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ABSTRACT 

To maximize production efficiency, natural gas flow via surface well chokes must be 

optimized. The nonlinear character of this flow frequently causes problems for 

conventional empirical correlations and mechanistic models. To accurately forecast 

gas flow rates using field data, this study develops an Artificial Neural Network (ANN) 

model that considers temperature, gas gravity, choke size, and pressures. The main 

innovation is that the optimized network is used to derive an exact, closed-form 

empirical equation, going beyond the typical "black-box" use of ANN. This equation 

enables the estimation of flow rate in real-time without requiring the execution of the 

ANN model, providing engineers with a valuable tool at present. The 5-neuron 

optimized ANN demonstrated remarkable accuracy, with training and testing average 

absolute percentage errors (AAPE) below 2% and a correlation coefficient (R) over 

0.99. When tested on unknown data, the resultant equation performed well 

(R=0.999, AAPE=2.78%), outperforming conventional techniques in terms of 

generalization and predictive power. By connecting data-driven analytics with field 

operational realities for well management, this research represents a significant leap 

forward. 
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1. Introduction 

Optimizing natural gas flow through surface well chokes is essential for maximizing efficiency in the oil and gas 

industry. Properly managing this flow is crucial, as it directly affects production rates, reservoir health, and 

economic profitability. Effective choke optimization ensures that natural gas is produced at optimal rates, 

preventing issues such as excessive pressure drops or flow restrictions that can lead to reduced output or damage 

to the reservoir. As natural gas remains a key component of the global energy supply, refining these processes is 

increasingly important to boost production, lower operational costs, and maintain competitive advantages in a 

dynamic energy market [1-3]. 

Surface well chokes are mechanical devices installed at the well's surface to regulate the flow of natural gas 

from the well to processing facilities. They are engineered to control the pressure drop across the choke, which 

directly influences the gas flow rate. The main purpose of these chokes is to manage the well’s output, ensuring 

that the production rate aligns with reservoir management strategies while preventing excessive drawdown that 

could potentially damage the reservoir. Furthermore, surface well chokes are essential in minimizing the risk of 

hydrate formation and controlling erosion in downstream equipment [1, 4-7]. 

The performance of a choke is impacted by several factors, including reservoir pressure, choke size, gas 

composition, and wellhead temperature. The dynamic interplay of these variables creates substantial challenges 

in maintaining optimal control. Consequently, optimizing gas flow through surface well chokes is a complex task 

that demands advanced modeling and analysis. While traditional methods can be somewhat effective, they 

frequently struggle to account for the dynamic and multifaceted nature of the factors that affect flow rates [2, 5, 7-

11]. 

Traditionally, optimizing natural gas flow through well chokes has depended on empirical correlations and 

mechanistic models. These approaches are based on the principles of fluid dynamics and thermodynamics, 

providing a theoretical foundation for predicting flow behavior. Empirical correlations, in particular, have been 

widely employed to estimate flow rates by considering factors such as choke size, upstream pressure, and gas 

properties. Derived from field data, these correlations are relatively easy to use. However, their accuracy is often 

limited, particularly when applied to highly variable conditions or unconventional gas reservoirs, where they may 

not fully capture the complexity of the flow dynamics [12-14]. 

Mechanistic models, in contrast, aim to replicate the physical processes taking place within the wellbore and 

choke. These models consider elements such as multiphase flow, phase behavior, and pressure-temperature 

effects. Although they offer more detailed insights compared to empirical correlations, mechanistic models are 

computationally demanding and require a significant amount of input data, which may not always be easily 

accessible. Additionally, these models often rely on simplifications and assumptions that can lead to inaccuracies, 

especially in more complex scenarios [15, 16]. 

The limitations of traditional methods highlight the need for advanced optimization techniques that can better 

capture the complexities of gas flow through well chokes. With the advent of digital technologies and the 

increasing availability of high-resolution data, there is an opportunity to leverage data-driven approaches to 

enhance flow optimization [17-19]. Among these approaches, artificial neural networks (ANNs) have gained 

significant attention due to their ability to model complex, nonlinear relationships without the need for explicit 

physical equations [20-23]. 

ANNs are computational models inspired by the human brain’s structure and function. They comprise 

interconnected layers of artificial neurons, where each neuron processes input data and passes the output to the 

next layer. ANNs excel in tasks like pattern recognition, prediction, and classification. In natural gas flow 

optimization, ANNs can be trained on historical data to understand the relationships between input variables (e.g., 

choke size, pressure, temperature) and output variables (e.g., flow rate). Once trained, ANNs can predict optimal 

choke settings for different operating conditions, often offering greater accuracy and adaptability compared to 

traditional methods [24-27]. 
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ANNs have found wide-ranging applications in the petroleum industry, revolutionizing various aspects of 

exploration, drilling, production, and reservoir management. In exploration, ANNs are used for seismic data 

interpretation, enhancing the accuracy of subsurface mapping and reducing the risk of drilling non-productive 

wells [28-30]. During drilling, ANNs could be applied for drilling optimization and minimization of non-productive 

time [31-34]. They are also employed in reservoir characterization, where ANNs help model complex reservoir 

properties and predict fluid behaviors under different conditions [35-41]. During production, ANNs assist in 

optimizing processes such as well performance analysis, predicting equipment failures, and improving enhanced 

oil recovery (EOR) techniques [42-46]. By handling vast amounts of data and uncovering patterns that traditional 

methods may overlook, ANNs contribute to more efficient and cost-effective operations across the petroleum 

industry. 

Using ANNs to optimize natural gas flow through surface well chokes provides several benefits. ANNs excel at 

capturing nonlinear relationships and complex interactions between variables, leading to more accurate flow rate 

predictions and improved decision-making. They can also process vast amounts of data, uncovering patterns that 

traditional models might miss, which enhances optimization strategies. Additionally, ANNs are adaptable and can 

be retrained with new data, making them ideal for dynamic environments where conditions frequently change. 

These capabilities make ANNs a powerful tool for optimizing natural gas production in varying operational 

contexts [47-49]. 

ANN, hybrid learning, and ensemble machine-learning frameworks have been used in several recent research 

to forecast choke flow and production rate [50-52]. These studies validate that data-driven models outperform 

traditional empirical correlations in terms of predictive accuracy, but they also highlight enduring drawbacks, such 

as limited dataset scope, limited cross-field transferability, limited interpretability of ANN architectures, and 

minimal validated deployment in real-world production systems. The current study's aim on creating a reliable, 

field-deployable ANN-based correlation for choke flow prediction is motivated by these deficiencies. 

This paper focuses on developing an ANNs model to accurately predict gas flow rates through surface well 

chokes, considering key variables such as pressure, temperature, choke size, and gas specific gravity. By leveraging 

the optimized ANN model, an empirical equation will be derived to streamline the prediction process, enabling 

more accurate and efficient gas flow rate estimations. This approach aims to enhance decision-making in well 

management and optimize production efficiency. 

2. Methodology 

In this study, more than 150 data points were gathered from a gas field in Sudan to create an artificial 

intelligence model that accurately reflects field production data. The dataset included key variables such as choke 

size (Dch), tubing temperature (T), upstream and downstream tubing pressures (Pup and Pd), gas specific gravity (Ɣ), 

and gas flow rates (Q). These inputs, selected based on empirical correlations and gas law principles, were used to 

predict gas flow rates effectively. 

Before applying the AI technique, the obtained dataset was thoroughly evaluated and processed to ensure its 

quality and representation. The statistics feature analysis for the data points included identifying the minimum, 

maximum, median, and mean values, as well as distribution factors including kurtosis, skewness, and standard 

deviation. These statistics are essential for machine learning practitioners to ensure that the input data aligns with 

the expected ranges. The analysis demonstrated that this data set encompassed a wide range and provided a 

comprehensive representation of data distribution, as summarized in Table 1. 

Additionally, the correlation coefficients and the intensity of the linear correlations between each variable and 

the gas flow rate were used to assess the importance of each, as shown in Fig. (1). High correlation values for 

choke size and pressures indicated their significant impact on predicting gas flow rates. The lower correlation 

coefficients for tubing temperature and gas specific gravity indicated an absence of a linear relationship; however, 

they could not be excluded as the variations in these parameters still significantly affected the gas flow rate, as 

illustrated in the cross-plots in Fig. (2). Consequently, all variables were included as model inputs. 
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Table 1: Dataset statistics. 

Parameter 
Dch 

1/64" 

T 

°R 

Pup 

psig 

Pd 

psig 
Ɣ 

Q 

mmscf/d 

Minimum 16.00 535.20 520.00 100.00 0.59 2.17 

Maximum 128.00 564.00 1840.00 500.00 0.63 17.17 

Median 32.00 553.20 1570.00 200.00 0.59 7.64 

Mean 49.72 552.12 1322.18 274.30 0.59 8.93 

Kurtosis 3.57 3.91 1.98 2.04 15.18 2.21 

Skewness 1.39 -0.26 -0.69 0.48 3.48 0.40 

Standard Deviation 36.05 5.24 442.71 130.41 0.01 4.56 

 

 

Figure 1: The correlation coefficient of the parameters with flow rates. 

To ensure the quality and reliability of the dataset, it was meticulously cleaned and filtered based on statistical 

descriptions to remove erroneous and unrealistic data, including negative values, zeros, NaNs, and missing entries. 

These preprocessing steps were essential to prepare the data for model development. 

To estimate the gas flow rate (Q), the ANN model was created with five neurons in the input layer, one hidden 

layer, and one neuron in the output layer. Sensitivity analysis was used to identify the ideal number of neurons in 

the buried layer. 

The filtered dataset was randomly divided, allocating 70% for training the model, 20% for testing, and the 

remaining 10% kept unseen by the algorithm for final validation. The ANN technique was then implemented using 

MATLAB, with extensive sensitivity and tuning analyses conducted to determine the optimal hyperparameters and 

functions. The optimality of the model was measured through some performance metrics, including the 

correlation coefficient (R), root mean square error (RMSE), average absolute percentage error (AAPE), and 

graphical analysis. The most desirable models exhibited the highest R values and the lowest RMSE and AAPE 

values. Each trial's performance and accuracy were rigorously evaluated using these criteria to determine the best 

model. In addition to creating an optimized model, the ultimate goal was to transform the ANN black-box model 

into a transparent and interpretable white-box model in order to establish a new empirical correlation. Therefore, 

a new correlation was developed from the best-performing model, and it was then validated with the reserved 

data points to ensure its accuracy and reliability. The procedures that followed for building the ANN model were 

presented in Fig. (3). 
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Figure 2: Cross plots between flow rates and the other parameters. 

3. Results and Discussion 

Artificial Neural Network (ANN) are computational systems modeled after the human brain's architecture, 

consisting of interconnected neurons that mimic the brain's information processing system. ANNs aim to solve 

complex problems by learning from examples, adapting to changes in the environment through learning rules, 

and utilizing various activation functions to determine outputs. These networks have evolved from basic models 

like the McCulloch–Pitts neuron to more advanced deep learning models, overcoming challenges like the 

selectivity-invariance problem. ANNs store information in a distributed manner, allowing parallel extraction of 

multiple pieces of information, similar to the human brain's powerful parallel processing capabilities. 
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Figure 3: Model’s development processes. 

The ANN model emulates biological neural networks by using interconnected neurons with predetermined 

weights and biases. It is composed of three levels: input, hidden, and output. The parameters are received by the 

input layer, the hidden division processes them, and the output portion delivers the final result. These layers are 

connected through transfer functions and trained using various training algorithms. The best weights and biases 

in this system are found using the back-propagation technique. By experimenting with various scenarios for total 

neurons count, network functions, training algorithms, and transfer functions and applying the iteration approach, 

the optimum hyperparameters for model performance were recognized and validated to ensure accurate 

predictions. 

The statistical relationships between the input parameters and the gas flow rate, illustrated in Fig. (1) and (2), 

provide critical insight into the model's inputs. Fig. (1) confirms the strong linear correlation of choke size and both 

upstream and downstream pressures with the flow rate, justifying their paramount importance. Conversely, Fig. 

(2) reveals the weak linear but significant non-linear relationships for tubing temperature and gas specific gravity. 

The scattering of data points in these cross-plots demonstrates that these variables influence the flow rate in 

complex ways that linear models cannot capture, underscoring the value of the ANN's ability to model such non-

linear interactions and validating our decision to retain them as essential inputs. 

The parameter tuning process identified the optimal model configuration, detailed in Table 2, which includes 5 

neurons in a single hidden layer. Sensitivity analyses, as described in the methodology, demonstrated that this 

optimized ANN-based model achieved high accuracy, with R value of +0.99, AAPE of 1.69% and 1.85%, and RMSE 

of 0.19 and 0.31 for training and testing, respectively. The cross-plots of actual versus predicted gas flow rates, 

shown in Fig. (4), further confirmed the model's excellent fitting accuracy. 

Our systematic sensitivity analysis revealed that a single hidden layer with five neurons was sufficient to 

capture the complex, non-linear relationships in our dataset, as evidenced by the model's exceptional 

performance (R > 0.99, AAPE < 2% on test data). More complex architectures (e.g., additional hidden layers) 

showed no significant improvement in predictive accuracy on the testing set and introduced a risk of overfitting. A 

single-layer architecture resulted in a more compact and manageable final empirical correlation (Eq. 10), 

enhancing its transparency and utility for field engineers without sacrificing predictive power. This approach 

ensures the model is not only accurate but also optimally suited for its intended practical application. 
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Table 2: The ANN hyperparameters for the best performance model. 

Parameter Value 

Number of neurons 5 

Number of hidden layers 1 

Training algorithm Trainbr: Bayesian regularization backpropagation 

Network function Fitnet: Regression fitting 

Transfer function Tansig: Hyperbolic tangent sigmoid 

Learning rate 0.12 

 

                

Figure 4: The actual and predicted flow rates for training and testing. 

To prove the model's generalization, a cross-validation phase was conducted. The dataset was randomly 

partitioned into five segments, with four used for training and one for testing. This process was repeated five 

times, rotating the testing section each time. This approach ensured thorough validation of the model's accuracy. 

The results revealed consistent performance across all partitions, with nearly similar R, AAPE, and RMSE values. 

These results confirm the model's stability, robustness, and applicability. 

Overfitting was evident in models with several hidden layers, as the testing error increased while the training 

error decreased. The best generalization on the testing dataset was obtained with a single hidden layer design 

consisting of five neurons. With a R value of +0.99 and an AAPE of 1.85% during testing, this comparatively 

straightforward structure shows that the fundamental relationships in the data were effectively represented 

without needless complication. This strong generalization was further reinforced by the selection of the Bayesian 

regularization backpropagation technique, which successfully penalizes excessively intricate weight configurations 

during training. 

The established black-box model was turned into a transparent white-box model by deriving the ANN 

correlation, which can be directly applied without the need to run the AI algorithm again. This transformation 

involved using the normalized parameters and extracting the optimum weights and biases, as illustrated generally 

in Eq. 1: 

 𝑄𝑛 = 𝑏2 + ∑ 𝑤2𝑖
 . 𝑓(𝑤1𝑖

 . ∅𝑛 + 𝑏1𝑖
)𝑁

𝑖=1   (1) 
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where Qn is the normalized output flow rate, i denotes the index of neuron, N is the total neurons count, and Øn 

indicates the normalized input parameters array. The weights of the input and output layers are denoted by w1 

and w2, respectively, whereas b1 and b2 are the biases of the two layers. The normalized parameters were 

ordinarily determined from the below Eq. 2 with the minimum and maximum values for any (X) parameter from 

Table 1. 

 X𝑛 = 2 (
X − X𝑚𝑖𝑛

X𝑚𝑎𝑥−X𝑚𝑖𝑛
) − 1  (2) 

The normalized input parameters were derived by substituting their minimum and maximum values, and 

expressed as follows: 

 𝐷𝑐ℎ𝑛
= 0.0179 (𝐷𝑐ℎ −  16) − 1 (3) 

 𝑇𝑛 = 0.0694 (𝑇 −  535.2) − 1  (4) 

 𝑃𝑢𝑝𝑛
= 0.0015 (𝑃𝑢𝑝 −  520) − 1  (5) 

 𝑃𝑑𝑛
= 0.005 (𝑃𝑑 −  100) − 1  (6) 

 𝛾𝑛 = 45.454 (𝛾 −  0.59) − 1  (7) 

The definition of the function (f) in Eq. 1 depends on the used transfer function on the ANN algorithm, such as 

tansig, logsig, radbas, … etc. Since the optimal model was obtained using tansig function, Eq. 1 would be written as 

follows: 

 𝑄𝑛 = 𝑏2 + ∑ 𝑤2𝑖
× (

2

1+𝑒
−2(𝑤1𝑖,1 × 𝐷𝑐ℎ𝑛 + 𝑤1𝑖,2 × 𝑇𝑛 + 𝑤1𝑖,3 × 𝑃𝑢𝑝𝑛

+ 𝑤1𝑖,4 × 𝑃𝑑𝑛+ 𝑤1𝑖,5 × 𝛾𝑛+ 𝑏1𝑖)
− 1)𝑁

𝑖=1   (8) 

To determine the required gas flow rate, the Qn was denormalized by rearranging Eq. 2 as follows: 

 Q =
(𝑄𝑛+1)

2
(𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛) + 𝑄𝑚𝑖𝑛  (9) 

By substituting Eq. 8 into Eq. 9 and using the values from Table 1, the final derivation would be as shown in the 

below correlation: 

 𝑄 = 9.67 + 7.5 [𝑏2 + ∑ 𝑤2𝑖
(

2

1+𝑒
−2(𝑤1𝑖,1 × 𝐷𝑐ℎ𝑛 + 𝑤1𝑖,2 × 𝑇𝑛 + 𝑤1𝑖,3 × 𝑃𝑢𝑝𝑛

+ 𝑤1𝑖,4 × 𝑃𝑑𝑛+ 𝑤1𝑖,5 × 𝛾𝑛+ 𝑏1𝑖)
− 1)𝑁

𝑖=1 ]. (10) 

The optimum weights and biases that required in the above-mentioned Eq. 10 were extracted from the ANN 

model and presented in Table 3 hereunder. 

Table 3: The weights and biases from the ANN model. 

i w1 i,1 w1 i,2 w1 i,3 w1 i,4 w1 i,5 w2 b1 b2 

1 0.842 0.755 1.176 1.730 0.518 1.731 -0.920 

-0.967 

2 -1.416 -0.016 0.381 -1.139 2.008 -1.793 -0.690 

3 0.563 0.045 1.012 -2.484 0.008 -2.158 0.014 

4 0.697 -0.436 1.755 -0.905 -0.438 2.257 1.553 

5 -1.938 -0.033 0.337 -1.987 1.438 2.234 -0.796 
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To verify the reliability of the obtained correlation (Eq. 10), it was tested on the 10% of the dataset that had 

been kept unseen during model development. This validation demonstrated high accuracy, with an R value of 

0.999, an AAPE of 2.78%, and an RMSE of 0.24, as illustrated in the cross plot in Fig. (5).  

 

Figure 5: The actual and predicted flow rates for validation dataset. 

This study explores the use of ANN as an effective tool for optimizing natural gas flow rates through surface 

well chokes, considering well pressure, temperature, and fluid properties. By leveraging the capabilities of the 

ANN model, we transform raw data into actionable insights, significantly enhancing our understanding and 

management of gas flow dynamics. However, a key limitation of this model is data availability; the input data must 

fall within the ranges specified in Table 1. If the data deviates from these ranges, the accuracy of the results may 

decrease significantly. 

4. Conclusion 

This study successfully developed an ANN model using over 150 data points from a gas field, incorporating 

variables such as choke size, tubing temperature, upstream and downstream pressures, gas specific gravity, and 

gas flow rates. These inputs, selected based on empirical correlations and gas law principles, were used to predict 

gas flow rates effectively. The dataset was meticulously analyzed and cleaned to ensure data representation, 

reliability, and quality, confirming its comprehensive coverage and alignment with expected ranges. 

The relative importance of each parameter was evaluated, showing high correlation values for choke size and 

pressures, while tubing temperature and gas specific gravity, despite lower correlation coefficients, were still 

significant. The optimal model configuration included 5 neurons in a single hidden layer with Bayesian 

regularization backpropagation and hyperbolic tangent sigmoid function. The developed model achieved high 

accuracy with R value of +0.99, AAPE of 1.69% and 1.85%, and RMSE of 0.19 mmscf/d and 0.31 mmscf/d for 

training and testing, respectively. Cross-validation confirmed the model's stability and reliability across different 

data partitions. 

Robust generalization was demonstrated by the outstanding accuracy with which this equation was evaluated 

on unknown data (R=0.999, AAPE=2.78%). This research offers field engineers a straightforward way to optimize 

choke settings in real-time, maximizing production efficiency, guaranteeing reservoir integrity, and assisting with 

the digital transformation of well management practices by offering a dependable and instantaneous calculation 

method. Compared to conventional empirical methods, the suggested model and its resulting correlation provide 

a better, more useful option. 
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The ANN model was transformed into a transparent white-box model, deriving an empirical equation that 

could be used directly with the derived weights and biases. This transformation enhances the practical 

applicability of the model without needing to rerun the AI algorithm. However, the model's effectiveness is 

contingent on data availability, requiring input data to fall within specified ranges to maintain accuracy. 
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