Published by Avanti Publishers

International Journal of Petroleum

ISSN (online): 2409-787X

Technology

of Petroleum

International J

Development of an ANN-Driven Empirical Equation for Real-Time
Prediction of Natural Gas Flow through Surface Well Chokes

Ashraf Ahmed', Ahmed A. Mahmoud

2 Murtada A. Elhaj

3* and Salaheldin Elkatatny ="

'College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
3Process Engineering Department, Memorial University of Newfoundland, St. John's, NL A1C 557, Canada

ARTICLE INFO

Article Type: Research Article
Academic Editor: Shenglai Guo
Keywords:

Flow control

Surface choke

Natural gas flow

Artificial neural networks

Timeline:

Received: September 03, 2025
Accepted: November 04, 2025
Published: November 18, 2025

Citation: Ahmed A, Mahmoud AA, Elhaj MA, Elkatatny S.
Development of an ANN-driven empirical equation for
real-time prediction of natural gas flow through surface
well chokes. Int] Pet Technol. 2025; 12: 75-86.

DOI: https://doi.org/10.15377/2409-787X.2025.12.5

*Corresponding Author

Email: aelhaj@mun.ca
Tel: +1 (709) 864 8813

ABSTRACT

To maximize production efficiency, natural gas flow via surface well chokes must be
optimized. The nonlinear character of this flow frequently causes problems for
conventional empirical correlations and mechanistic models. To accurately forecast
gas flow rates using field data, this study develops an Artificial Neural Network (ANN)
model that considers temperature, gas gravity, choke size, and pressures. The main
innovation is that the optimized network is used to derive an exact, closed-form
empirical equation, going beyond the typical "black-box" use of ANN. This equation
enables the estimation of flow rate in real-time without requiring the execution of the
ANN model, providing engineers with a valuable tool at present. The 5-neuron
optimized ANN demonstrated remarkable accuracy, with training and testing average
absolute percentage errors (AAPE) below 2% and a correlation coefficient (R) over
0.99. When tested on unknown data, the resultant equation performed well
(R=0.999, AAPE=2.78%), outperforming conventional techniques in terms of
generalization and predictive power. By connecting data-driven analytics with field
operational realities for well management, this research represents a significant leap

forward.
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1. Introduction

Optimizing natural gas flow through surface well chokes is essential for maximizing efficiency in the oil and gas
industry. Properly managing this flow is crucial, as it directly affects production rates, reservoir health, and
economic profitability. Effective choke optimization ensures that natural gas is produced at optimal rates,
preventing issues such as excessive pressure drops or flow restrictions that can lead to reduced output or damage
to the reservoir. As natural gas remains a key component of the global energy supply, refining these processes is
increasingly important to boost production, lower operational costs, and maintain competitive advantages in a
dynamic energy market [1-3].

Surface well chokes are mechanical devices installed at the well's surface to regulate the flow of natural gas
from the well to processing facilities. They are engineered to control the pressure drop across the choke, which
directly influences the gas flow rate. The main purpose of these chokes is to manage the well’s output, ensuring
that the production rate aligns with reservoir management strategies while preventing excessive drawdown that
could potentially damage the reservoir. Furthermore, surface well chokes are essential in minimizing the risk of
hydrate formation and controlling erosion in downstream equipment [1, 4-71].

The performance of a choke is impacted by several factors, including reservoir pressure, choke size, gas
composition, and wellhead temperature. The dynamic interplay of these variables creates substantial challenges
in maintaining optimal control. Consequently, optimizing gas flow through surface well chokes is a complex task
that demands advanced modeling and analysis. While traditional methods can be somewhat effective, they
frequently struggle to account for the dynamic and multifaceted nature of the factors that affect flow rates [2, 5, 7-
111.

Traditionally, optimizing natural gas flow through well chokes has depended on empirical correlations and
mechanistic models. These approaches are based on the principles of fluid dynamics and thermodynamics,
providing a theoretical foundation for predicting flow behavior. Empirical correlations, in particular, have been
widely employed to estimate flow rates by considering factors such as choke size, upstream pressure, and gas
properties. Derived from field data, these correlations are relatively easy to use. However, their accuracy is often
limited, particularly when applied to highly variable conditions or unconventional gas reservoirs, where they may
not fully capture the complexity of the flow dynamics [12-14].

Mechanistic models, in contrast, aim to replicate the physical processes taking place within the wellbore and
choke. These models consider elements such as multiphase flow, phase behavior, and pressure-temperature
effects. Although they offer more detailed insights compared to empirical correlations, mechanistic models are
computationally demanding and require a significant amount of input data, which may not always be easily
accessible. Additionally, these models often rely on simplifications and assumptions that can lead to inaccuracies,
especially in more complex scenarios [15, 16].

The limitations of traditional methods highlight the need for advanced optimization techniques that can better
capture the complexities of gas flow through well chokes. With the advent of digital technologies and the
increasing availability of high-resolution data, there is an opportunity to leverage data-driven approaches to
enhance flow optimization [17-19]. Among these approaches, artificial neural networks (ANNs) have gained
significant attention due to their ability to model complex, nonlinear relationships without the need for explicit
physical equations [20-23].

ANNs are computational models inspired by the human brain’s structure and function. They comprise
interconnected layers of artificial neurons, where each neuron processes input data and passes the output to the
next layer. ANNs excel in tasks like pattern recognition, prediction, and classification. In natural gas flow
optimization, ANNs can be trained on historical data to understand the relationships between input variables (e.g.,
choke size, pressure, temperature) and output variables (e.g., flow rate). Once trained, ANNs can predict optimal
choke settings for different operating conditions, often offering greater accuracy and adaptability compared to
traditional methods [24-27].
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ANNs have found wide-ranging applications in the petroleum industry, revolutionizing various aspects of
exploration, drilling, production, and reservoir management. In exploration, ANNs are used for seismic data
interpretation, enhancing the accuracy of subsurface mapping and reducing the risk of drilling non-productive
wells [28-30]. During drilling, ANNs could be applied for drilling optimization and minimization of non-productive
time [31-34]. They are also employed in reservoir characterization, where ANNs help model complex reservoir
properties and predict fluid behaviors under different conditions [35-41]. During production, ANNs assist in
optimizing processes such as well performance analysis, predicting equipment failures, and improving enhanced
oil recovery (EOR) techniques [42-46]. By handling vast amounts of data and uncovering patterns that traditional
methods may overlook, ANNs contribute to more efficient and cost-effective operations across the petroleum
industry.

Using ANNs to optimize natural gas flow through surface well chokes provides several benefits. ANNs excel at
capturing nonlinear relationships and complex interactions between variables, leading to more accurate flow rate
predictions and improved decision-making. They can also process vast amounts of data, uncovering patterns that
traditional models might miss, which enhances optimization strategies. Additionally, ANNs are adaptable and can
be retrained with new data, making them ideal for dynamic environments where conditions frequently change.
These capabilities make ANNs a powerful tool for optimizing natural gas production in varying operational
contexts [47-49].

ANN, hybrid learning, and ensemble machine-learning frameworks have been used in several recent research
to forecast choke flow and production rate [50-52]. These studies validate that data-driven models outperform
traditional empirical correlations in terms of predictive accuracy, but they also highlight enduring drawbacks, such
as limited dataset scope, limited cross-field transferability, limited interpretability of ANN architectures, and
minimal validated deployment in real-world production systems. The current study's aim on creating a reliable,
field-deployable ANN-based correlation for choke flow prediction is motivated by these deficiencies.

This paper focuses on developing an ANNs model to accurately predict gas flow rates through surface well
chokes, considering key variables such as pressure, temperature, choke size, and gas specific gravity. By leveraging
the optimized ANN model, an empirical equation will be derived to streamline the prediction process, enabling
more accurate and efficient gas flow rate estimations. This approach aims to enhance decision-making in well
management and optimize production efficiency.

2. Methodology

In this study, more than 150 data points were gathered from a gas field in Sudan to create an artificial
intelligence model that accurately reflects field production data. The dataset included key variables such as choke
size (Dcn), tubing temperature (T), upstream and downstream tubing pressures (P and Pg), gas specific gravity (Y),
and gas flow rates (Q). These inputs, selected based on empirical correlations and gas law principles, were used to
predict gas flow rates effectively.

Before applying the Al technique, the obtained dataset was thoroughly evaluated and processed to ensure its
quality and representation. The statistics feature analysis for the data points included identifying the minimum,
maximum, median, and mean values, as well as distribution factors including kurtosis, skewness, and standard
deviation. These statistics are essential for machine learning practitioners to ensure that the input data aligns with
the expected ranges. The analysis demonstrated that this data set encompassed a wide range and provided a
comprehensive representation of data distribution, as summarized in Table 1.

Additionally, the correlation coefficients and the intensity of the linear correlations between each variable and
the gas flow rate were used to assess the importance of each, as shown in Fig. (1). High correlation values for
choke size and pressures indicated their significant impact on predicting gas flow rates. The lower correlation
coefficients for tubing temperature and gas specific gravity indicated an absence of a linear relationship; however,
they could not be excluded as the variations in these parameters still significantly affected the gas flow rate, as
illustrated in the cross-plots in Fig. (2). Consequently, all variables were included as model inputs.
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Table 1: Dataset statistics.

Dch T Pup Pd Q
Parameter 1/64" °R psig psig ¥ mmscf/d
Minimum 16.00 535.20 520.00 100.00 0.59 217
Maximum 128.00 564.00 1840.00 500.00 0.63 17.17
Median 32.00 553.20 1570.00 200.00 0.59 7.64
Mean 49.72 552.12 1322.18 274.30 0.59 8.93
Kurtosis 3.57 3.91 1.98 2.04 15.18 2.21
Skewness 1.39 -0.26 -0.69 0.48 3.48 0.40
Standard Deviation 36.05 5.24 442.71 130.41 0.01 4.56
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Figure 1: The correlation coefficient of the parameters with flow rates.

To ensure the quality and reliability of the dataset, it was meticulously cleaned and filtered based on statistical
descriptions to remove erroneous and unrealistic data, including negative values, zeros, NaNs, and missing entries.
These preprocessing steps were essential to prepare the data for model development.

To estimate the gas flow rate (Q), the ANN model was created with five neurons in the input layer, one hidden
layer, and one neuron in the output layer. Sensitivity analysis was used to identify the ideal number of neurons in
the buried layer.

The filtered dataset was randomly divided, allocating 70% for training the model, 20% for testing, and the
remaining 10% kept unseen by the algorithm for final validation. The ANN technique was then implemented using
MATLAB, with extensive sensitivity and tuning analyses conducted to determine the optimal hyperparameters and
functions. The optimality of the model was measured through some performance metrics, including the
correlation coefficient (R), root mean square error (RMSE), average absolute percentage error (AAPE), and
graphical analysis. The most desirable models exhibited the highest R values and the lowest RMSE and AAPE
values. Each trial's performance and accuracy were rigorously evaluated using these criteria to determine the best
model. In addition to creating an optimized model, the ultimate goal was to transform the ANN black-box model
into a transparent and interpretable white-box model in order to establish a new empirical correlation. Therefore,
a new correlation was developed from the best-performing model, and it was then validated with the reserved
data points to ensure its accuracy and reliability. The procedures that followed for building the ANN model were
presented in Fig. (3).
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Figure 2: Cross plots between flow rates and the other parameters.

3. Results and Discussion

Artificial Neural Network (ANN) are computational systems modeled after the human brain's architecture,
consisting of interconnected neurons that mimic the brain's information processing system. ANNs aim to solve
complex problems by learning from examples, adapting to changes in the environment through learning rules,
and utilizing various activation functions to determine outputs. These networks have evolved from basic models
like the McCulloch-Pitts neuron to more advanced deep learning models, overcoming challenges like the
selectivity-invariance problem. ANNs store information in a distributed manner, allowing parallel extraction of

multiple pieces of information, similar to the human brain's powerful parallel processing capabilities.
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Figure 3: Model's development processes.

The ANN model emulates biological neural networks by using interconnected neurons with predetermined
weights and biases. It is composed of three levels: input, hidden, and output. The parameters are received by the
input layer, the hidden division processes them, and the output portion delivers the final result. These layers are
connected through transfer functions and trained using various training algorithms. The best weights and biases
in this system are found using the back-propagation technique. By experimenting with various scenarios for total
neurons count, network functions, training algorithms, and transfer functions and applying the iteration approach,
the optimum hyperparameters for model performance were recognized and validated to ensure accurate
predictions.

The statistical relationships between the input parameters and the gas flow rate, illustrated in Fig. (1) and (2),
provide critical insight into the model's inputs. Fig. (1) confirms the strong linear correlation of choke size and both
upstream and downstream pressures with the flow rate, justifying their paramount importance. Conversely, Fig.
(2) reveals the weak linear but significant non-linear relationships for tubing temperature and gas specific gravity.
The scattering of data points in these cross-plots demonstrates that these variables influence the flow rate in
complex ways that linear models cannot capture, underscoring the value of the ANN's ability to model such non-
linear interactions and validating our decision to retain them as essential inputs.

The parameter tuning process identified the optimal model configuration, detailed in Table 2, which includes 5
neurons in a single hidden layer. Sensitivity analyses, as described in the methodology, demonstrated that this
optimized ANN-based model achieved high accuracy, with R value of +0.99, AAPE of 1.69% and 1.85%, and RMSE
of 0.19 and 0.31 for training and testing, respectively. The cross-plots of actual versus predicted gas flow rates,
shown in Fig. (4), further confirmed the model's excellent fitting accuracy.

Our systematic sensitivity analysis revealed that a single hidden layer with five neurons was sufficient to
capture the complex, non-linear relationships in our dataset, as evidenced by the model's exceptional
performance (R > 0.99, AAPE < 2% on test data). More complex architectures (e.g., additional hidden layers)
showed no significant improvement in predictive accuracy on the testing set and introduced a risk of overfitting. A
single-layer architecture resulted in a more compact and manageable final empirical correlation (Eq. 10),
enhancing its transparency and utility for field engineers without sacrificing predictive power. This approach
ensures the model is not only accurate but also optimally suited for its intended practical application.
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Table 2: The ANN hyperparameters for the best performance model.

Parameter Value
Number of neurons 5
Number of hidden layers 1
Training algorithm Trainbr: Bayesian regularization backpropagation
Network function Fitnet: Regression fitting
Transfer function Tansig: Hyperbolic tangent sigmoid
Learning rate 0.12
Training Testing
20 20
R=10.999 R=10.999

AAPE =1.69 AAPE =1.85

RMSE = 0.19 RMSE = 0.31
15 15

®
%‘ 10 ZI 10
o o
5 5
0 0
0 5 10 15 20 0 5 10 15 20
Q Actual Q Actual

Figure 4: The actual and predicted flow rates for training and testing.

To prove the model's generalization, a cross-validation phase was conducted. The dataset was randomly
partitioned into five segments, with four used for training and one for testing. This process was repeated five
times, rotating the testing section each time. This approach ensured thorough validation of the model's accuracy.
The results revealed consistent performance across all partitions, with nearly similar R, AAPE, and RMSE values.
These results confirm the model's stability, robustness, and applicability.

Overfitting was evident in models with several hidden layers, as the testing error increased while the training
error decreased. The best generalization on the testing dataset was obtained with a single hidden layer design
consisting of five neurons. With a R value of +0.99 and an AAPE of 1.85% during testing, this comparatively
straightforward structure shows that the fundamental relationships in the data were effectively represented
without needless complication. This strong generalization was further reinforced by the selection of the Bayesian
regularization backpropagation technique, which successfully penalizes excessively intricate weight configurations
during training.

The established black-box model was turned into a transparent white-box model by deriving the ANN
correlation, which can be directly applied without the need to run the Al algorithm again. This transformation
involved using the normalized parameters and extracting the optimum weights and biases, as illustrated generally
in Eq. 1:

Qn = b, +21iv=1W21-f(W1i-¢n+blz) (M
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where Q, is the normalized output flow rate, i denotes the index of neuron, N is the total neurons count, and @,
indicates the normalized input parameters array. The weights of the input and output layers are denoted by w;
and w;, respectively, whereas b; and b, are the biases of the two layers. The normalized parameters were
ordinarily determined from the below Eqg. 2 with the minimum and maximum values for any (X) parameter from
Table 1.

anz(m)—l ()

Xmax—Xmin

The normalized input parameters were derived by substituting their minimum and maximum values, and
expressed as follows:

D, = 0.0179 (D — 16) — 1 3)
T, = 0.0694 (T — 535.2) —1 (4)
Py =0.0015 (P, — 520) — 1 (5)
P,, = 0.005 (P; — 100) — 1 (6)
Yn = 45.454 (y — 0.59) — 1 (7)

The definition of the function (f) in Eq. 1 depends on the used transfer function on the ANN algorithm, such as
tansig, logsig, radbas, ... etc. Since the optimal model was obtained using tansig function, Eq. 1 would be written as
follows:

= N 2 —
Qn = b2 + Zl=1 W2, X <1+e_2(w1i'1 XDcpy +Wijp X Tn+ W13 X Pup + W14 X Pap+ Wijs X ¥Yn+ b1i) 1) (8)
To determine the required gas flow rate, the Q, was denormalized by rearranging Eq. 2 as follows:
(Q@n+1)
Q= 2 (Qmax — Qmin) + Qmin 9

By substituting Eq. 8 into Eq. 9 and using the values from Table 1, the final derivation would be as shown in the
below correlation:

Q=9.67+75 [bz + X w,, ( 2 1)] (10)

1+e_2(W1i'1 X Dy + Wi X Tn+ Wiy 3 X Pup + W14 X Pap+Wigs X vn+ by;)

The optimum weights and biases that required in the above-mentioned Eq. 10 were extracted from the ANN
model and presented in Table 3 hereunder.

Table 3: The weights and biases from the ANN model.

i Wiis Wiz Wiis Wiig Wiis A b, b,

1 0.842 0.755 1.176 1.730 0.518 1.731 -0.920

2 -1.416 -0.016 0.381 -1.139 2.008 -1.793 -0.690

3 0.563 0.045 1.012 -2.484 0.008 -2.158 0.014 -0.967
4 0.697 -0.436 1.755 -0.905 -0.438 2.257 1.553

5 -1.938 -0.033 0.337 -1.987 1.438 2.234 -0.796
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To verify the reliability of the obtained correlation (Eqg. 10), it was tested on the 10% of the dataset that had
been kept unseen during model development. This validation demonstrated high accuracy, with an R value of
0.999, an AAPE of 2.78%, and an RMSE of 0.24, as illustrated in the cross plot in Fig. (5).

Validation
20

R=10.999
AAPE =2.78
RMSE = 0.24

0 5 10 15 20
Q Actual

Figure 5: The actual and predicted flow rates for validation dataset.

This study explores the use of ANN as an effective tool for optimizing natural gas flow rates through surface
well chokes, considering well pressure, temperature, and fluid properties. By leveraging the capabilities of the
ANN model, we transform raw data into actionable insights, significantly enhancing our understanding and
management of gas flow dynamics. However, a key limitation of this model is data availability; the input data must
fall within the ranges specified in Table 1. If the data deviates from these ranges, the accuracy of the results may
decrease significantly.

4. Conclusion

This study successfully developed an ANN model using over 150 data points from a gas field, incorporating
variables such as choke size, tubing temperature, upstream and downstream pressures, gas specific gravity, and
gas flow rates. These inputs, selected based on empirical correlations and gas law principles, were used to predict
gas flow rates effectively. The dataset was meticulously analyzed and cleaned to ensure data representation,
reliability, and quality, confirming its comprehensive coverage and alignment with expected ranges.

The relative importance of each parameter was evaluated, showing high correlation values for choke size and
pressures, while tubing temperature and gas specific gravity, despite lower correlation coefficients, were still
significant. The optimal model configuration included 5 neurons in a single hidden layer with Bayesian
regularization backpropagation and hyperbolic tangent sigmoid function. The developed model achieved high
accuracy with R value of +0.99, AAPE of 1.69% and 1.85%, and RMSE of 0.19 mmscf/d and 0.31 mmscf/d for
training and testing, respectively. Cross-validation confirmed the model's stability and reliability across different
data partitions.

Robust generalization was demonstrated by the outstanding accuracy with which this equation was evaluated
on unknown data (R=0.999, AAPE=2.78%). This research offers field engineers a straightforward way to optimize
choke settings in real-time, maximizing production efficiency, guaranteeing reservoir integrity, and assisting with
the digital transformation of well management practices by offering a dependable and instantaneous calculation
method. Compared to conventional empirical methods, the suggested model and its resulting correlation provide
a better, more useful option.
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The ANN model was transformed into a transparent white-box model, deriving an empirical equation that
could be used directly with the derived weights and biases. This transformation enhances the practical
applicability of the model without needing to rerun the Al algorithm. However, the model's effectiveness is
contingent on data availability, requiring input data to fall within specified ranges to maintain accuracy.
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