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Some Contradictions in the Multi-Layer Hele-Shaw Flow 

Gelu PASA* 

Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Grivitei 21, Bucuresti Sector 1, 
Romania  

Abstract. An important problem concerning the Hele-Shaw displacements is to minimize the Saffman - Taylor instability. 
To this end, some constant viscosity fluid layers can be introduced in an intermediate region ( I .R. ) between the 
displacing fluids. However, we prove that very small (positive) values of the growth rates can be obtained only for a very 
large (unrealistic) I .R.  On the contrary, when the I .R.  length is constrained by certain conditions (for instance, 
geological), then the maximum value of the growth constants can not fall below a certain value, not depending on the 
number of layers. This maximum value is not so small. 
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1. INTRODUCTION 

We consider two immiscible fluids that are displac- 
ing in a Hele-Shaw cell. Thus we have two regions 
separated by a sharp interface. On this interface, we 
have a viscosity jump and in each region we have only 
one fluid. On the contrary, in the saturation model, any 
point of the medium contains both fluids, each with his 
own pressure. The difference of the pressures gives 
the capillary pressure, which appears in the flow 
equations of this last model. 

The displacement of a fluid by a less viscous one in 
a Hele-Shaw cell is unstable - see [1-4]. The fingering 
phenomenon and the selection problem in Hele-Shaw 
displacements are studied in a large number of papers 
- see [5-7] and references therein. 

The optimization of displacements in porous media 
were studied in [8-12]. An intermediate fluid with 
variable viscosity in a middle layer between the 
displacing fluids can minimize the Saffman-Taylor 
instability - see the experimental and numerical results 
given in [13-18]. In [19-21] are given theoretical results 
concerning the linear stability of such three-layer Hele-
Shaw flow. Some exact formulas of the growth 
constants were given, for variable and constant 
intermediate viscosities. Important results concerning 
the effects of small surface tensions on interfaces are 
given in [22, 23].  

The Hele-Shaw displacement with N  intermediate 
layers (the multi-layer Hele-Shaw model) was studied 
in [24-27] and upper bounds of the growth rates were 
obtained. The intermediate viscosities with positive 
jumps in the flow direction (see [24]) lead to very small 
growth rates of perturbations, if N  is large enough. 
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In this paper, we study the above multi-layer model 
in a slightly different form. We do not add many 
intermediate layers, as in [24]. On the contrary, we 
consider a given intermediate region (I.R), which we 
divide into N  small layers. We get two main new 
elements: 

1) We get a new formula the growth rates, by using 
dimensionless quantities and a new eigenfunction in 
the stability system. The corresponding maximum 
value not depends on N , but also not depends on the 
surface tensions. This last result is in contradiction with 
the Saffman-Taylor criterion. The new maximum value 
can not fall below some value which depends only on 
the ratio of the initial viscosities (the mobility M  given 
by the first relation (*) in Introduction ). As a 
consequence, the maximum growth rate can not be 
arbitrary small for large enough N , in contradiction 
with the results given in [24-27]. Then the multi-layer 
Hele-Shaw model is useless. 

2) In [24-27] were used only dimensional quantities 
and the maximal value of the growth rates is depending 
on N  and surface tensions. If we use the 
dimensionless quantities (as in our paper), the maximal 
growth rates given in in [24-27] can be very small, but 
only if N  is unrealistically high. More precisely, we 
introduce the small parameter lb/=! , where lb,  are 
the cell gap and length. The growth rates become 
smaller than !  only iff 4/3!" #N , when the surface 
tensions are of order 1. Therefore, for 310= !"  we 
need 410!N . Even for a large oil field, this strategy 
seems to be unrealistic.  

2. THE THREE-LAYER FLOW WITH VARIABLE 
INTERMEDIATE VISCOSITY 

The flow with variable intermediate viscosity was 
first described in [14, 15]. However, we recall here 
some details, very useful for the dimensionless form of 
the main equations (given in section 3). 
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The Hele-Shaw cell is parallel with the xOy  plane. 
An intermediate region between the two initial 
immiscible fluids is considered, which contains a given 
amount of polymer-solute. The adsorption, dispersion 
and diffusion of the solute in the equivalent porous 
medium are neglected. 

During the displacement process, the initial sharp 
interfaces change over time and the fingering 
phenomenon appears. We consider small enough time 
intervals, to avoid large deformations of the initial 
interfaces. 

Mungan [28] used an intermediate polymer-solute 
with an exponentially-decreasing viscosity (from the 
front interface) and obtained an almost stable flow. The 
displacements with variable viscosity in Hele-Shaw 
cells and porous media are studied in [29, 30]. On page 
3 of [31] is considered a linear viscosity profile in a 
porous medium. 

In this paper, the viscosities of the displacing 
(respectively displaced) fluids are  

 !W , !O , s.t. M = !O
!W

> 1, (")  

where M  is the mobility ratio. Thus we consider a less 
viscous displacing fluid. 

Suppose the intermediate region is the interval 
),( UtQUtx !" , which is moving with the constant 

velocity U  of the displacing fluid far upstream. We 
have three incompressible fluids with the viscosities 
W! , !  (intermediate layer) and O! . The flow equations 

are quite similar to the Darcy’s law in a porous medium, 
with generic viscosity G!  and permeability /12= 2b! . 
Then we have up Gµ!" = , where p  is the pressure, 

),(= vuu  is the velocity and  

 
µG =

!W
"
, x <Ut #Q; µG =

!(x)
"

:= µ(x),

x $ (Ut #Q, Ut); µG =
!0
"
, x >Ut.

       (1) 

The velocities appearing in (1) are the averages 
(across the cell plates) of the real (effective) fluid 
velocities - see [1-3]. 

The intermediate viscosity !  can be considered as 
a powers series with respect to the concentration C  of 
the polymer-solute - see [13, 32]. For a dilute solute, !  
is linear with respect to C , therefore it is invertible. We 
have 0=yxt vCuCC ++  and we get a “continuity” 
equation for the intermediate viscosity ! :  

0,=yxt vu !!! ++
          (2) 

where the indices yxt ,,  denote the partial derivatives 
with respect to time and spatial variables.  

We study the linear stability of the basic state  

0.=,=;=,=0;=,= yGx PUPUtxQUtxvUu µ!!
 

             (3) 

On the interfaces we consider the Laplace’s law: the 
pressure jump is given by the surface tension multiplied 
with the curvature of the interface. Moreover, u  is 
continuous across the interfaces (which are material). 
The basic interfaces are straight lines, thus the basic 
pressure P  is continuous (but his gradient is not). We 
use the equations (1) - (2), therefore the basic 
(unknown) µ  in ..RI  is given by  

0.=xt Uµµ +           (4) 

We introduce the moving reference frame 
tUtxx =,= !" . The equation (4) leads to 0=!µ , 

then )(= xµµ . The middle region becomes the 

segment 0<< xQ! . In order to avoid the use of the 
overbar and ! , we still use the simpler notation tx,  
instead of !,x .  

The perturbations of the basic velocity, pressure 
and viscosity are denoted by µ !!!! ,,, pvu  and are 
governed by the system (see the relations (2.9)-(2.11) 
from [14], where µ  is denoted by 0µ )  

,=,= vpUup yx !"!!"!"! µµµ
         (5) 

0,=yx vu !+!
           (6) 

0.=xt u µµ !+!           (7) 

The above equations (5)-(7) are linear in 
disturbances quantities. Then, as is specified in [14], 
any perturbation can be decomposed into its Fourier 
components. Thus we can consider the disturbance u!  
in the form  

0,,)](sin)(cos)[(=),,( !+" kekykyxftyxu t#
       (8) 

where kxf ,),( !  are the amplitude, the growth 
constants and the wave numbers. 

As we mentioned above, u  is continuous, thus the 
amplitude )(xf  is continuous. From (5) - (8) we get the 
Fourier decompositions for the perturbations µ !!! ,, pv :  
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,)](cos)(sin[)(1/= t
x ekykyfkv !+"#  

,)](sin)(cos[)/(= 2 t
x ekykyfkp !µ ""#  

.)](sin)(cos[)1/(= t
x ekykyf !µ!µ +"#         (9) 

The cross derivation of the relations (5)1, (5)2  leads 
us to  

.= xxyy vvUu !+!!+! µµµµ
       (10) 

From (8), 1(9) , (10) we get the equation which 
governs the amplitude f :  

,0}.{,1=)( 22 QxfUkfkf xxx !"#+! µ
$

µµ
     (11) 

The above equation is given also in [14] - see the 
relation (2.17), where µ  is denoted by 0µ  and f  is 
denoted by ! . Outside the intermediate region we 
have constant viscosities and (11) becomes  

,0).(0,=2 Qxfkf xx !"+!  

In the far field we have  

!"

!
#
$

%&

'(&'
'

+

0.,(0)
;,)(=)(

)(

xef
QxeQfxf kx

Qxk

      (12) 

Suppose that a viscosity jump exists in a point a . 
The perturbed interface near a  is denoted by ),,( tya! . 
In the first approximation (like in [14]) we have ut =! , 
therefore  

!(a, y, t) = (1 /" ) f (a)[cos(ky)+ sin(ky)]e" t .      (13) 

We compute the right and left limit values of the 
pressure in the point a , denoted by )(),( apap !+ . To 
this end, we use P  in the point a , the Taylor first order 
expansion of P  near a  and )(ap!  given by 2(9) . From 

(3) it follows UaaPUaaP xx )(=)(,)(=)( !!++ !! µµ , so 
we get  

p+ (a) = P+ (a)+ Px
+ (a)! + "p + (a) =  

,)](sin)(cos}[
)()(

){()( 2
tx ekyky

k
afaUf

aaP !

!
µ ++"

+
++

           (14) 

p! (a) = P! (a)!µ! (a){Uf (a)
"

+
fx
! (a)
k2

}[cos(ky)+ sin(ky)]e" t ,

           (15) 

The Laplace’s law is yyaTapap !)(=)()( "+ " , where 

)(aT  is the surface tension and yy!  is the approximate 
value of the curvature of the perturbed interface. Since 

)(=)( aPaP +!  (see comments after the formula (3)), 
from the jump relation equations (14) - (15) we get  

!µ+ (a)[Uf (a)
"

+
fx
+ (a)
k2

]+µ! (a)[Uf (a)
"

+
fx
! (a)
k2

]

= ! T (a)
"

f (a)k2 .
     (16)  

The growth constant for three-layer case is obtained 
as follows. We use the notations (0)=),(= 01 ffQff ! . 
From the relations (12) we have  

 .=(0),=)( 01 kffkfQf xx !! +!
 (17) 

We multiply with f  in the amplitude equation (11), 
we integrate on ,0)( Q! , thus from (16), (17) it follows  

,= 2
1

2
0

2022
11

2
00

Ikfkf

fUkfSfS

WO

x
Q

++

++ !"
µµ

µ
#

 

,][=,][= 1
4

1
2

10
4

0
2

0 TkUkSTkUkS !! µµ  

µW =
!W
"
, µO =

!O
"
, µ(x) = !(x)

"
,

I =
#Q

0
$ [µ fx

2 + k2µ f 2 ],
      (18) 

where 10 ,TT  are the surface tensions in Qxx !=0,=  
and  

(0),=)(=][ 00
!!+ !! µµµµµ O  

.)(=)(=][ 11 WQ µµµµµ !!! +!+
      (19) 

Remark 1. From (16) we can recover the Saffman - 
Taylor formula  

.
)()(

=
3

WO

WO
ST

kaTkU
µµ

µµ
!

+

""

       (20) 

Indeed, we have  

;=)(;=)( WO aa µµµµ !+
 

);(=)(,)(=)( )( akfafaxeafxf x
axk !! "#  

 f (x) = f (a)e!k (x!a) , x " a# fx
+ (a) = !kf (a) !  
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Remark 2. We can consider several intermediate 
layers with constant concentrations 1C , NCC ,...,2 , 
moving with the far upstream velocity U . Thus we 
obtain a steady flow of N  layers of immiscible fluids 
with constant viscosities Nii 1,2,...,=,! . This is the 
multi-layer model studied in [24-27]. W  

3. THE FOUR-LAYER HELE-SHAW MODEL WITH 
CONSTANT INTERMEDIATE VISCOSITIES 

We divide ,0)( Q!  in two intermediate fluid layers 
/2),( QQ !!  and /2,0)( Q!  with constant viscosities 

OW µµµµ <<< 12  such that  

!
!

"

!
!

#

$

%&

%%&

%

0.>,
/2,0);(,

/2);,(,
;<,

=)(
1

2

x
Qx

QQx
Qx

x

O

W

µ

µ

µ

µ

µ

       (21) 

The basic interfaces are 
QxQxx !! =/2,=0,= 210 . This time, the amplitude 

equation is  

/2,0}.,{,1=)( 22 QQxfUkfkf xxx !!"#+! µ
$

µµ

           (22) 

Inside the intermediate region, µ  is a Heaviside 
function. The derivative xµ  on the interface 1= xx  is a 
Dirac distribution, thus  

).)((= 211
220

µµµ !"! xffx
Q        (23) 

The term (23) is not appearing in the formulas of the 
growth constants given in [24]. We multiply with f  the 
relation (22), we integrate on ,0)( Q!  and we use the 
notations  

).(:=),()()(:=))(( ii xffxHxGxFxFGH  

From (12) and (21) we have  

µ! (x2 ) = µW , µ+ (x0 ) = µO , fx
! (!Q) = kf2 , fx

+ (0) = !kf0 .  

The jump relations (16) in the points 012 ,,= xxxa  
are  

,)(=))(( 4
2

2
2

2

222 kf
TUk

fkfxf WWx !
µµ

!
µµ +"+++

 

,)(=))(())(( 4
1

1
12

2

111 kf
TUk

fxfxf xx !
µµ

!
µµ +"" ""++

 

.)(=))(( 4
0

0
1

2

0000 kfTUkfkfxf Ox !
µµ

!
µµ +"++" ""

           (24) 

In (24) we use the viscosities /12= 2
ii b µ!  and it 

follows 

,
)(

= 2
121

2
0

12
2
1

22
22

2
11

2
00

kfIIkf
UfkfSfSfS

WO !!

!!
"

+++

#+++

 

0,1,2,=/12,][= 242 ibTkUkS iii !"  

,=][,=][,=][ 1021122 !!!!!!!! """ MW  

).(=),(= 2221

2
22

2220

1
11 fkfIfkfI x

x

x
x

x

x
++ !! ""

    (25) 

Remark 3. In [24] are used only dimensional 
quantities. We use the following dimensionless 
quantities denoted with the super indices a  :  

,10/=,/=,/=,/= 3!"QbUffQyyQxx aaa #  

)/(=,/=,/= UTTUvvUuu W
aaa !  

).//(=,=,/= QUkQk aa
W

a !!"""       (26) 

In the rest of this paper we will omit the a . 
Therefore from now on we have MO =! . 

Remark 4. The dimensionless intermediate region is 
the interval 1,0)(! . The relation (25) gives us the 
dimensionless growth rate, denoted by 2!  (recall 

1=Wµ ):  

2
221

2
0

1
2
1

22422
2=

0=
2 1

][/12}][{
=

fkIIkMf

fkfTkk iii

i

i

!!+++

+"# $%$

&
 

,][=,][= 2221

2
22

2220

1
11 dxfkfIdxfkfI x

x

x
x

x

x
++ !! ""

 

0.=1/2,=1,= 012 xxx !!        (27) 

The factor 2!  in front of the surface tensions iT  is 
very important for the stability analysis. In [24] is given 
a similar formula, but with dimensional quantities, then 
without the parameter ! . The dimensionless Saffman-
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Taylor growth rate and its maximal value are obtained 
from (20) and (26):  

.
1)3(
1)4(=

1
/121)(=

3/223

TM
M

M
TkMk

DMaxD
!

"
!

"
+

#
$

+

##

   (28) 

4. THE N -LAYER HELE-SHAW MODEL WITH 
CONSTANT INTERMEDIATE VISCOSITIES 

We divide the intermediate region in N  small layers 
with equal length )(1/N . The interfaces are 

NiNixi 0,1,...,=,/= ! . In the layer ),( 1!ii xx  we 
consider the constant viscosity ix !! =)(  such that 

1=,= 1+NMM !  (recall 1=W! ) and  

1).1)/((=)(1),1)/((= +!!+!! !+ NMNMiM ii """
           (29) 

The amplitude equations are  

,0,1,...=},/{,1=)( 22 NiNixfUkfkf xxx !"#+! $
%

$$

           (30) 

thus ),(0,= 1
2

!"#+! iixx xxxfkf . The growth 
constants, denoted by N! , are obtained just like 2!  - 
see the formula (27) in section 3:  

,=
2

=

1=

2
0 Ni

Ni

i

NN
N

kfIkMf ++

!+"

#
$

 

,/12})({= 2242
=

0=
iii

Ni

i
N fTkk !"" ##$ #+%

 

,)(= 22
1=

1=
ii

Ni

i
N fk !+

!

!" # $$

 

).(=),(= 2221)(
iixi

ix

ix
i xfffkfI +!

" #
      (31) 

An important point of our paper is the following. The 
flow is unstable if only one solution of (30) is giving us 
a positive growth constant (in some range of k ). Inside 
each layer we consider the particular eigenfunctions 

)(exp=)( kxxf . We prove that, even if the number N  
of intermediate layers is very large, the maximum value 
of the corresponding growth constants (31) is not so 
small. Moreover, this maximum value is not depending 
on the surface tensions and N  - see the formula (39) 
below. On the contrary, the maximum value of the 
Saffman-Taylor growth rate (20) is depending on T . 

The term ’surface tension’ appears in the section 3 of 
the seminal paper [4], which is entitled: ’The effect of 
surface tension on stability in the Hele-Shaw cell’.” 

4.1. An Upper Bound of N!  

From (31) we see that N!  is negative beyond a 
finite value of k , then the “dangerous” values of k  are 
located in a finite (positive) interval. 

Lemma. If 
kxexfackacNk =)(0,)(),1/(=[0,1], 22 !""# , 

then  

)].()()[/()(:=),( 222222 cfafNkfkfcaJ x

c

a
+!+"   (32) 

Proof. As kxexf =)( , we get xxx fffkf )(=222 +  
and  

)].()([=))(())((=),( 22 afcfkaffcffcaJ xx !!    (33) 

We use the trapezoidal rule for ),(2 caCF ! :  

a

c
! F(x)dx = c " a2 [F(a)+ F(c)]" R,

R = (c " a)
3

12
##F ($), $ % (a, c).

 

Consider kxexfxF 22 =)(=)( , then kxekxF 224=)(!! . 
A small enough )( ac !  gives us an arbitrary small R . 
We use (33), thus we have to prove  

)].()()[()]()([ 22222 cfafackafcfk +!"!      (34) 

For this, we neglect 22 )( ack !  and use the first 

order Taylor expansion of kxexf =)( :  

),)((2)()(),)(()()( 222 acakfafcfacakfafcf !+"!+"

 
f 2 (c)! f 2 (a) " 2kf 2 (a)(c ! a),
f 2 (c)+ f 2 (a) " 2 f 2 (a)+ 2kf 2 (a)(c ! a).

      (35)  

The approximation (34) is equivalent with  

)],(2)[2()(2 2 ackackackk !+!"#!"  

which is true because  k
3(c ! a)2 " k2 (c ! a)2 # 0 ! . 

We use Lemma for computing the integrals iI , with 
),(=),( 1!ii xxca , Ni 1,2,..,= . 



46     International Journal of Petroleum Technology, 2019, Vol. 6 Gelu PASA 

We consider [0,1]!k  and 210=)1/(= acN ! , then 
42 10)/( !"Nk  and the approximation (34) is verified. 

From (31) we get  

,
)()/( 22

1
2

=

1=

2
0

2

22
1

1=

2
00

iii

Ni

i
NW

NNii

N

i
N

ffNkkMffk

fGfGfG

+++

++

!

"

"

#

#

$$

%

 

1,1,2,...,=/12,)(2= 242 !!! !+ NiTkkG iii "##  

.0,=/12,)(= 242 NjTkkG jjj !"" ## #+

     (36) 

An important new element appearing in this formula 
is based on the Dirac distributions correspondning to 
the derivative x!  on the interfaces. It follows that the 
“middle” terms 1,1 !"" NiGi , are larger, compared 
with NGG ,0 . 

We recall the well-known inequality  

}.{max}{min0>, =

0=

=

0=

i

i

ii

Mi

i

ii

Mi

i

i

i
ii B

A

xB

xA

B
A

xB !!"

#

#

     (37) 

From (36) and (37) it follows  

.
)/(

/12)(2

1
2

24
1

2

Nk
Tkk

NN

minN
N

!

!
!+

+

!!
"

##

$##
%

 

As a consequence, in the range [0,1]!k , the upper 
bound of N!  is a 2-nd order polynomial in k and not of 
3-rd order, as in [4, 24]. We have  

1),)/(31(2=1 ++!+ ! NMNNN ""  

then from the last estimate we get  

,
)3112(2

1)(
312

1)2(< 22

MN
NNTk

MN
NM minN +!

+
!

+!
! "#

           (38) 

1).(:=
312

1)2( !"
+!

!" M
MN

N
M NMaxN ##      (39) 

The estimate (38) holds for [0,1]!k  and large 
enough N . The maximum value (39) is not depending 
on the surface tension minT . Here is a strong 
contradiction: it is very natural to have an improvement 

of stability when the surface tensions are very large. 
Moreover, the maximum value (39) can not be arbitrary 
small for large N . 

We compare the dimensionless growth rates (28) 
(given by Saffman-Taylor) and (39), when the 
(dimensionless) surface tension T  is very large. For 

22 1/=,10=100,=(0,1), !TNMk " , the relations 
(28) and (39) give us  

 

99.=1)(=13.3,
1)3(
1)4(=
3/2

!"
+

!
M

M
M

NMaxDMax ##
     (40) 

Therefore the maximum value of (28) is less than 
the maximum value of (39) and the Saffman-Taylor 
displacement is more stable. As a consequence, the 
multi-layer Hele-Shaw model with constant 
intermediate viscosities is not useful.  

Remark 5. We recall the formulas (100) and (110) 
from [24]. The formulas (100) give the dimensional 
growth rates. When k  is large enough, the 
corresponding estimate of the dimensionless growth 
rates, say, PA! , is given by the formula below (recall 

1=W! )  

/12}.1)1)/(({:= 23 !" ikPAPA TkNMkmax #+#$%      (41) 

We have  

,1)()
3
4(>1)(<

3/2
2/34/3

min
PA

T
MN !

+"# !$$
     (42) 

where minT  is the the lower surface tension. Consider  

.101,11, 3!""!" #MTmin  

Then we need at least 410  intermediate layers in 
order to obtain growth constants below 310! . Even for 
a large oil field, such a large number of intermediate 
layers seems to be unrealistic. Moreover, the 
(dimensionless) length of the intermediate region is 
also 410 . 

5. CONCLUSIONS 

Some experimental results proved that an 
intermediate fluid with a variable viscosity between two 
displacing fluids in a Hele-Shaw cell can minimize the 
Saffman-Taylor instability - see [13-18]. 

A continuous function can be approximated by a 
step function. For this reason, the multi-layer Hele-
Shaw model, consisting of N  intermediate fluid layers 
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with constant viscosities, was studied in [24-27]. An 
arbitrary small (positive) upper bound of the growth 
rates were obtained for large enough N . Only 
dimensional quantities were used in these papers and 
the intermediate region was enlarged by adding new 
fluid layers. 

In this paper we study the multi-layer Hele-Shaw 
displacements when the length of the intermediate 
region between the two initial fluids is given. The fluid 
layers are obtained by dividing the intermediate region 
into smaller sections. 

The new formula (36) of the growth rates is 
obtained in section 4. This formula contains some 
terms of Dirac type, related to the derivatives of the 
viscosity across the interfaces in the intermediate 
region. We use the dimensionless quantities (26). We 
prove that even if the number of intermediate layers is 
very large, the maximum value of the growth constants 
can not fall below a certain value which depends only 
on the difference of the viscosities of the initial fluids - 
see (38). 

We obtain the upper bound (39) of the growth 
constant (result which holds only for bounded values of 
k  and large values of N ). The maximum value of (39) 
is not depending on the surface tensions. Then we can 
not obtain a significant improvement in the stability, 
even if the surface tensions and N  are very large. 
From this point of view, the multi-layer method is 
useless. 

In the last part - see Remark 5 - we prove that the 
model used in [24], but using dimensionless quantities, 
can give us very small (positive) growth rates. However 
this stability improvement can be obtained only for a 
very large (unrealistic) number of intermediate fluids 
with constant viscosities. 

AMS Subject Classification: 34B09; 34D20; 35C09; 
35J20; 76S05. 

NOMENCLATURE  

..RI  = intermediate region between the 
displacing an displaced fluids. 

N  = number of the intermediate layers. 

lb,  = cell gap and length; 
/12=1;<</= 2blb !" . 

OW !! ,  = viscosities of the displacing and 
displaced fluids. 

1>/= WOM !!  = mobility ratio. 

)(x!  = intermediate viscosity. 

! i  = intermediate viscosities; !"µ /= . 

U  = velocity of the displacing fluid far 
upstream. 

vu,  = fluid velocities. 

p  = fluid pressure. 

C  = concentration of the intermediate 
polymer solution. 

Q  = constant length of (I .R.)  

P  = basic pressure. 

µ !!!! ,,, pvu  = velocity, pressure and viscosity 
perturbations. 

f  = amplitude of u! . 

!  = growth rates. 

k  = wavenumbers. 

iTT ,  = surface tensions. 

!+ ,  = right and left limit values. 

a  = superscript for the dimensionless 
quantities. 

ix  = interfaces between the small 
intermediate layers. 
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