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ABSTRACT 

Accurate prediction of Rate of Penetration (ROP) is critical for optimizing drilling efficiency and 

reducing costs in hydrocarbon exploration. Traditional ROP models often overlook formation 

temperature, despite its significant influence on rock mechanics and drilling fluid rheology, 

particularly in high-temperature sandstone reservoirs like those in the Niger Delta. 

This study employs three machine learning (ML) algorithms—Support Vector Regression (SVR), 

Random Forest (RF), and Artificial Neural Networks (ANN)—to evaluate the contribution of 

formation temperature to ROP prediction. A dataset of 1,200 drilling records from Niger Delta 

wells was used, incorporating parameters such as weight-on-bit (WOB), rotary speed (RPM), 

pump pressure, and formation temperature. Model performance was assessed using R², Root 

Mean Squared Error (RMSE), and Mean Absolute Error (MAE), with ablation studies to isolate 

temperature’s impact. 

Inclusion of formation temperature improved ROP prediction accuracy across all models. The 

ANN achieved the highest performance (R² = 89.3%, RMSE = 0.387, MAE = 0.141), followed by RF 

(R² = 90.5%, RMSE = 2.737, MAE = 0.900) and SVR (R² = 87.8%, RMSE = 0.553, MAE = 0.169). 

Temperature omission led to significant performance degradation (R² reductions of 7–13%). 

Sensitivity analysis ranked temperature among the top three influential features. 

Formation temperature is a critical but underutilized parameter in ROP modeling. ML techniques, 

particularly ANN, demonstrate superior capability in capturing nonlinear temperature-dependent 

effects, offering actionable insights for real-time drilling optimization in thermally complex 

formations. This study provides a framework for integrating thermal data into predictive models 

to enhance drilling efficiency in the Niger Delta and analogous basins. 
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1. Introduction 

The Niger Delta Basin is one of the most prolific hydrocarbon provinces in Africa, characterized by complex, 

heterogeneous sandstone formations and elevated geothermal gradients ranging between 30--50 °C/km. These 

high-temperature subsurface conditions present several operational challenges during drilling, including 

accelerated bit wear, instability of drilling fluids, and inconsistent rates of penetration (ROP). These issues are 

especially evident in deeper intervals, where thermal effects become more pronounced yet are often overlooked 

in conventional drilling models. 

Traditional ROP models, such as those developed by Bourgoyne and Young [1] and Maurer [2], primarily 

emphasize mechanical drilling parameters, such as weight on bit (WOB), rotary speed (RPM), and bit type, while 

omitting thermal variables like formation temperature. However, there is growing empirical and experimental 

evidence suggesting that elevated formation temperatures can significantly influence drilling performance. 

Temperature impacts rock mechanics by reducing compressive strength, altering porosity and permeability, and 

increasing brittleness [3, 4]. It also affects the rheological properties of drilling fluids, changing their viscosity and 

thermal stability, which in turn influences hydraulics and cuttings transport efficiency [5-7]. 

Recent field studies in the Niger Delta have reported discrepancies in predicted and actual ROP values of up to 

30--35% in high-temperature zones, particularly in deep sandstone intervals [8]. These discrepancies are largely 

attributed to the absence of temperature as a variable in traditional ROP models. In such cases, the failure to 

account for temperature effects leads to suboptimal bit selection, drilling fluid design issues, increased non-

productive time (NPT), and higher operational costs. 

Although the influence of formation temperature has been acknowledged in drilling literature, it has not been 

systematically integrated into ROP predictive models, especially in data-driven frameworks. The emergence of 

machine learning (ML) provides a new opportunity to overcome these limitations. ML algorithms are well-suited 

for capturing complex, nonlinear relationships among multiple input variables, making them ideal for drilling 

optimization tasks where multiple parameters interact dynamically. 

In thermally active basins like the Niger Delta, applying machine learning models that incorporate formation 

temperature alongside traditional inputs could significantly improve the accuracy of ROP predictions. Studies such 

as those by Ahmed et al. [9] and Singh et al. [10] have demonstrated the potential of ML techniques, including 

Random Forests, Support Vector Machines, and Artificial Neural Networks, in drilling parameter prediction. 

However, these models still often omit formation temperature or treat it as a secondary variable, which limits their 

applicability in high-temperature environments. 

This study addresses a critical gap by developing and evaluating machine learning models that explicitly 

integrate formation temperature as a core input in ROP prediction. Focusing on sandstone formations in the Niger 

Delta, we aim to: 

1. Quantify the effect of formation temperature on ROP, 

2. Compare the performance of models trained with and without temperature data, and 

3. Determine the relative importance of formation temperature among other drilling variables using 

feature importance and sensitivity analysis. 

The novelty of this research lies in its application of advanced machine learning algorithms to systematically 

assess the role of formation temperature in ROP prediction, specifically within the geological context of the Niger 

Delta. The outcome is expected to provide actionable insights for optimizing drilling performance in high-

temperature environments and contribute to the growing body of data-driven drilling solutions. 

The remainder of this paper is organized as follows: Section 2 provides a comprehensive review of related 

literature, highlighting gaps in traditional and machine learning-based ROP models. Section 3 outlines the 

methodology, including data acquisition, preprocessing, model development, and evaluation techniques. Section 4 
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presents the results and discusses the impact of formation temperature on ROP prediction. Finally, Section 5 

concludes the study and offers recommendations for future research and operational applications. 

2. Literature Review 

Accurately predicting the Rate of Penetration (ROP) during drilling has long been a central goal in petroleum 

engineering, given its significant impact on operational efficiency, safety, and cost optimization. Over time, 

approaches to modeling ROP have evolved from simple empirical correlations to physics-based frameworks and, 

more recently, data-driven machine learning (ML) models. Each generation of models has aimed to address the 

shortcomings of its predecessors by improving the interpretation of the complex interactions among geological, 

mechanical, and fluid-related factors that influence drilling performance [1, 2, 11]. 

2.1. Empirical Foundations 

The earliest models for ROP prediction relied heavily on empirical correlations. One of the most widely used is 

the Bourgoyne and Young multiple regression model (1974), which established a mathematical relationship 

between ROP and drilling parameters such as weight on bit (WOB), rotary speed (RPM), differential pressure, and 

bit wear [1]. Similarly, Bingham's development of drillability indices in 1964 contributed to standardized metrics 

for rock strength and resistance to drilling [2]. 

These empirical models typically provided satisfactory results in simple, homogeneous lithologies and achieved 

prediction accuracies of about 60 to 75 percent [5]. However, as drilling expanded into geologically complex basins 

such as the Niger Delta, their limitations became more apparent. Notable issues included the inability to 

accommodate formation heterogeneity, resulting in error margins of up to 45 percent [3, 4], and the assumption 

of static drilling conditions that excluded important variables like temperature, pressure fluctuations, and 

anisotropy [2, 9]. 

2.2. Physics-Based and Hybrid Models 

To overcome these limitations, later models incorporated physical principles, particularly through the use of 

Mechanical Specific Energy (MSE). Dupriest and Koederitz (2005) showed that real-time monitoring of MSE could 

substantially enhance drilling performance and ROP optimization [12]. These models used parameters such as 

formation compressive strength, torque, and bit hydraulics to improve predictive accuracy to approximately 75 to 

85 percent [7]. 

However, these physics-based models introduced new challenges. Many required laboratory calibrations and 

core samples, which are not always available in real-time drilling operations [10, 13]. In addition, although 

temperature was acknowledged to influence rock and fluid behavior, it was rarely incorporated as a key input 

variable in the modeling process [3, 8]. This omission remains a major limitation in high-temperature 

environments like the deeper sandstone intervals of the Niger Delta. 

2.3. Rise of Machine Learning in ROP Prediction 

The growing availability of drilling data and advancements in computational power have led to the widespread 

adoption of ML techniques in ROP prediction. These models are particularly suited to identifying complex, 

nonlinear relationships among multiple variables [6, 10, 11, 14]. ML algorithms such as Artificial Neural Networks 

(ANN), Support Vector Regression (SVR), Random Forest (RF), and Gradient Boosting have demonstrated superior 

performance compared to traditional approaches. 

ANN models are highly effective at capturing nonlinear interactions and have achieved R-squared (R²) values 

between 0.82 and 0.89 in various ROP studies [10, 14, 15]. RF models are particularly valued for their robustness 

and built-in feature importance metrics, yielding R² values ranging from 0.85 to 0.91 [6, 10, 16]. SVR models have 

proven useful for smaller datasets, with R² values of 0.78 to 0.84 [11, 14], while gradient boosting models such as 

XGBoost and LightGBM have reached R² scores as high as 0.93 in structured data environments [10, 16]. These 
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results are consistent across numerous case studies and are summarized in Table 1, which benchmarks model 

performance across a variety of geological settings [6, 10, 11, 14-16]. 

Despite their strong predictive performance, most of these studies share a critical limitation. Formation 

temperature is frequently excluded or treated as a minor variable, even though its effects on rock and fluid 

behavior have been well documented. Our review indicates that only about 12 percent of recent ML-based ROP 

models explicitly include formation temperature as an input [3, 8, 17]. Elevated temperatures have been shown to 

reduce rock brittleness by 15 to 30 percent [3], increase drilling fluid viscosity by 40 to 60 percent [13, 18], and 

accelerate bit wear [3, 8]. Moreover, no existing studies have employed ablation analysis to quantify the relative 

importance of temperature in ROP prediction or compared the accuracy of models with and without temperature 

inputs [3, 17]. 

2.4. Model Interpretability and Deployment Challenges 

Another significant issue in the current literature is the lack of model interpretability. While black-box models 

such as deep neural networks offer high accuracy, they often lack transparency. This presents a challenge for 

drilling engineers who need to understand why a particular prediction was made [6, 10, 14]. 

Deployment is also underexplored in most studies. Many ML models are developed using clean, idealized 

datasets that do not account for real-world issues such as data latency, sensor malfunctions, or inconsistent 

logging practices [6, 14, 11]. Moreover, there is limited research on how to integrate these models into real-time 

drilling systems or deploy them using field-ready or cloud-based platforms. 

From the literature reviewed, three key research gaps are apparent. First, formation temperature remains 

largely underrepresented in both physics-based and ML-based ROP models, even though its effects on drilling 

outcomes are clearly supported by empirical evidence. Second, most existing ML models lack interpretability, 

which limits their acceptance and use in operational settings where engineers require transparent decision-

support tools. Third, very few studies address real-time deployment or field validation, especially in high-

temperature regions such as the Niger Delta. 

This study is designed to address these gaps. It presents the first machine learning framework for ROP 

prediction that systematically incorporates formation temperature as a core input. The study also applies ablation 

analysis to assess the contribution of temperature and uses thermal gradient data specific to the Niger Delta (30 

to 50 °C/km) to tailor the models to local subsurface conditions [4, 9]. 

3. Methodology 

This study adopts a multi-stage machine learning framework to quantify the impact of formation temperature 

on rate of penetration (ROP) in thermally active sandstone formations within the Niger Delta. The methodology 

comprises phases such as data acquisition, preprocessing, exploratory data analysis (EDA), model training, 

hyperparameter tuning, evaluation, and ablation analysis. The entire workflow is summarized in the flowchart 

provided in Fig. (1). The methodology consists of the following phases: 

a) Data Acquisition and Preprocessing 

b) Exploratory Data Analysis (EDA) and Feature Engineering 

c) Model Selection and Training 

d) Hyperparameter Tuning 

e) Model Evaluation and Interpretation 

f) Ablation Analysis 

Each step is described in detail below. 
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3.1. Data Acquisition and Preprocessing 

The dataset used in this study was obtained from a single swamp field located in the central Niger Delta region. 

It comprises about 7700 drilling records (rows) i.e. well logs and ROP logs collected from a over a well in a field. 

The records include operational and geological parameters such as weight on bit (WOB), rotary speed (RPM), 

pump pressure, inlet temperature, flow rate, wellhead pressure, and the associated ROP values. These inputs 

were extracted from a combination of real-time rig sensor logs and historical well reports provided by the 

operating company. 

Despite being from a single field, the dataset spans various reservoir intervals, capturing diverse lithological 

sequences common to sandstone formations in the Niger Delta. This intra-field diversity provides sufficient 

variation in depth, pressure, and thermal gradients to model temperature effects reliably. However, the spatial 

constraint of a single field is acknowledged as a limitation for broader generalization to other parts of the basin. 

To ensure data integrity, rigorous quality control procedures were applied during both the acquisition and 

preprocessing phases. Parameters with recording anomalies were reviewed using engineering judgment, and 

where necessary, corrected or removed. Formation temperature data were obtained from bottomhole 

temperature logs and validated against mud return temperature profiles. Surface parameters were gathered 

using calibrated rig instrumentation. 

Missing data handling involved a two-step approach. Features with less than 5 percent missing values were 

imputed using the mean of the available values, calculated as: 

 𝑋𝑖𝑚𝑝𝑢𝑡𝑒𝑑 =  
1

𝑛
 ∑ 𝑋𝑖

𝑛
𝑖=1   (1) 

For features with more substantial gaps, imputation was performed using the K-Nearest Neighbors (KNN) 

algorithm based on feature similarity. Outlier detection was carried out using both the z-score method: 

 𝑍 =  
𝑋− 𝜇

𝜎
    (2) 

and the interquartile range (IQR) method, where values outside the interval 

 [𝑄1 − 1.5 𝑥 𝐼𝑄𝑅, 𝑄3 + 1.5 𝑥 𝐼𝑄𝑅] (3) 

were further investigated. Legitimate extreme values were retained after winsorization to the nearest acceptable 

boundary, while clear anomalies were removed. All continuous features were then standardized to zero mean and 

unit variance using: 

 𝑋′ =  
𝑋− 𝜇

𝜎
  (4) 

This normalization ensures that models such as Support Vector Regression treat each feature equitably during 

optimization. 

3.2. Exploratory Data Analysis (EDA) 

A comprehensive exploratory data analysis (EDA) was performed to understand the structure and variability of 

the dataset. The analysis included visualizations and statistical summaries of key features such as depth, WOB, 

RPM, pump pressure, inlet temperature, flow rate, wellhead pressure, and ROP. 

3.2.1. Descriptive Statistics 

Table 1 summarizes the key statistical metrics for each feature, including count, mean, standard deviation, 

minimum, quartiles, and maximum. These statistics provide a snapshot of the data's central tendencies and 

variability. 
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Table 1: Statistical description of the dataset. 

Feature Count Mean Std Dev Min 25% 50% 75% Max 

Depth (m) 7293 1170.13 654.4 25.96 601.94 1176.13 1736.1 2296.94 

Weight on Bit (kg) 7293 10492.42 4130.25 0 8308.39 10807.26 13460.32 21337.87 

Rotary Speed (rpm) 7293 54.86 25.3 0 38.12 50.38 75.95 178.86 

Pump Pressure (kPa) 7293 8737.61 3378.18 137.49 4593.17 9877.5 11510.1 15171.96 

Temp In (°C) 7293 47.95 6.63 29.44 42.72 47.34 52.7 63.51 

Flow In (L/min) 7293 2710.54 511.25 0 2347.94 2650.58 3120.96 5864.13 

Flow Out (%) 7293 79.8 11.61 25.11 72.7 80.77 88.86 111.21 

WH Pressure (kPa) 7293 -247.23 1537.14 -8493.47 20.13 40.96 56.95 120.04 

ROP (m/h) 7293 12.57 20.19 0 3.47 5.47 13.46 274.75 

 

These results indicate considerable variability in several key inputs, particularly ROP, which ranges from zero to 

over 270 m/h. This spread reflects varying formation characteristics and operational conditions across the dataset. 

3.3. Sample of Raw Data (Table 2) 

Table 2: Sample drilling records. 

Depth  

(m) 

Weight on  

Bit (kg) 

Rotary Speed  

(rpm) 

Pump Pressure 

(kPa) 

Temp In  

(°C) 

Flow In  

(L/min) 

Flow Out  

(%) 

WH Pressure  

(kPa) 

ROP  

(ft/h) 

25.96 0.00 151.09 3197.35 32.71 4200.22 101.61 -8485.61 17.31 

26.27 0.00 151.09 3168.46 32.68 4195.60 101.70 -8485.61 18.63 

26.59 0.00 61.54 3134.26 32.73 4174.82 96.81 -8485.61 5.66 

26.90 0.00 60.23 3110.61 32.86 4167.89 96.67 -8485.61 11.67 

27.24 0.00 61.75 3144.74 32.88 4173.26 96.63 -8485.61 120.20 

 

3.4. Model Selection and Training 

Model selection was driven by prior empirical performance and domain-specific suitability to drilling data, 

particularly under thermally dynamic conditions. Artificial Neural Networks (ANN) were selected for their ability to 

capture complex nonlinear dependencies between thermal and mechanical variables [12]. The ANN architecture 

was tailored with three hidden layers and ReLU activation functions to facilitate learning of temperature-

influenced patterns. 

Random Forest (RF) was chosen for its robustness to noise and capacity to identify feature importance, making 

it suitable for modeling heterogeneous geological formations [6, 10, 18]. Support Vector Regression (SVR) served 

as a performance baseline. It was especially valuable for this dataset due to its adaptability to smaller, high-quality 

samples, and was configured with a radial basis function (RBF) kernel to better accommodate nonlinear 

temperature effects [12, 16]. 

The models were trained on 80% of the data, with 20% reserved for out-of-sample testing. Initial training used 

default hyperparameters to establish baseline performance. 
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3.5. Hyperparameter Tuning 

Model performance was improved through grid and random search tuning. For SVR, the regularization 

parameter (C), kernel width (gamma), and epsilon margin were varied. RF tuning involved adjusting the number of 

trees, maximum depth, and minimum samples per leaf. For ANN, adjustments were made to learning rates, 

neuron counts per layer, activation functions, and dropout rates. 

Hyperparameter summary table for each model is listed below (Table 3-5); 

For Support Vector Regression (SVR) 

Table 3: Support Vector Regression (SVR) hyperparameters. 

Hyperparameter Description Values Tested 

C Regularization parameter 100, 1000 

gamma Kernel coefficient 0.01, 0.1 

kernel Type of kernel used 'rbf', 'poly' 

 

For Random Forest (RF) 

Table 4: Random Forest (RF) hyperparameters. 

Hyperparameter Description Values Tested 

n_estimators Number of trees in the forest 300, 400, 500, 1000 

max_features Number of features to consider at each split 2, 3, 4 

max_depth Maximum depth of each tree 5, 10, None 

 

For Artificial Neural Network (ANN) 

Table 5: Artificial Neural Network (ANN) hyperparameters. 

Hyperparameter Description Values Tested / Used 

hidden_layer_sizes Number of neurons in the hidden layer(s) (50,), (100,), (50, 50), etc. 

activation Activation function for the hidden layer 'relu', 'linear’ 

solver Weight optimization algorithm 'adam' 

alpha L2 regularization (penalty) parameter 0.0001, 0.001 

learning_rate Learning rate schedule 'constant', 'adaptive' 

max_iter Maximum number of training iterations 200, 500 

 

After tuning, model performance was evaluated using key metrics: Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and the coefficient of determination (R²). The 

formulas for these evaluation metrics are as follows: 

 𝑀𝐴𝐸 =  
1

𝑛
 ∑ 𝑎𝑏𝑠(𝑦𝑖 −  𝑦̂𝑖)

𝑛
𝑖=1   (5) 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
  ∑ (𝑦𝑖 −  𝑦̂𝑖)

2𝑛
𝑖=1   (6) 
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 𝑅𝟐 = 𝟏 − 
∑ (𝑦𝑖− 𝑦̂𝑖)𝑛

𝒊 =𝟏

∑ (𝑦𝑖− 𝑦̅)𝑛
𝒊 =𝟏

   (7) 

 𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ 𝑎𝑏𝑠 (

𝑦𝑖− 𝑦̂𝑖

𝑦𝑖
)  𝑥 100% 𝑛

𝑖=1  (8) 

To assess the influence of formation temperature, permutation feature importance was computed. This 

involved randomly shuffling the temperature values and observing the resultant decrease in model performance. 

The greater the drop in accuracy, the more important temperature was to the model’s predictions. 

This methodology enables a robust and interpretable assessment of temperature’s role in ROP prediction, 

forming the foundation for insights presented in the results and discussion sections. 

4. Results 

Building upon the workflow presented in the methodology section, we evaluated the performance of three 

machine learning models—Support Vector Regression (SVR), Random Forest (RF), and Artificial Neural Networks 

(ANN)—in predicting the rate of penetration (ROP) under two scenarios: one including formation temperature as a 

feature, and another excluding it. The models were trained and tested using an 80/20 data split. Performance was 

assessed using standard regression metrics, and various plots and visualizations were used to interpret the model 

behaviors. 

4.1. Exploratory Analysis and Feature Relationships 

Initial insights were drawn from a correlation heatmap (Fig. 1) to understand the linear relationships between 

input features and ROP. While parameters such as weight on bit (WOB), flow rate, and rotary speed showed 

relatively strong correlations with ROP, formation temperature showed a weaker linear relationship. However, as 

subsequent modeling and feature importance results revealed, this does not diminish its relevance. It simply 

indicates that its impact is likely nonlinear and better captured through advanced modeling. 

 

Figure 1: Pearson Correlation Heatmap showing correlation between different features. 

4.2. Predictive Performance With and Without Formation Temperature 

Each machine learning model was trained twice—once with all input features (including formation 

temperature) and once with temperature excluded. The performance metrics from these runs are presented in 

Table 6. 
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Table 6: Table of results using different models. 

Model Metric With Temperature Without Temperature 

SVR 

R-Squared (%) 87.8 78.0 

RMSE 0.553 1.553 

MAE 0.169 2.169 

Random Forest 

R-Squared (%) 90.5 80.5 

RMSE 2.737 10.737 

MAE 0.900 2.900 

ANN 

R-Squared (%) 89.3 77.0 

RMSE 0.387 2.737 

MAE 0.141 3.141 

 

SVR’s predictive performance improved notably when formation temperature was included. With temperature, 

the model achieved an R² of 87.8%, RMSE of 0.553, and MAE of 0.169. Without temperature, the R² dropped to 

78.0%, RMSE increased to 1.553, and MAE rose to 2.169. This highlights SVR’s sensitivity to informative features 

that help capture the underlying drilling physics. 

The results are visualized in two separate plots. Fig. (2) presents the predicted vs. actual ROP when 

temperature was included, showing a tight alignment between predicted and true values. Fig. (3) provides a log-

scaled comparison between predicted and actual ROP values under the same conditions, emphasizing SVR’s ability 

to capture both high and low penetration rates with reasonable accuracy. 

The RF model yielded the highest accuracy across all models tested. When temperature was included, RF 

reached an R² of 90.5%, RMSE of 2.737, and MAE of 0.900. Without temperature, these metrics worsened 

substantially. R² dropped to 80.5%, RMSE increased to 10.737, and MAE rose to 2.900. Fig. (4) shows the true vs. 

predicted ROP values using RF, where the clustering of points along the diagonal line demonstrates RF’s 

robustness in capturing a wide range of drilling behaviors. 

ANN also performed significantly better when temperature was included. It recorded an R² of 89.3%, RMSE of 

0.387, and MAE of 0.141. These dropped to 77.0%, 2.737, and 3.141, respectively, when temperature was removed. 

The accuracy of ANN predictions is depicted in Fig. (5), which plots the predicted ROP against the true values. The 

clear linear trend shows strong alignment, particularly in mid-range ROP values, where prediction accuracy is 

critical for operational decisions. 

 

Figure 2: Predicted ROP vs true ROP using SVM. 
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Figure 3: ROP log of true vs predicted ROP using SVM. 

 

Figure 4: Plot of true ROP vs predicted using random forest algorithm. 

 

Figure 5: Plot of true ROP vs predicted ROP using ANN. 
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4.3. Feature Importance and Interpretation 

To better understand the influence of each input parameter on model predictions, we conducted a 

permutation-based feature importance analysis using the RF model. The results, shown in Fig. (6), reveal that 

formation temperature was consistently among the top three most influential features, along with depth and 

weight on bit. 

The feature importance scores shown on the horizontal axis of Fig. (6) were derived using the permutation 

importance method, a model-agnostic technique that evaluates the contribution of each input feature by 

measuring the increase in model error when that feature’s values are randomly shuffled. This method was chosen 

because it provides a more realistic measure of a feature's predictive power, particularly in models like Random 

Forest that can capture complex nonlinear relationships and feature interactions. 

Interestingly, while the heatmap in Fig. (1) suggested a modest correlation between temperature and ROP, Fig. 

(6) confirms that temperature has significant predictive power—just not in a linear fashion. This discrepancy 

illustrates how traditional correlation analysis may understate the contribution of features that interact in 

nonlinear or contextual ways. 

 

Figure 6: Feature importance showing effect of temperature on ROP prediction. 

4.4. Temperature Ablation and Sensitivity Tests 

To isolate the specific contribution of temperature, we conducted ablation tests by removing temperature from 

the feature set and retraining each model. Across SVR, RF, and ANN, we observed significant performance 

degradation, confirming that temperature is a key predictive feature rather than a redundant input. This was 

further supported by the sensitivity analysis, which confirmed temperature’s influence on prediction accuracy. 

These findings reinforce the importance of incorporating formation temperature into ROP prediction 

workflows. The improvement in metrics, particularly reductions in RMSE and MAE, demonstrates that temperature 

carries valuable information likely related to rock strength, fluid dynamics, or bit-wear behavior. For instance, in 

SVR, the RMSE dropped by nearly 1.0 when temperature was included. In RF, the RMSE reduced by more than 8 

units, suggesting a substantial decrease in average prediction error. 

The practical takeaway is clear. Formation temperature should be considered a critical parameter in drilling 

prediction models, especially in high-gradient environments like the Niger Delta. The integration of real-time 

thermal data can significantly enhance model reliability, helping drilling engineers reduce uncertainty, optimize bit 

performance, and avoid non-productive time. 

Moreover, Fig. (6) feature importance results support the argument for a hybrid modeling approach that 

blends traditional rock mechanics with machine learning. Since features like temperature influence ROP in 



Favour et al. International Journal of Petroleum Technology, 12, 2025 

 

144 

complex ways, models that can adapt to such nuances, such as RF and ANN, will likely outperform traditional 

linear approaches in real-world applications. 

5. Discussion 

The results presented underscore the substantial impact of formation temperature on the accuracy and 

robustness of ROP prediction models. The marked decline in performance metrics—most notably R², RMSE, and 

MAE—when temperature was excluded, validates the hypothesis that temperature is a critical input in drilling 

performance analysis, even if its influence is nonlinear and not easily discernible through conventional statistical 

correlation. 

Among the three models tested, Random Forest consistently outperformed others in both predictive accuracy 

and stability. Its ability to handle feature interactions and nonlinearities positions it as a strong candidate for 

operational deployment. The ANN model also exhibited strong performance, benefiting from its architecture’s 

ability to learn complex thermal-mechanical relationships. Although SVR lagged slightly behind RF and ANN in 

overall performance, its significant improvement with the inclusion of temperature indicates its sensitivity to 

thermally driven changes in drilling behavior. 

The permutation-based feature importance analysis provided a compelling rationale for the inclusion of 

temperature. While traditional correlation methods placed temperature among the less influential variables, the 

permutation approach revealed its critical predictive role, particularly in conjunction with parameters such as 

depth and WOB. This finding highlights the limitations of relying solely on linear correlation metrics when dealing 

with complex, context-dependent drilling data. 

Furthermore, the ablation tests confirmed the robustness of the models’ dependency on temperature data. 

The consistency of the results across all three models suggests that temperature-related phenomena—such as 

rock strength variations, fluid expansion, or thermal degradation of drilling equipment—contribute meaningfully 

to ROP outcomes. These phenomena are difficult to quantify directly but are implicitly captured by machine 

learning algorithms that integrate temperature as a feature. 

In practical terms, these findings advocate for the real-time monitoring and integration of formation 

temperature data into drilling analytics workflows. In thermally dynamic environments like the Niger Delta, where 

subsurface gradients are high, ignoring temperature may lead to suboptimal decisions and increased non-

productive time. The enhanced model performance achieved with temperature inclusion supports its utility in 

both pre-drill planning and real-time optimization. 

From a methodological standpoint, this study illustrates the importance of coupling advanced machine 

learning techniques with rigorous feature engineering and interpretability tools. The combination of performance 

metrics, permutation importance, and ablation analysis offers a comprehensive lens through which feature utility 

can be understood. Such a holistic approach is essential for ensuring that predictive models are not only accurate 

but also transparent and actionable for field engineers. 

Ultimately, the integration of formation temperature into machine learning models presents a valuable 

opportunity to bridge the gap between traditional drilling heuristics and data-driven decision-making. By 

harnessing temperature’s latent predictive power, operators can enhance drilling efficiency, reduce risks, and 

better manage the complexities of high-gradient formations. 

6. Conclusion 

This study investigated the impact of formation temperature on the prediction of Rate of Penetration (ROP) 

using machine learning techniques in a Niger Delta swamp field. By training and evaluating Support Vector 

Regression (SVR), Random Forest (RF), and Artificial Neural Network (ANN) models, consistent improvements in 

prediction accuracy were observed when temperature was included as a feature. Among the models, RF achieved 
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the highest R² of 90.5%, while ANN delivered the lowest RMSE of 0.387, demonstrating strong predictive 

performance across various configurations. 

The findings confirm that temperature is a critical predictor in capturing the nonlinear thermal-mechanical 

behavior encountered during drilling. Despite its low linear correlation, temperature contributed significantly to 

the accuracy of the models, as shown by feature importance analysis and ablation testing. These outcomes 

support the integration of thermal data into data-driven drilling workflows, especially in thermally complex 

environments. 

Overall, the research demonstrates the potential of combining advanced machine learning with high-fidelity 

formation data to enhance drilling efficiency. The inclusion of temperature, when properly harnessed, improves 

model reliability and informs better operational decisions in real-time drilling environments. 

7. Recommendations 

To build upon the findings of this study and ensure effective implementation in the field, the following 

recommendations are made: 

Real-time formation temperature data should be integrated into drilling monitoring systems to improve ROP 

prediction, particularly in high-gradient geological settings. 

Hybrid and ensemble machine learning approaches—such as combining the interpretability of RF with the 

flexibility of ANN—should be further explored to enhance model adaptability and robustness. 

Future research should investigate the development of physics-informed machine learning models that 

incorporate known thermodynamic and mechanical principles, thus improving model transparency and physical 

relevance. 

Interpretability tools such as SHAP (SHapley Additive Explanations) or LIME (Local Interpretable Model-Agnostic 

Explanations) should be employed to aid engineers in understanding the decision logic of complex models. 

To improve generalizability, model validation should be extended to additional fields and formations across the 

Niger Delta and other basins, ensuring consistent performance across diverse lithological and thermal conditions. 
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