maximum-minimum normalization method and R of 

0.99745, 0.99805, and 0.9992 for the clip-scaling method. Comparing the models' 

predictions with the Lagrangian interpolated values resulted in R of 0.99895 and 0.9995 

for the maximum-minimum and clip-scaling-based models. Thus, the developed 

models can predict Poettmann's integral values without table look-up to estimate static 

BHP in gas wells. 
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1. Introduction 

Pressure is the continuous physical force exerted on the object's surface in a vertical direction per unit area. 

The pressure generated by static fluids depends on gravity's depth, density, and acceleration. This also applies to 

the pressure generated by flowing liquids down the hole [1]. Thus, the focus is on static bottom hole pressure 

(BHP). The static BHP is the well's pressure in the opposite direction of the formation produced after the well is 

closed and the pressure stabilises. The oil reservoir comprises layers with special interlayer properties containing 

the three liquid phases of water, oil, and gas. The flow of these fluids in their phases can be controlled by 

individual layers separated by either permeable or impermeable interfaces [2]. The simultaneous flow of water, oil, 

and gas in vertical tubes is crucial in the oil industry [3]. Over the years, multiphase flow in oil plants has been 

studied, and many research materials have been published. The industry is interested in determining accurate 

pressure losses caused by multiphase flow in tube installations [4]. To optimize production, it is necessary to 

accurately determine the bottom hole pressure (BHP) [5]. Historically, BHP data have been obtained by direct 

measurements with a downhole gauge [6, 7]. As a result, there is much redundancy due to mechanical failure of 

the downhole equipment [8]. 

However, it is not economical or practical to obtain BHP data from drilling equipment (pressure sensors) [9-11]. 

Consequently, several methods have been developed to determine BHP directly from surface measurements [12]. 

These methods include the z-factor method of adjusting the average temperature and the wellbore pressure to 

the depth and gas density and are sufficiently accurate for all applicants [13]. In general, this method is applied to 

shallow gas wells. It is used with more rigorously correct methods, such as the Poettmann [14] method for deeper 

gas wells. This methodology proposed by Poettmann assumes an average but constant temperature value. Unlike 

average temperatures and z-factor methods, Poettmann allows z-factors to change with pressure, thus providing a 

more rigorous calculation technique. 

Contrasting with the Poettmann method, Cullender and Smith [15] developed a method that does not simplify 

the hypothesis of variations in well temperature or z-factors [16, 17]. This method is more stringent than previous 

calculation methods and applies to a much wider range of gas well pressures and temperatures. Cullender and 

Smith also proposed to use the Simpson rule to achieve better accuracy than the trapezoidal rule. Therefore, the 

Poettmann method is suggested for more accurate results because it does not require repetition [18]. 

Unfortunately, the solution to determining Poettmann's integral value for static BHP is in table form. Therefore, to 

use this method to calculate the static pressure of the bottom hole (BHSP), a table search is required, and a table 

interpolation is required between the pressure and the temperature to determine the pseudo-reduced pressure 

(𝑃𝑝𝑟) and the pseudo-reduced temperature (𝑇𝑝𝑟). As a result, given the widespread acceptance of the Poettmann 

method, it is important to have a model that is not limited to table searches but applies to all Poettmann data sets. 

Therefore, this study developed a neural network-based model for determining Poettmann integral values to 

ameliorate table lookup challenges and estimate static BHP in gas wells. 

2. Overview of Existing Static Bottom-hole Pressure Estimation Methods 

Precise bottom-hole pressure (BHP) data is crucial for gas-reserve engineering calculations. The pressure 

gauges should ideally be positioned near the bottom of the well to allow for direct measurement of these 

pressures. Nevertheless, bottom-hole measurements are sometimes too costly and inefficient [16, 19]. In the past, 

bottom-hole pressure (BHP) was determined using bottom-hole pressure measurements. However, because of 

redundancy and economic drawbacks, BHP measurements appear less successful, which is why BHP prediction 

processes are used in estimating. Just the additive pressure exerted by the weight of the static fluid column needs 

to be calculated to estimate the static bottom-hole pressure from surface measurement [20]. Equation 1 

illustrates that, in the case of a static gas column, the friction and kinetic energy effects are abolished, as they are 

equal to zero [13]. 

𝑑𝑃 =
0.01875𝜌𝑔𝑃

𝑧𝑅𝑇
𝑐𝑜𝑠 𝜃 𝑑𝐿 (1) 
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where 𝑑𝑃 is the change in the pressure of the wellbore, 𝑧 is the factor of gas deviation, R is the constant gas, T is 

the temperature, P is the pressure, 𝜌𝑔 is the gas density, 𝜃 is the angle of the diagonal well, and 𝑑𝐿 is the change in 

the length of the well. 

Ikoku [16, 19] claims that because of well circulation, the temperature profile in the shut-in gas well is not a 

straight line. As a result, Equation 1, or the universal vertical flow equation, is a particular instance of the static 

condition. Thus, every approach to estimate BHSPs from surface observations starts with Equation 1. Table 1 

displays the four well-known methods for determining the static bottom-hole pressure from surface readings.  

Table 1: Static bottom-hole pressure estimation methods and their limitations. 

 
Estimation 

Methods 
Models Limitations 

i. 

Average 

temperature 

and z-factor 

method 

∫
𝑑𝑃

𝑃

𝑃𝑡𝑠

𝑃𝑤𝑠

= −
0.01875𝜌𝑔𝐿 𝑐𝑜𝑠 𝜃

�̄��̄�
∫ 𝑑𝐿

𝐿

0

 

where 𝑃𝑡𝑠 is the static pressure, 𝑃𝑤𝑠 is the static pressure of the bottom hole, 

𝑑𝑃 is the change in the wellbore pressure, 𝑧̅ is the average gas deviation 

factor, �̅� is the average temperature, P is the average pressure, 𝜌𝑔 is the gas 

density, 𝜃 is the angle of the slanted well, L is the length of the well and 𝑑𝐿 is 

the change in the length of the well. 

It applies only to shallow gas 

wells. 

It allows the calculation of 

bottom-hole pressures with a 

trial-and-error procedure. 

ii. 
Sukkar-Cornell 

[21] method 

∫

𝑧𝑑𝑃𝑝𝑟

𝑃𝑝𝑟

1 + 𝐵 (
𝑧

𝑃𝑝𝑟
)

2

𝑃𝑝𝑟,𝑤𝑓

0.2

= ∫

𝑧𝑑𝑃𝑝𝑟

𝑃𝑝𝑟

1 + 𝐵 (
𝑧

𝑃𝑝𝑟
)

2

𝑃𝑝𝑟,𝑡𝑠

0.2

+
0.01875𝜌𝑔𝐿 𝑐𝑜𝑠 𝜃

𝑇
 

𝐵 =
6.67 × 10−4𝑓𝑞𝑔

2�̄�2

𝑑5𝑃𝑝𝑐
2 𝑐𝑜𝑠 𝜃

 

where 𝑃𝑡𝑓 is the flow pressure of the wellhead, 𝑃𝑤𝑓 is the flow pressure of the 

bottom of the well, 𝑃𝑝𝑟 is the pseudo-reduced pressure, 𝑃𝑝𝑐 is the pseudo-

critical pressure, dP is the change in the pressure of the well, z is the gas 

deviation factor, �̅� is the average temperature, P is the average pressure, 𝜌𝑔 is 

the gas density, 𝜃 is the angle of the diagonal well, f is the Moody friction 

factor, d is the diameter of the production string, L is the length of the well, dL 

is the change in the length of the well, and 0.2 is the arbitrary constant 

It is used for gas and condensate 

wells with less than 10,000 psi 

pressures. 

It has a table lookup for the 

solved integral. 

iii. 

Cullender-

Smith [22] 

method 

∫
𝑧𝑇

𝑃
𝑑𝑃

𝑃𝑡𝑠

𝑃𝑤𝑠

=
(𝐼𝑚𝑝 + 𝐼𝑡𝑠)

2
(𝑃𝑚𝑝 − 𝑃𝑡𝑠) +

(𝐼𝑤𝑠 + 𝐼𝑚𝑝)

2
(𝑃𝑤𝑠 − 𝑃𝑚𝑝) 

where, 

𝑃𝑚𝑝 = 𝑃𝑡𝑠 +
𝛼

𝐼𝑡𝑠+𝐼𝑚𝑝
, and 𝑃𝑤𝑠 = 𝑃𝑚𝑝 +

𝛼

𝐼𝑤𝑠+𝐼𝑚𝑝
 

𝐼 =
𝑧𝑇

𝑃
 and 𝛼 = 0.01875𝜌𝑔𝐿 𝑐𝑜𝑠 𝜃 

where I is the integrand estimated at the surface, midpoint, or bottom-hole 

conditions (denoted by the subscripts ts, mp, and ws, respectively) 

It requires iteration. 

It allows a trial-and-error 

procedure. 

It applies to shallow and deep 

wells and sour gases and may 

involve digital computations. 

iv. 
Poettmann [14] 

method 

∫
𝑧𝑑𝑃𝑝𝑟

𝑃𝑝𝑟

𝑃𝑝𝑟,𝑤𝑠

0.2

= ∫
𝑧𝑑𝑃𝑝𝑟

𝑃𝑝𝑟

𝑃𝑝𝑟,𝑡𝑠

0.2

+
0.01875𝜌𝑔𝐿 𝑐𝑜𝑠 𝜃

�̄�
 

where the various variables are as presented for other methods 

The established solution for the 

Poettmann integral values to 

determine the static BHP is in 

table form and requires table 

lookup. 

 

The average temperature and deviation factor approach is the most straightforward BHSP method that is 

typically used. The sole requirement is that the temperature and pressure be average [16, 19]. Applying the 

average temperature and deviation factor approach to shallow gas wells is its only drawback. Additionally, Ikoku 

[16, 17] noted that one of the simplest approaches for determining bottom-hole pressure is the Sukkar and 

Cornell [21] method, which enhances accuracy and eliminates the need for trial-and-error computations. To 

determine the z-factor, knowing the pseudo-reduced temperature (𝑇𝑝𝑟) and pressure (𝑃𝑝𝑟) is compulsory. Cullender 

and Smith [22] developed a method that makes no simplifying assumptions for the variation of either 
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temperature or the z-factor in the wellbore. As a result, this method is more rigorous than the earlier approaches 

and applies to a much wider range of gas-well pressures and temperatures [13]. However, Cullender and Smith 

[22] applied trapezoidal numerical integration to evaluate the integral (Table 1). They incorporate a two-step 

calculation procedure that uses an intermediate pressure value at the midpoint of the production string. Besides, 

Cullender and Smith [22] suggested Simpson's rule (Equation 2) to achieve better accuracy than the trapezoidal 

rule visible in Table 1 [16, 20]. 

𝑃𝑤𝑠 = 𝑃𝑡𝑠 +
6𝛼

𝐼𝑡𝑠 + 4𝐼𝑚𝑝 + 𝐼𝑤𝑠

 (2) 

and the alpha (𝛼) in Equation 2 is expanded in Table 1.  

On the other hand, Poettmann's [14] approach assumes an average but constant value for the temperature, 

unlike the average temperature and the z-factor method. Unlike the earlier methods for estimating static bottom-

hole pressure, the Poettmann approach is straightforward, simple, and more accurate [18]. It does not require 

iteration and can be applied to a wider range of pressure and temperature conditions. This is due to the inclusion 

of the z-factor in the integrals (Table 1). Thus, this method accounts for the z-factor's pressure variation but not 

temperature. According to Lee and Wattenberg [13], an even more accurate result can be achieved if the constant 

temperature assumption is eliminated from the Poettmann approach.  

3. Methodology 

This section handles the data source, the dataset preprocessing stages involved in the work, and the 

description of feed-forward back-propagation neural network training with MATLAB, including the 

hyperparameters of the neural networks.  

3.1. Data Acquisition and Preparation 

The datasets for this study were extracted from Lee and Wattenberg [13]. They consist of 2360 data points with 

pseudo-reduced pressures of the wellhead (𝑃𝑝𝑟) and pseudo-reduced temperatures (𝑇𝑝𝑟) as input variables and 

Poettmann’s integral values as output variables. The statistical description and correlations of the extracted 

datasets, namely 𝑃𝑝𝑟, 𝑇𝑝𝑟, and Poettmann integral values are presented in Table 2 and Fig. (1). 

Table 2: Statistical description of the neural-based models' input and output variables. 

Variables Maximum Minimum Range Average Std. Deviation 

Pseudo-reduced Pressure (Ppr) 12.0 0.2 11.8 6.1076 3.4494 

Pseudo-reduced Temperature (Tpr) 3.0 1.05 1.95 1.7375 0.5739 

Poettmann integral values 4.249 0.0 4.249 2.8207 0.8442 

 

The maximum-minimum normalization (Equation 3) and the clip scaling (Equation 4) approaches were used to 

reduce the dataset ranges. Thus, the maximum-minimum approach normalized the data sets to values between 0 

and 1, while the clip method scaled the data sets to values between -1 and 1 [23]. 

𝑦𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑦𝑖 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

 (3) 

𝑦𝑠𝑐𝑎𝑙𝑒𝑑 = 2 ( 
𝑦𝑖 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

 ) (4) 

where 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 
denotes the scaled values for input or output parameters, 𝑦𝑖  is the values of the non-normalized 

parameters, 𝑦𝑚𝑖𝑛 
and 𝑦𝑚𝑎𝑥  

represent the minimum and maximum values of the non-normalized parameters, 

respectively. According to Okon and Ansa [24] and Okon et al. [25], normalizing the datasets for the neural 
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network training is necessary for the following reasons: adequate adjustment of the network connecting weights 

for optimum prediction and reducing the sensitivity of the sigmoidal (i.e. transfer or activation) function to large 

datasets values. 

 

Figure 1: Correlations plot of the pseudo-reduced pressure and temperature with the Poettmann integral values. 

3.2. Neural Network Development and Training 

The neural network-based model to predict Poettmann's integral values was developed using MATLAB's neural 

fitting tool (nftool) (Matrix Laboratory) 2020a mathematical software. The normalized input (i.e., 𝑃𝑝𝑟 and 𝑇𝑝𝑟) and 

output (i.e., integral values) datasets were exported from Microsoft Excel to the MATLAB nftool environment. 

Subsequently, the imported data sets were randomly partitioned into three parts, namely, the training set (70%), 

that is, 1652 data points; the validation set (15%) – 354 data points; and the testing set (15%) – 354 data points. 

The network training was supervised learning, as the target datasets (i.e. integral values) were provided to the 

network as output data. In the training phase, the network learning algorithm Levenberg-Marquardt (trainlm in 

MATLAB) adjusts the weights and biases based on the feedforward back-propagation (FFBP) method until the 

neurons learn the input-output data structure [25]. The network learning algorithm (Levenberg-Marquardt) was 

chosen because it is faster (i.e., takes less training time) and suitable for non-linear functions minimization 

compared to other learning algorithms, namely Bayesian regularization and scaled conjugate gradient, available in 

the MATLAB software. Besides, the activation functions of the non-linear (sigmoid, i.e. tansig in MATLAB) and linear 

(purelin in MATLAB) were implemented to introduce non-linearity and linearity to the outputs of hidden and 

output layers’ neurons, respectively. The chosen activation functions are to ensure conformity with the maximum-

minimum normalization approach output values range, that is, 0 to 1. According to Okon et al. [25], the weights 

and biases that produce the lowest error from the supervised datasets are the best generalizations of the network. 

Thus, the lowest MSE and the correlation coefficient (R) values were also used to select the best network topology 

(architecture). 

After several trials of different network topologies, the best network performance was obtained with three 

topologies: 2-3-1, 2-4-1, and 2-5-1. For more information on the neural network stopping criteria, weights 

generation and adjustment, neural network computations, and generalisation, readers can read published works 

by Mahmoudi and Mahmoudi [26], Okon and Ansa [24], and Okon et al. [25]. As a result, Table 3 displays the 
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default values for the trained neural networks' parameters. The following are the fundamental steps in neural 

network learning: 

i. reading the input datasets and the anticipated output;  

ii. calculating the network output using weighted sums and transfer functions;  

iii. comparing the predicted output of the network with the target;  

iv. computing and updating the fitness (MSE) value based on the comparison;  

v. repeat steps (ii) and (iii) until all training points have been used;  

vi. appropriately modify weights to maximize fitness; and  

vii. repeat steps (i) through (vi) until a satisfactory fitness level has been developed. 

Table 3: Basic settings of neural networks learning parameters. 

Parameters Values 

Number of input neuron 2 

Number of hidden layers 1 

Number of neurons in the hidden layer 3, 4, 5 

Number of the output neuron 1 

Input activation function Tansig 

Output activation function Purelin 

Learning algorithm (trainlm) Levenberg-Marquardt 

Mean square error (MSE) 1.0×10-5 

Number of epochs 1000 

Training rate 0.7 

 

4. Results and Discussion 

4.1. Performance of the Developed Neural Networks 

According to Song et al. [27], neural networks’ data learning and non-linear modelling abilities are factors for 

their consideration over other machine learning methods. Also, it is more easily represented mathematically than 

any other machine learning approach. Thus, this study's choice of the neural network model is based on the 

mentioned advantages. As mentioned earlier, the networks’ topologies are based on their training, validation, and 

testing best performance (i.e., mean square error (MSE) and correlation coefficient (R)). They are visible in Figs. (2-5) 

and Fig. (A1-A6) (in Appendix) for the maximum-minimum and clip normalization datasets. The developed neural 

networks are feed-forward backpropagation networks with 2-3-1, 2-4-1, and 2-5-1 topologies. This implies that the 

networks have two input neurons and one output neuron. At the hidden layer, the networks have three, four, and 

five neurons connected to the output neuron. Figs. (2-3) present the MSE and R performance of the networks 

trained with maximum-minimum normalised datasets. These figures show that the various networks' validation, 

testing, and overall performance were better than the training performance. This observation is visible in the MSE 

and R performance of the various networks, as the MSE trend for validation and testing was less than that of the 

training stage. Again, the R trends for validation, testing, and overall performance were higher (i.e., close to 1) than 

the training performance. Thus, the results obtained depict that the different topologies trained with maximum-

minimum datasets had an overall R-value of 0.99747, 0.9990, and 0.99929 for the 2-3-1, 2-4-1 and 2-5-1, 

respectively, and MSE values of 1.630×10-4, 9.104×10-4 and 5.906×10-5. The implication of these statistical values 

implies that the neural network predictions were a good fit with Poettmann’s integral values. 
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Figure 2: Mean square errors of the various topologies training stages with maximum-minimum normalized datasets. 

 
Figure 3: Correlation coefficient of the various topologies training stage with maximum-minimum normalized datasets. 

Again, the regression performance of the networks’ predicted output and the provided output (i.e., target) for 

training, validation, and testing stages of the various neural networks trained with the maximum-minimum 

normalized datasets are in Fig. (B1-B3) in the Appendix. The statistical indicators in Figs. (2-3) and diagonal trends 

from the networks’ regression plots (Fig. (B1-B3) in the Appendix indicate that the network predictions (overall 

performance) were close to the Poettmann integral values. The assertation is observed in the R-values for the 

various networks, which in all cases are closer to 1 (an average of 0.99817), and their corresponding MSE values 

were closer to zero (about 1.044×10-4). Statistically, these R and MSE values are strong indicators of the developed 

neural networks’ good prediction performance. The R-value implied that the neural networks can predict the 

Poettmann integral values with 99.82% certainty. Again, Al-Bulushi et al. [28] and Tugwell and Livinus [29] reported 

that a close prediction between actual field and model-predicted datasets would result in a unit diagonal trend, as 

visible in Fig. (B1-B3). 

On the other hand, the performance of the networks trained with the clip-normalized datasets is in Figs. (4-5). 

In these figures, the general performance of the various topologies (i.e., 2-3-1, 2-4-1, and 2-5-1) is in sync with the 
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results obtained in Figs. (2-3) for the networks trained with maximum-minimum normalized datasets. In addition, 

the various networks' output-target (i.e., cross plots) performance during training, validation, and testing stages 

using the clip-normalized datasets are visible in Fig. (B4-B6) in the Appendix. The performance indicators in Table 

4 and the diagonal alignment of data points in Fig. (B1-B3) showed that the networks’ overall performance was 

close to the Poettmann integral values. This is because the R and MSE values obtained for the various networks 

are closer to 1, with their respective MSE values closer to zero. From a statistical standpoint, the R and MSE values 

obtained for the networks trained with clip-normalized datasets strongly indicate the networks’ good prediction 

performance [25, 28].  

 
Figure 4: Mean square errors of the various topologies training stages with clip-scaling datasets. 

 
Figure 5: Correlation coefficient of the various topologies training stage with clip-scaling datasets. 

Comparing the performance of the different network topologies, the overall R and MSE values showed that the 

2-5-1 network for both maximum-minimum and clip-normalized datasets performed slightly better than the 2-3-1 

and 2-4-1 networks. This observation is attributed to the number of neurons (i.e. five neurons) at the 2-5-1 

network’s hidden layer, which is more than the 2-3-1 and 2-4-1 networks. The overall R-values for the 2-5-1 

topology indicated that the developed network could predict Poettmann’s integral values with 99.870% and 

99.92% certainty with the maximum-minimum and clip normalization methods.  
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Table 4: Neural network performance for the clip scaling approach. 

Topology 
Training Validation Testing Overall 

MSE R MSE R MSE R MSE R 

2-3-1 6.995e-4 0.99777 1.386e-3 0.99549 6.842e-4 0.99799 1.386e-3 0.99746 

2-4-1 6.196e-4 0.99807 4.367e-4 0.99851 5.335e-4 0.99831 4.367e-4 0.99816 

2-5-1 3.163e-4 0.9990 7.593e-5 0.99973 9.502e-5 0.99973 7.593e-4 0.99922 

 

According to Sircar et al. [30] and Effiong et al. [31], the mathematical representation of the neural network 

computations parameters (i.e., inputs, weights, biases, and output) in vector form and transfer or activation 

functions (i.e., tansig and purelin) are related, as expressed in Equation 5; 

𝑦𝐴𝑁𝑁 = 𝑓𝑝𝑢𝑟𝑒𝑙𝑖𝑛 [∑ 𝑓𝑡𝑎𝑛 𝑠𝑖𝑔 (∑ 𝐼𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑖) 𝐿𝑤𝑘𝑗 + 𝑏𝑘

𝑗

] (5) 

where 𝑦𝐴𝑁𝑁 denotes the neural network predicted output (in normalized form), 𝑓𝑝𝑢𝑟𝑒𝑙𝑖𝑛 
is the output neuron 

activation function (i.e. purelin), 𝐿𝑤𝑘𝑗  
is the hidden layer neurons’ weights from the jth neuron to the kth output 

layer neuron, 𝑓𝑡𝑎𝑛 𝑠𝑖𝑔 represents the transfer function (tansig) at the hidden neuron, 𝐼𝑤𝑖𝑗  is the input neuron 

weights from the ith neuron to the jth hidden layer neuron, and 𝑥𝑖 denotes the input variables. Again, 𝑏𝑖 
and 𝑏𝑘 are 

the hidden and output neurons' biases, respectively.  

Therefore, using the various network topologies in this study, the neural network mathematical representation 

for the Poettmann integral values 𝑃𝑣𝑎𝑙𝑢𝑒 prediction is expanded in Equations 6 through 8. Equation 6 represents 

the 2-3-1 network topology, while Equations 7 and 8 represent the 2-4-1 and 2-5-1 network topologies, 

respectively; 

(𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 = ∑ {𝑓𝑝𝑢𝑟𝑒𝑙𝑖𝑛 [∑ ∑ 𝑓𝑡𝑎𝑛 𝑠𝑖𝑔((𝑃𝑝𝑟𝑗1 + 𝑇𝑝𝑟𝑗2)𝑖 + 𝑏𝑖)

2

𝑗=1

3

𝑖=1

] × 𝐿𝑤𝑖𝑗 + 𝑏𝑘𝑖}

1

𝑖=1

 (6) 

(𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 = ∑ {𝑓𝑝𝑢𝑟𝑒𝑙𝑖𝑛 [∑ ∑ 𝑓𝑡𝑎𝑛 𝑠𝑖𝑔((𝑃𝑝𝑟𝑗1 + 𝑇𝑝𝑟𝑗2)𝑖 + 𝑏𝑖)

2

𝑗=1

4

𝑖=1

] × 𝐿𝑤𝑖𝑗 + 𝑏𝑘𝑖}

1

𝑖=1

 (7) 

(𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 = ∑ {𝑓𝑝𝑢𝑟𝑒𝑙𝑖𝑛 [∑ ∑ 𝑓𝑡𝑎𝑛 𝑠𝑖𝑔((𝑃𝑝𝑟𝑗1 + 𝑇𝑝𝑟𝑗2)𝑖 + 𝑏𝑖)

2

𝑗=1

5

𝑖=1

] × 𝐿𝑤𝑖𝑗 + 𝑏𝑘𝑖}

1

𝑖=1

 (8) 

where (𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 is the neural network predicted oil flow rate in normalized form? The variables 𝑗1 and 𝑗2 are the 

weights of the network inputs: 𝑃𝑝𝑟 and 𝑇𝑝𝑟 to the hidden layer neurons; 𝐿𝑤𝑖𝑗 represents the hidden layer weights 

that connect the output layer neuron; 𝑏𝑖 
and 𝑏𝑘 

are biases at the hidden and output neurons, respectively. Then, 

𝑓𝑝𝑢𝑟𝑒𝑙𝑖𝑛 and 𝑓𝑡𝑎𝑛 𝑠𝑖𝑔 were defined in Equation 5. The sigmoidal function 𝜎(𝑧), that is, tansig (𝑓𝑡𝑎𝑛 𝑠𝑖𝑔) in Equations 6 

through 8, is expressed in Equation 9 as [30]; 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (9) 

where 𝑧 represents the computation (𝑃𝑝𝑟𝑗1 + 𝑇𝑝𝑟𝑗2)𝑖 + 𝑏𝑖 . 

The weights and biases of the various neural network-based models for Poettmann integral value prediction 

are in Tables 5 and 6. 
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Table 5: Network weights and biases using the max.-min. normalized datasets. 

Network Topology 
Input layer Weights 

Input Biases (bi) Hidden Layer Weight (Lwi) Output Biases (bk) 
𝒋𝟏 (𝑷𝒑𝒓) 𝒋𝟐 (𝑻𝒑𝒓) 

2-3-1 

-0.89320 -0.18915 -0.07286 -0.57402 -4.37937 

-0.38262 2.41253 2.60654 0.470652  

-3.70729 0.09959 -4.73012 -4.40663  

2-4-1 

1.24439 -2.25987 -311497 2.149481 -3.87005 

-0.89375 2.03561 2.76692 3.080096  

0.72459 0.06494 0.49369 0.962884  

5.13128 -0.11212 6.03298 3.079741  

2-5-1 

-0.52614 5.24644 5.27148 0.21425 -4.43369 

2.57188 -6.22888 -4.48779 -0.04145  

-1.08699 0.82044 -1.18028 -0.32412  

-0.61727 -0.41521 -0.40705 -0.75189  

-5.04332 0.07311 -6.13619 -4.18262  

 

Table 6: Network weights and biases using the clip-scaling datasets. 

Network Topology 
Input Layer Weights 

Input Biases (bi) Hidden Layer Weight (Lwi) Output Biases (bk) 
𝒋𝟏 (𝑷𝒑𝒓) 𝒋𝟐 (𝑻𝒑𝒓) 

2-3-1 

-0.89004 -0.18703 -0.05371 -0.56593 -83.73643 

-0.35040 2.354191 2.582028 0.49999  

-3.46156 0.095305 -6.00162 -83.7471  

2-4-1 

0.219689 -0.32706 -0.55468 -0.554679 -132.3021 

-0.15742 0.29047 0.598824 0.598825  

-0.08235 0.21545 0.876287 0.876287  

5.028566 -0.09714 7.269345 7.269345  

2-5-1 

0.501128 1.292399 3.516369 1230.675 -1198.769 

0.441548 0.012952 3.312989 224.5664  

-0.57831 -1.34445 -2.997368 797.5542  

4.940618 0.007162 8.191205 266.2791  

-0.63871 -1.39099 -2.845391 -276.0254  

 

4.2. Explicit Representation of the Neural-Based Models 

Explicit presentation of the developed neural network-based models will make them purposeful. Therefore, 

explicit representation of the 2-3-1 topologies models for the maximum-minimum normalization and clip scaling 

data sets was considered. 

4.2.1. Model Based on Maximum-Minimum Normalization Approach 

The explicit presentation of the neural-based model for predicting Poettmann’s integral values based on the 

maximum-minimum normalization method is expressed in Equation 10. 
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𝑃𝑣𝑎𝑙𝑢𝑒 = 4.249(𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁  (10) 

where (𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 is the neural network predicted Poettmann’s integral value (i.e., output) in normalised form, 

which is expressed in Equation 11 and 𝑃𝑣𝑎𝑙𝑢𝑒 denotes the Poettmann integral value in the de-normalize form; 

(𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 = [𝐴 + 𝐵 + 𝐶 − 4.37937] (11) 

Thus, (𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 depicts the computation at the output layer neuron where the variables A, B, and C are 

expanded in Equations 12 through 14. These variables A, B, and C denote the computations at the hidden layer 

first, second, and third neurons, respectively, to the output layer neuron; 

𝐴 = [
−0.57402

1 + 𝑒
−(−0.89320(𝑃𝑝𝑟)

𝑛
−0.18915(𝑇𝑝𝑟)

𝑛
−0.07286)

] (12) 

𝐵 = [
0.47065

1 + 𝑒
−(−0.38262(𝑃𝑝𝑟)

𝑛
+2.41253(𝑇𝑝𝑟)

𝑛
+2.60654)

] (13) 

𝐶 = [
−4.40663

1 + 𝑒
−(3.70729(𝑃𝑝𝑟)

𝑛
+0.09959(𝑇𝑝𝑟)

𝑛
−4.73012)

] (14) 

and the variables (𝑃𝑝𝑟)
𝑛

 and (𝑇𝑝𝑟)
𝑛

 are the normalized input parameters (i.e. pseudo-reduced pressure and 

temperature) expressed as (
𝑃𝑝𝑟−0.2

11.80
) and (

𝑇𝑝𝑟−1.05

1.95
) , respectively. 

4.2.2. Model Based on Clip Scaling Approach 

Based on the clip scaling method, the explicit presentation of the neural-based model for predicting 

Poettmann’s integral values is expressed in Equation 15. 

𝑃𝑣𝑎𝑙𝑢𝑒 = 2.1245[1 + (𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁] (15) 

where (𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 represents the neural network predicted Poettmann’s integral value (i.e. output) in normalized 

form, expressed in Equation 16, and 𝑃𝑣𝑎𝑙𝑢𝑒 denotes the Poettmann integral value in the de-normalized form. 

(𝑃𝑣𝑎𝑙𝑢𝑒)𝐴𝑁𝑁 = [𝐴 + 𝐵 + 𝐶 − 83.73643] (16) 

Therefore, the computation at the output layer neuron (i.e. Equation 16) presents the variables A, B, and C in 

Equations 17 through 19. These variables A, B, and C denote the computations at the hidden layer first, second, 

and third neurons, respectively, to the output layer neuron; 

𝐴 = [
−0.56593

1 + 𝑒
−(−0.89004(𝑃𝑝𝑟)

𝑛
−0.18703(𝑇𝑝𝑟)

𝑛
−0.05371)

] (17) 

𝐵 = [
0.49999

1 + 𝑒
−(−0.35040(𝑃𝑝𝑟)

𝑛
+2.35419(𝑇𝑝𝑟)

𝑛
+2.58203)

] (18) 

𝐶 = [
−83.7471

1 + 𝑒
−(3.46156(𝑃𝑝𝑟)

𝑛
+0.095305(𝑇𝑝𝑟)

𝑛
−6.00162)

] (19) 

and the variables (𝑃𝑝𝑟)
𝑛

 and (𝑇𝑝𝑟)
𝑛

 are the normalized input parameters (i.e. pseudo-reduced pressure and 

temperature) expressed as 2 (
𝑃𝑝𝑟−0.2

11.80
) − 1 and 2 (

𝑇𝑝𝑟−1.05

1.95
) − 1 , respectively. 

Similarly, representing the 2-4-1 and 2-5-1 topologies models can be presented with Equations 11 and 16 

modifications to indicate details for the additional neurons in the hidden layers. The values to present the explicit 

neural-based models for the 2-4-1 and 2-5-1 topologies are in Tables 5 and 6. 
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4.3. Comparison of the Developed Neural-based Models Predictions with Poettmann Integral Values 

The performance of the developed neural network-based models for predicting Poettmann integral values was 

evaluated using some statistical yardsticks, namely coefficient of determination (R2), correlation coefficient (R), 

mean absolute error (MAE), average relative error (ARE), average absolute relative error (AARE), mean square error 

(MSE) and root mean square error (RMSE). The neural-based models predicted or estimated integral values were 

compared with the actual Poettmann integral values extracted from Lee and Wattenbarger [13]. The results 

obtained are depicted in Table 7 and Fig. (6). In Table 7, the R2 and R values show that the developed neural-based 

models predicted integral values were close to the actual values provided by Poettmann [14]. This statement is 

because the R2 and R values for the various neural-based models were close to 1, which statistically means a good 

fit between the predicted and actual values [29, 31]. Again, the good fits of the developed neural-based models 

are further observed in Fig. (6) as the predicted integral values aligned diagonally with the actual Poettmann 

integral values. Furthermore, these statistical values in Table 7, as visualized in Figs. (7-8), imply that the 

predictions of the developed neural-based models were closer to the actual Poettmann integral values for 

estimating static bottom-hole pressure. The assertion is because the estimated statistical indicators MAE, ARE, 

AARE, MSE, and RMSE values were far less than 1, as visible in Figs. (7-8). 

Table 7: Statistical performance of the neural-based models’ predictions. 

Models R2 R MAE ARE AARE MSE RMSE 

Maximum-Minimum Normalised Neural-Based  

2-3-1 0.99480 0.99740 0.03866 -0.00204 0.02211 0.01667 0.12911 

2-4-1 0.99670 0.99835 0.02778 -0.00147 0.01697 0.01681 0.12966 

2-5-1 0.99730 0.99745 0.02295 -0.00118 0.01420 0.01768 0.13298 

Clip Normalised Neural-Based 

2-3-1 0.99490 0.99745 0.03766 -0.00102 0.02194 0.01682 0.12970 

2-4-1 0.99610 0.99805 0.02997 -0.00165 0.01837 0.0170 0.13037 

2-5-1 0.99840 0.99920 0.01379 -0.00186 0.09790 0.01666 0.12908 

 

 
Figure 6: Cross-plot of the models predicted and actual Poettmann integral values. 
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Figure 7: Statistical indicators of the max-min normalized models. 

 
Figure 8: Statistical indicators of the clip-normalized models.  

4.4. Generalization and Comparison of the Developed Neural-based Models Predictions and with 

Lagrangian Interpolation 

The effectiveness of any developed model is its capability to predict new sets of data to prove its generalization 

and applications [32, 33]. As stated previously, the established method to determine the integral values of 

Poettmann for estimating static BHP is a table lookup. Most of the time, interpolation between two data points is 

required to obtain the corresponding integral value since the calculated values of 𝑃𝑝𝑟 and 𝑇𝑝𝑟 may differ from the 

exact values provided in the Poettmann integral table. As a result, the generalizability potential of the developed 

neural-based models was determined using 500 randomly generated 𝑃𝑝𝑟 
datasets at a constant 𝑇𝑝𝑟 (across the 

various intervals). The predicted integral values of the developed models were compared with the estimated 

integral values of the Lagrangian interpolation approach in Equation 20.  

𝑃𝑣𝑎𝑙𝑢𝑒(𝑃𝑝𝑟) = 𝑃𝑣𝑎𝑙𝑢𝑒(𝑃𝑝𝑟1
) (

𝑃𝑝𝑟2
− 𝑃𝑝𝑟

𝑃𝑝𝑟2
− 𝑃𝑝𝑟1

) + 𝑃𝑣𝑎𝑙𝑢𝑒(𝑃𝑝𝑟2
) (

𝑃𝑝𝑟 − 𝑃𝑝𝑟1

𝑃𝑝𝑟2
− 𝑃𝑝𝑟1

) (20) 

where 𝑃𝑣𝑎𝑙𝑢𝑒(𝑃𝑝𝑟) is the required integral value at estimated 𝑃𝑝𝑟, 𝑃𝑣𝑎𝑙𝑢𝑒(𝑃𝑝𝑟1
) and 𝑃𝑣𝑎𝑙𝑢𝑒(𝑃𝑝𝑟2

) are the lookup integral 

values from Poettmann’s table at estimated 𝑃𝑝𝑟1
and 𝑃𝑝𝑟2

, respectively.  

-0.2

0

0.2

0.4

0.6

0.8

1

[2-3-1] [2-4-1] [2-5-1]

St
at

is
ti

ca
l v

al
u

es

Models topology

R2 R MAE ARE AARE MSE RMSE

-0.2

0

0.2

0.4

0.6

0.8

1

[2-3-1] [2-4-1] [2-5-1]

St
at

is
ti

ca
l v

al
u

es

Models topology

R2 R MAE ARE AARE MSE RMSE



Udoma et al. International Journal of Petroleum Technology, 10, 2023 

 

148 

Using the earlier mentioned statistical indices and cross-plot, the generalizability of the developed models with 

Lagrange interpolation was assessed. Table 8 and Fig. (9) present the developed neural-based models’ 

generalisation and comparison performance to determine the Poettmann integral values. In Table 8, the statistical 

measures between the neural-based models’ predictions and Lagrange interpolation estimations resulted in 

statistical indices (R2, R, MAE, ARE, AARE, MSE, and RMSE) values that show that the neural-based models predicted 

integral values agreed with the Lagrange interpolated integral values. Noticeable in these statistical indices are the 

R2 and R values, which are closer to 1, indicating a strong agreement between the two approaches.  

Also, the cross-plot in Fig. (9) depicts a diagonal trend of the data points along a unit slope (i.e., 45° from the 

origin) for the various neural-based models. This observation shows that the developed neural-based models’ 

predictions with Lagrange interpolation were close. As Al-Bulushi et al. [28] reported, a good agreement between 

the neural-based models' predicted integral values and the Lagrangian interpolated integral values is evidenced by 

the diagonal trend in Fig. (9). Again, the different overcome (i.e., predicted integral values) in Fig. (9) from the 

neural-based models are close to the Lagrange interpolated values, as is observed in Fig. (6) for the model's 

predicted values and the actual Poettmann integral values. This observation implies that any neural-based model 

or topology would predict the Poettmann integral value with a good degree of fitness (certainty) of 99.75%. Thus, 

the developed neural-based models would predict the Poettmann integral values for estimating static bottom-

hole pressure without a table lookup. This functionality of the developed neural-based models can be exploited in 

petroleum engineering software applications.  

Table 8: Statistical performance of the developed neural-based models with Lagrangian interpolation. 

Models R2 R MAE ARE AARE MSE RMSE 

Maximum-Minimum Normalised Neural-Based  

2-3-1 0.9951 0.99755 0.04749 -0.00913 0.04194 0.01243 0.11150 

2-4-1 0.9972 0.99860 0.03447 -0.00182 0.03001 0.00579 0.07609 

2-5-1 0.9979 0.99895 0.02704 -0.00185 0.02340 0.00408 0.06391 

Clip Normalised Neural-Based 

2-3-1 0.9950 0.99750 0.04727 -0.00533 0.04241 0.01251 0.11184 

2-4-1 0.9966 0.99830 0.03747 -0.00170 0.03281 0.00677 0.08225 

2-5-1 0.9990 0.99950 0.01775 -0.00285 0.01343 0.00146 0.03825 

 

 
Figure 9: Comparison of the developed model predicted integral values With the Lagrangian interpolation. 
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5. Conclusion  

The Poettmann approach for estimating static bottom-hole pressure is essential in reservoir engineering as it 

gives a more accurate estimation. Although it is the most reliable and accurate method, it is impeded by table 

lookup and interpolation between 𝑃𝑝𝑟 and 𝑇𝑝𝑟 to estimate Poettmann's integral values. This study developed the 

feedforward back-propagation (FFBP) neural network model to predict the integral values using different network 

topologies: 2-3-1, 2-4-1, and 2-5-1, and dataset normalization approaches: maximum-minimum and clip. From the 

study, the under-listed conclusions are drawn based on the performance of the neural-based models: 

i. with the maximum-minimum and clip normalized datasets, the neural-based models predicted values 

(𝑃𝑣𝑎𝑙𝑢𝑒) were close to the Poettmann integral values with the coefficient of determination (R2) and 

coefficient of correlation (R) of values of about 99.7% for the various models; 

ii. other statistical indicators: MAE, ARE, AARE, MSE and RMSE values are significantly low values to 

showcase the good fit of the developed models’ predictions; 

iii. the generalization performance of the developed neural-based models predicted integral, and the 

Lagrangian interpolated values were close with good coefficient fitness; and 

iv. the developed neural-based models can predict Poettmann's integral values with 99.7% certainty 

(accuracy) without table look-up to determine static bottom-hole pressure in gas wells. 
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Appendix 

Maximum-minimum normalisation method Clip-scaling method 

  
Figure A1: Topology 2-3-1 learning performance Figure A4: Topology 2-3-1 learning performance 

  
Figure A2: Topology 2-4-1 learning performance  Figure A5: Topology 2-4-1 learning performance 

  
Figure A3: Topology 2-5-1 learning performance Figure A6: Topology 2-5-1 learning performance 

Regression plots of the various neural networks training, testing, and validation, as well as the overall performance. 
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Figure B1: Regression plot of 2-3-1 network Figure B2: Regression plot of 2-4-1 network 

  
Figure B3: Regression plot of 2-5-1 network Figure B4: Regression plot of 2-3-1 network 
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Figure B5: Regression plot of 2-4-1 network Figure B6: Regression plot of 2-5-1 network 
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