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Abstract: Over the years, technologies for improved recovery of heavy oil have become an important part of the 
research efforts to meet the increasing demand for oil. Various methods are being developed for heavy oil recovery and 
among them in-situ combustion process has shown a good degree of potential in laboratory and pilot tests conducted in 
field. The in-situ combustion process needs to be studied further extensively because of the high degree of operational 
complexities involved in the process. Extensive laboratory studies have been conducted; however, a typical in-situ 
combustion tube experiment in the laboratory can be very costly in terms of its time, personnel and equipment 
requirements.  

This work aims at reducing the number of laboratory experiments by developing an artificial neural network (ANN) that 
has the ability of emulating in-situ combustion tube experiments. An intelligent database was generated using 
commercial software to train the network within the parametric ranges adapted from previous experimental work. The 
ANN model was used to predict the cumulative production of oil, water and gas, peak temperature attained, location and 
velocity of the combustion front in the numerical combustion experiments mimicking the physical experiments. The 
proposed ANN model can be used to focus towards designing the experimental program within a rather small range of 
parameter variations resulting in more economical and focused analysis. Therefore, our methodology provides a unique 
and novel approach to understand in-situ combustion experiment. 
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1. INTRODUCTION 

In-situ combustion is a process that involves igniting 
a portion of oil in the porous matrix of the reservoir to 
improve the recovery of oil. The heat produced as a 
result of combustion is utilized to reduce the viscosity 
of oil, vaporize formation fluids and to crack the heavy 
oil to form lighter components in the reservoir. The 
process can be classified as dry combustion if water is 
not injected with air and as wet combustion process if 
water is injected along with air. Wet combustion has 
further been classified as incomplete wet combustion, 
normal wet combustion and super wet combustion 
each of which refers to increased water-to-air ratios, 
respectively [1]. 

In-situ combustion process follows a complex 
reaction mechanism which requires an extensive study 
of parameters of reaction kinetics at reservoir 
conditions. It is also challenging to predict the 
sustainability and the propagation of the combustion 
front [2, 3]. In order to understand the process 
completely, typically several laboratory tests are 
conducted to find the amount of heavy oil that can 
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be recovered in the process in addition to the relevant 
operational conditions. Looking at the number of tests 
required and the cost of each experiment to obtain 
results with scientific qualities, in-situ combustion 
experiments are considered to be cost intensive and 
complicated to [4, 5]. In addition to the oil recovered, 
the understanding of the process also includes 
determination of peak temperature, velocity and the 
location of the combustion front at various times. 

This work aims at reducing the number of cost 
intensive in-situ combustion experiments by means of 
simulating laboratory experiments under a variety of 
conditions using an artificial neural network (ANN). 
ANNs are information processing models of human 
cognition of neural biological systems. Information is 
passed between neurons over connection links where 
each connection link has some weight and bias 
associated with it [6]. For a given problem a neural 
network contains one input layer, one output layer and 
one or more hidden layers while each layer contains 
different number of neurons. ANN applications have 
been successfully investigated widely in the oil and gas 
industry including predicting relative permeability 
characteristics for three-phase systems [7], enhanced 
oil recovery [8], history matching problems (Ramgulam, 
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et al., 2007) [9], well test analysis [10], well 
performance predictions  [11] etc. 

Parameters that play an important role in 
combustion tube experiments are identified and their 
ranges are extracted from the literature. In this study a 
vertically operated adiabatic combustion tube is 
modeled using specifically designed artificial neural 
network architecture [12]. A finite-difference based 
hard-computing model was tuned by utilizing 
experimental data sets [13, 14] before generating the 
knowledge base for the proposed neural network. Dry 
combustion and wet combustion tube models were 
developed separately; but only wet combustion tube 
model is discussed in this paper. 

2. DESCRIPTION OF THE POROUS SYSTEM 

In the numerical experiments conducted, a 1.83 
meters long combustion tube is used to simulate the in-
situ combustion process. The tube is divided into 36 
zones at which several probes are placed to measure 
the temperature of the combustion as a function of time 
(Figure 1). Combustion zone thickness range is 
observed between 4.7cm to 8.9cm in the laboratory 
[15]. The grid block thickness in this study is the same 
as mentioned in Coates et al. [14]. Where, a history 
match was shown to match the numerical results with 
laboratory results using the same commercial 
simulator* as in this study. Moreover, a grid thickness 
within the specified range will be able to incorporate 
heat and mass transfers when the grid size is within 
range of reaction zone length scales [16]. 

In the numerical model, the system is treated as a 
one dimensional system flowing from top to bottom and 
the cartesian co-ordinate geometry is used with 
approximating the cylindrical system using a 
rectangular grid. The study considers Athabasca crude 
oil for which combustion reaction occurs in three 
stages: cracking, low temperature oxidation, and high 
temperature oxidation [17]. The reaction parameters for 
Athabasca crude is taken from the published literature 
[14] as shown in Appendix A. This work assumes that 
the crude concentration and composition ahead of the 
combustion front are constant and crude experiences 
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the same reaction kinetics. Typically, the reservoir rock 
is crushed and mixed with desired concentration of 
heavy oil and water; which then is packed in the 
combustion tube and confined at the reservoir 
pressure. Therefore, rock and fluid properties are also 
assumed to be constant in generating the 
knowledge base. 

 
Figure 1: Schematic representation of the combustion tube 
considered in the study. 

3. DATA GENERATION AND NETWORK TRAINING 
STRATEGY 

For the above system, a list of parameters which 
are considered important in the process was prepared 
and the ranges of these variables were determined as 
shown in Table 1. Different systems were studied with 
changing system properties and operating conditions 
within the parametric ranges given in Table 1. All of 
these different scenarios were simulated using the 
numerical model and the results were extracted at 
uniform time intervals of 0.24 hours. The producing well 
is shut in when the temperature of the production well 
is observed to be 250°C or higher. The developed 
model predicts the cumulative production of oil, water, 
and gas at the end of simulation. In addition, peak 
temperature value, the velocity and location of the 
combustion front are also predicted at 25%, 50%, 75%, 
and 100% of the total production time. In this model, 
production time has been normalized for each case as 
the total production time differs for each combination of 
combustion tube properties and the operating 
conditions imposed on the combustion tube. 
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Before finalizing the training data set, cases 
involving the unexpected combinations were checked 
to decide whether they describe a realistic scenario or 
not. Using the list of parameters (Table 1), a total of 
2760 cases were considered and results of 2484 cases 
were shown to the network during the training phase of 
the development. The remaining 276 cases were 
reserved for testing (138 cases) and verification (138 
cases) purposes. These cases were isolated from the 
training set used in building the ANN. Once the network 
was trained then the testing set was used to check the 
performance of the network. The selection of these 
three sets of data is made randomly by the artificial 
neural network software. 

Table 1: Range of Parameters 

Parameter Lower Limit Upper Limit 

Porosity (φ,%) 20 40 

Permeability (k,D) 3 12 

Oil saturation (So,%) 30 90 

Air injection (Qa,i, m3/hr) 1 3 

Water injection(Qwi, m3/hr) 0.5 1 

Heat rate (Htin,J/d) 1.1*105 2.2*105 

Duration of pre-heating (theat,d) 0.15 0.2 

Duration of air injection (tair,d) 0.15 0.3 

Water to air ratio (WAR, m3/sm3) 0.001 0.006 

 

Effective predictive capabilities of the network 
depend on a number of factors which include the 
architecture of the network; the number of hidden 
layers and the number of neurons in each layer, 
training and learning functions etc. There are no 
properly defined rules in designing a network to 
achieve a desired level of accuracy. The process of 
training the network follows a heuristic procedure. 
Accordingly, during the development phase of the 
study, different network architectures were tested. The 
term network architecture refers to number of hidden 
layers, number of neurons in each layer, transfer 
functions used between the layers of the network, 
training algorithm utilized, and functional links used in 
the input and the output layers. In most of the reservoir 
engineering applications, feed-forward back 
propagation networks are used which prove to be 
effective in this study as well. 

4. STAGES OF DEVELOPMENT 

Before developing the model for wet in-situ 
combustion process, different runs were conducted to 
perform a sensitivity analysis on the variables. A 
numerical model was structured to understand the 
effects of the reservoir properties in terms of porosity, 
permeability, and saturation of oil and water on the 
process. This paper reports the model developed for 
wet in-situ combustion processes studied in a 
combustion tube.  

In this model, rock and fluid properties are confined 
to Athabasca crude and reservoir system with the 
specified combustion reactions. In order to achieve a 
better performance, the following functional links were 
added to the input layer. 

• Ratio of porosity over saturation of oil, 

• Square root of the ratio of permeability over 
porosity, 

• Logarithm of the ratio of permeability over 
porosity, 

• Total amount of air injected, 

• Total amount of heat supplied (during the pre-
heating cycle), 

• Logarithm of total amount of heat supplied, 

• Logarithm of water-to-air ratio. 

Also, the product of peak temperature and distance 
to the combustion front was used as a functional link in 
the output layer. The final optimized ANN architecture 
for wet combustion tube model is shown in Figure 2. 
These functional links significantly improved the 
learning ability of the network. These functional links 
were tested individually and in groups, and they were 
found to be more effective when all of them are used 
concurrently. 

5. RESULTS AND DISCUSSIONS 

Figures 3-5 provide comparisons between the 
values obtained from the numerical simulation studies 
and values predicted by the ANN for cumulative oil 
production, cumulative water production and 
cumulative gas production. Figure 6 compares peak 
temperatures of the combustion front obtained from the 
numerical model against the peak temperatures 
provided by the expert system at 25%, 50%, 75% and
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Figure 2: Network architecture of wet combustion tube model. 

 

 
Figure 3: Cumulative oil production (m3). 
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Figure 4: Cumulative water production (m3). 

 

 
Figure 5: Cumulative gas production (m3). 

 

 
Figure 6: Peak temperature at the combustion front at various times. 
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Figure 7: Distance covered by the combustion front at various times. 

 

 
Figure 8: Variation of peak temperature with initial oil saturations at various times. 
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Figure 9: Comparison of peak temperature and their location at different times. 

100% of the production time. Figure 7 shows a 
comparison between distances traveled by the 
combustion front obtained from the numerical model 
with the distances predicted by the ANN at different 
production times as shown on the ordinates of the each 
plot. Figure 8 shows that peak temperatures of the 
combustion front are higher for initial oil saturations 
ranging from 60% to 80% as closely predicted by ANN 
(a similar observation was made at the laboratory scale 
carried by Mamora [18]). Figure 9 shows the 
comparison of the peak temperature of the combustion 
front and its location in the combustion tube with 
respect to the temperature profiles calculated by the 
numerical model again at 25, 50, 75 and 100% of the 
total production time. 

All of the results displayed in Figures 3-9 show good 
matches with an average error of less than 2% except 
for the position of the combustion front at the 25% of 

the production time where an average error of less than 
6% was observed. In this exercise it is shown that ANN 
is able to map the combustion front movement 
dependence on the fuel content, porosity and 
permeability of the rock matrix, initial heating of the 
combustion tube, air injection rate and water-to-air 
ratio. During the early stages of the process, when the 
combustion front for a specific operational scenario 
moves more rapidly and as one of the aforementioned 
properties is changed then the movement of the front is 
significantly altered. Neural network sees an oscillatory 
profile of the distance covered and predicts the results 
within a slightly higher error margin (see first plot of 
Figure 6). 

A comparison is also made between the cumulative 
oil production by dry combustion and wet combustion 
tube models based on the predictions of the ANN 
(Figure 10). ANN is able to predict the improved oil 

 
Figure 10: Comparison of cumulative oil recovery at different WAR (as predicted by ANN). 
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recovery of wet-combustion over dry combustion as 
suggested by Garon et al. (1974) [19]. In some of the 
cases, cumulative oil recovery with high water-to-air 
ratio (WAR) is equal or lesser than the cumulative oil 
recovered by dry combustion model. In these cases, 
the combustion front was quenched in the early phase 
of the process due to high water injection rate and low 
fuel content for combustion. Thus, the wet-combustion 
process performs similarly to water injection process 
resulting in lower oil recoveries. 

It is recommended that any ANN should be broadly 
tested before implementing in a specific study. The 
network is broadly tested with varying conditions 
described in Table 1. Where, the comparison shows a 
good quality match in predicting the cumulative 
productions and combustion front characteristics from 
the experiments. The network, described in the paper, 
is also tested for its structure where the functional links 
in the input layer and number of neurons in the hidden 
layer were added/removed from the network to 
compare the performance. Thus, the ANN developed in 
this study can easily be used in mimicking the 
laboratory experiments. However, the parameters like 
the tube length, combustion reaction mechanism, fuel 
type and the apparatus are assumed to be same. 
Therefore, the ANN will be useful for similar conditions 
of experiments. If the user wishes to change these 
parameters e.g. combustion reaction mechanism then 
the methodology discussed in the paper can be used to 
train the ANN. 

CONCLUSIONS 

Using some readily available information about the 
properties of the porous media, reservoir fluids, and its 
reaction kinetics, an ANN based screening tool is 
developed. The expert system proposed in this study is 
capable to predict the performance of in-situ 

combustion process in laboratory experiments in terms 
of cumulative production of oil, water and gas. The 
developed combustion tube laboratory experiment 
model can also predict the peak temperature of the 
combustion front, position of the front and its velocity at 
various production intervals. The movement of the 
combustion front is found to be highly sensitive of initial 
saturation of oil, porosity of the rock matrix, air injection 
rate, initial heating of the tube and water-to-air ratio. 
Results obtained in this study show that artificial neural 
networks can be developed as effective screening tools 
to predict the outcomes of a complex process such as 
in-situ combustion tube experiments designed for 
studying the efficacy of the process as an enhanced oil 
recovery scheme. 

NOMENCLATURE 

φ Porosity 

k Permeability (Darcy) 

So Saturation of oil 

Qa,i Air injection flow rate (m3/hr) 

Qw,i Air injection flow rate (m3/hr) 

Qheat Heat injection flow rate (J/days) 

theat Pre-heating time (days) 

tair Air injection time (days) 

A Total air injected (m3) 

Htin Total heat (J) 

Ar Frequency factor of reaction r 

Er Energy of activation of reaction r (J/gmol) 

APPENDIX A 

Cracking reaction occurs in three steps and each reaction follows a first order rate reaction mechanism. 
(Belgrave JDM (1987) [20] and Adegbesan KO (1982) [17]). LTO reactions occur in two steps (Adegbesan KO 
1982) [17]. In the first step, maltenes react with oxygen to produce asphaltenes and in the second step the 
asphaltenes reacts with oxygen with to form coke. In High Temperature oxidation (HTO), the coke obtained from the 
LTO reacts with oxygen to produce gas and water vapor (steam). This reaction occurs at the combustion front and 
during this reaction the temperature of the zone reaches around 600 °F–1500 °F (Adegbesan KO 1982) [17]. All the 
reactions are shown as follows: 
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Cracking Reactions: 

 
Low Temperature Oxidation Reactions: 

 
High Temperature Oxidation Reactions: 

 

Reaction rate constants are temperature dependent terms and are described by Arrhenius type equation. This 
relationship can be written as: 

Kr !!!=!!Arexp !Er / RT( )  

Where, Kr is the rate of the reaction, Ar is the frequency factor of the reaction, Er is the activation energy of the 
reaction, R is universal gas constant and T is the temperature of the reaction. Published values of reaction 
parameters are used in data file prepared for the numerical model and the values are represented below (Coats, R., 
Lorimer, S., Ivory, J. (1995) [14]). 

Rate Constant Parameters 

r (Reaction) Reactant Ar Er (J/g mole) 

1 Maltenes 7.86*1017(d-1) 2.347*105 

2 Asphaltenes 3.51*1014(d-1) 1.772*105 

3 Asphaltenes 1.18*109(d-1) 1.763*105 

4 Maltenes 11.1*109(d-1Kpa-1) 8.673*104 

5 Asphaltenes 3.58*109(d-1Kpa-1) 1.856*105 

6 Coke 150.2(d-1Kpa-1) 3.476*104 
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