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ABSTRACT 
Permeability is one of the key parameters in reservoir property studies. The existing 
well log interpretation models could not predict the permeability accurately due to the 
complexity and ambiguity of well logging curves, and the prediction results may 
demonstrate significant contradictions with the production data. Based on the 
comprehensive analysis of cores, well logs, laboratory tests, and thin section 
observations, we take the first member of Liushagang Formation (L1) in Weizhou 11-
1N Oil Field as the target, and select median grain size, porosity, and resistivity to 
establish a multiple nonlinear regression interpretation model of permeability. The 
accuracy and applicability of this model is validated by the laboratory test data and oil 
production performance. This permeability interpretation model is easy and practical 
to operate. Furthermore, it bridges the geological characteristics and the production 
performance. 
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1. Introduction 

Permeability is one of the key parameters in reservoir physical property studies. Permeability could be 
obtained from laboratory tests, but the samples are too limited to give a whole image of the reservoir. 
Geophysical characteristics from well logs are employed to interpret the permeability. Resistivity has been a basic 
source of permeability interpretation since 1930s [1-3]. Porosity and water saturation are important properties 
which directly link to permeability. Brace tested a relation of permeability and formation factors, and the 
prediction result agreed to within about a factor of 2 over the 9 orders of magnitude range of permeability[4]; 
Jackson et al. investigated the relationship of formation factor and porosity[5]; Katz and Thompson presented an 
equation to calculate permeability from characteristic length (directly measured from mercury injection 
experiments) and brine conductivity[6, 7]; de Lima adopted an analytical approach to model the electrical properties 
of shaly sands and obtained water saturation and permeability from resistivity and porosity logs[8]. Along with the 
progress in computer science, new technical means, such as NMR, neural network, and fuzzy logic, have been 
explored to estimate permeability [9-22]. More advanced algorithms have been adopted and/or developed along 
with the fast development of data science and computer technics in recent years [23-37]. However, systematic 
methods and more accurate prediction are still in pursuit as the subsurface reservoir is always a mystery. 

The prediction model could be verified by laboratory test data and production data. Limited by the quality and 
quantity of samples, and the accuracy of test, laboratory test data can-not represent the permeability in the 
reservoir. Whereas the production performance is primarily controlled by the reservoir property, thus 
permeability prediction can be and should be examined by the dynamic production data.  

In this study, we established a multiple linear regression model of grain size, porosity, and resistivity to predict 
the permeability of the first member of Liushagang Formation (L1) in Weizhou 11-1N oil field, Beibuwan Basin, 
China. The accuracy and applicability of this prediction model is cross-checked with measured core results, and 
validated by the production performance, which is rarely mentioned in previous permeability predictions.  

2. Reservoir data  

Weizhou 11-1N oil field is located in Beibuwan Basin in the South China Sea and is a lithologic reservoir in an 
uplifted area. The first member of Eocene Liushagang Formation (L1), which is the target formation of this study, is 
dominated by fan-delta front underwater distributary channel and shore-shallow lacustrine deposition. There are 
five major oil-bearing layers in L1, namely L1I, L1II, L1III, L1IV, and L1V from top to bottom.  

2.1. Lithology and storage space 

The L1 reservoir mainly consists of conglomerate, coarse sandstone, and fine-medium sandstone, and the 
sandstones are primarily feldspathic quartz sandstone (Fig. 1). The rock samples demonstrate the particle-support 
structure and porous cementation, and the size-sorting is of medium deviation. The cement are generally 
argillaceous, carbonates and silicate (secondary enlargement). The storage space of L1 is dominated by residual 
primary inter-granular pores and a small amount of inter-granular dissolution pores and feldspar dissolution 
pores; a few intra-granular dissolution pores and matrix micro pores develop as well (Fig. 2).  

Mercury injection experiment has been conducted on 23 samples to study the storage space characteristics. 
The pore-throat size converted from mercury pressure indicates the pores and throats can be clearly 
discriminated. The maximum connected throat diameter ranges 6.14~180 μm, with the averaged value of 55μm; 
the median throat diameter ranges 0.71~29.01 μm, averaged at 8.97μm (Table 1), demonstrates favourable 
storage capacity.  

The reservoir demonstrates strong heterogeneity, rapid sand body phase change, weak edge-bottom water 
power and small natural water invasion. Flooding exploitation was implemented at the early production stage for 
the oil field to keep the formation pressure, while artificial lift production is implemented currently.  
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Figure 1: The sandstone types of L1 reservoir. 

 

Figure 2: Images of pores in L1 reservoir samples from casting thin sections (left: intra-granular and inter-granular dissolution 
pores; right: micro pores in matrix). 

Table 1: Reservoir property from mercury injection (symbol definitions in the Nomenclature) 

Value 
Porosity 

% 
Permeability 

10-3μm2 
𝑷𝒅 

MPa 
𝑷𝟓𝟎 

MPa 
𝑹𝟓𝟎 
μm 

𝑺𝒎𝒂𝒙 
% 

𝑺𝒉𝒈𝒓 
% 

𝑾𝒆 
% 

Max 26.71 5834.61 0.046 1.036 29.01 96.11 82.11 35.37 

Min 17.12 93.01 0.004 0.025 0.71 89.07 60.94 10.11 

Mean 22.01 2217.23 0.016 0.160 14.20 92.36 74.31 19.49 

 

Table 2: Lithology and physical property of effective reservoir in Weizhou Oilfield 

Formation Fluid Lithology Effective Porosity 
(%) 

Permeability  
(mD) 

Oil saturation  
(%) 

L1 oil Sand-conglomerate sandstone ≥12 ≥5.8 ≥35 
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2.2. Porosity and permeability 

Porosity and permeability are tested for 523 core samples of L1 reservoir from 6 wells in Weizhou 11-1N Oil 
Field. 

Measured porosity of L1 in this area mainly distributes in a single peak with the range of 12%~24% (Fig. 3a). 
Porosity within this range sum up to 85% of all samples; as listed in Table 2, the threshold of effective porosity is 
set 12%. 

Measured permeability of L1 in this area displays single-peak distribution. The values range 10~2000 mD, and 
over 40% of the permeability is around 10 mD (Fig. 3b). The threshold of effective permeability is set 5.8 mD.  

The measured porosity and permeability demonstrate the L1 reservoir is mesoporous and medium-high 
permeable reservoir, and can be categorized as good reservoir. 

 

Figure 3: Porosity and permeability distribution histogram of L1 core samples. 

Porosity and permeability vary greatly over different lithologies. Porosity in pebbly sandstone and coarse 
sandstone ranges 12%~28%, with permeability ranges 100~10000 mD; while in siltstone and fine-medium 
sandstones, porosity and permeability ranges 14%~24% and 100~1000 mD, respectively (Fig. 4). Overall, the 
reservoir property turns to be better with the coarsening of grain size.  

2.3. Current status of permeability prediction 

Porosity is a key parameter to estimate permeability in petroleum engineering practice. Porosity correlates 
positively with permeability in most cases. However, there may probably be a wide range of permeability 
correlating to one specific porosity value due to the complexity of pore structures. As in Fig. 6, the cross plot of 
porosity and permeability of L1 reservoir samples shows a generally positive relationship, but permeability varies 
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Figure 4: Porosity and permeability of different lithologies. 

over orders of magnitude at the same porosity value (Fig. 5). Therefore leaning on porosity solely cannot lead to 
accurate permeability prediction. More parameters need to be considered to get a more reliable permeability 
prediction for reservoir evaluation and production planning.  

 

Figure 5: Scatter diagram of porosity and permeability of L1 reservoir samples. 
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3. Method 

As permeability can have direct reflections in production performance, we use static data to build a prediction 
model of permeability, then validate the prediction results by dynamic data.  

3.1. Interpretation of static parameters 

Grain size, porosity, and pore structure are the dominant static parameters controlling permeability. Marine 
core samples are even more difficult to get hence few test data can be obtained, but they can be estimated 
through the analysis of corresponding features of common well logs.  

3.1.1. Grain size (median grain diameter, 𝑀ௗ) 

As shown in Fig. (4), the reservoir property demonstrates a positive relationship with grain size in this clastic 
reservoir. In this study, median grain diameter (𝑀ௗ), which is the median value of grain size in sandstone reservoir, 
is employed to estimate permeability. While core samples are discontinuous and not easy to get, well logging 
corresponding patterns are used to determine the 𝑀ௗ. In this study, the 𝑀ௗ values of 25 core samples are 
correlated to the well logs at the same depths. Based on these correlations, density (𝜌), neutron (𝛾), and gamma 
(𝐺𝑅) logs are selected to establish a calculation model for Md. The model is presented as following: 

𝑀ௗ = 0.001𝛾ଷ + 4.089 × 𝜌ଷ − 0.095 × 𝛾ଶ − 17.723 × 𝜌ଶ + 0.002 × 𝐺𝑅ଶ + 2.497 × 𝛾 + 18.775 × 𝜌 − 0.346 × 𝐺𝑅          (1) 

 in which 𝑀ௗ: median grain diameter 

𝛾: value of neutron log 

𝜌: value of density log 

𝐺𝑅: value of gamma-ray log 

3.1.2. Porosity (𝛷) 

Neutron density logging has been carried out for all the wells in Weizhou 11-1N Oil Filed. After the quality 
control and additive correction of neutron density curves, the neutron-density intersection method in Geo frame 
Petroview Plus module has been done to calculate the porosities in L1 reservoir in this area. 

3.1.3. Pore structure indicator (resistivity, 𝑅) 

Pore-throat diameter is the key factor determining the pore structures [38, 39]. Though the pore throat diameter 
could not be directly interpreted by well logs, the value of water saturation can be used to indirectly evaluate the 
pore-throat diameter. The Simandoux equation [40] is commonly used for estimating the water saturation of 
sandstones with shale content: 

𝑆𝑤 = ඨ
𝑎 × 𝑅𝑤

𝑅𝑡 × 𝛷
− 𝑉𝑠ℎ ×

𝑅𝑤

0.4 × 𝑅𝑠ℎ
 

   (2) 

 in which 𝑆𝑤: water saturation 

 𝑅𝑤: formation water resistivity, Ω·m 

  𝑅𝑡: true resistivity of the formation, Ω·m; 

  𝛷: porosity, f 

  𝑉𝑠ℎ: shale content, f 

  𝑅𝑠ℎ: shale resistance, Ω·m 

  𝑎: lithology coefficient, constant  

  𝑚: cementation index, constant 
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3.2. Nonlinear regression method 

When the three parameters𝛷, 𝑀ௗ, 𝑅 are determined, these parameters are correlated with measured 
permeability to build a nonlinear regression model.  

3.3. Validation using dynamic data 

We use the predicted permeability 𝑘 to calculate the formation coefficient (𝑘𝐻), which is the multiplication of 
the effective reservoir thickness and effective permeability, the 𝑘𝐻 portion, which is the portion of the 𝑘𝐻 of 
specific layer out of all layers in a well, productivity test data, production log (PLT) profiles to validate the accuracy 
of permeability prediction. 

4. Results 

Permeability is controlled by the grain size, porosity, and pore structure. Multiple parameters are investigated 
and evaluated to appropriately represent the three controlling factors mentioned above, and a prediction model 
using these parameters is established. 

4.1. Interpretation results of Static parameters 

The grain size, porosity, and pore structure indicator are not always convenient, but they can be estimated 
through the analysis of corresponding features of common well logs.  

4.1.1. 𝑀ௗ 

Grain size interpreted from well logs fits well with the measured ones (Fig. 6), indicating the model is applicable 
in this area. 

 

Figure 6: Cross-plot of interpreted and measured median grain diameters (𝑀ௗ). 

4.1.2. 𝛷 

The porosity interpreted from neutron density log is consistent with the core porosity (Fig. 7). Most of the 
points are in a range with relative error smaller than 8% (average error is 0.3%), which is acceptable in reserve 
calculation.  

4.1.3 𝑅 

The water saturation is supposed to be a parameter for permeability prediction along with Md and porosity. 
But as porosity is already a stand-alone parameter, it will be redundant to use porosity again in water saturation 
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calculation. Therefore the resistivity (R) is taken as the third parameter instead of the water saturation to keep the 
model concise and avoid redundant computation. In this study, the P16H log is selected to represent the resistivity. 

 

Figure 7: Comparison of interpreted porosity and core porosity in Weizhou 11-1N Oil Field (different colors represent different 
wells). 

4.2. Static-data based permeability prediction model 

As the three parameters𝛷, 𝑀ௗ, 𝑅 are determined, these parameters are correlated with measured permeability 
(Fig. 8). Permeability demonstrates a positive correlation with porosity, while a negative correlation with resistivity. 
Though there is no clear trend between permeability and grain size, grain size is still taken as a parameter 
considering the significance of pore-throat structure.  

 

Figure 8: Scatter diagram of permeability with porosity (𝛷), grain size (𝑀ௗ), and resistivity (𝑅). 
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Based on the understanding of reservoir physical property and characteristics of the cross plot of the 
parameters, curve estimation has been carried out between the parameters and permeability with SPSS software. 
The permeability prediction model is eventually established after fitting of single parameter and non-linear 
analysis of multiple parameters. It is assigned in the permeability model the interpreted permeability equals 3 
when it is unreasonable (smaller than 1 mD):  

𝐾 = −27.7 × 𝑀ௗ
ିହ.଼ + 2.1 × 10ିସ × 𝛷ସ. + 10 × 𝑅ି.ହ     (3) 

𝐾 = ቄ
ஸଵ,ୀଷ

வଵ,
, R2=0.408 

 In which k: permeability, mD 

  𝑀ௗ: median grain diameter, calculated from equation (1), μm 

  𝛷: porosity, calculated from the neutron-density method 

  𝑅: resistivity, P16H log in this area 

5. Discussion  

The permeability implied in dynamic production data (obtained from formation test and production) is more 
reliable and closer to the “true” permeability of the reservoir, and could be used to calibrate the permeability 
prediction together with core test data. Thus, the accuracy and applicability of the permeability prediction model 
are double-checked by the laboratory test data and production performance. 

5.1. Accuracy evaluation of permeability prediction  

The permeability calculated from the prediction model fits well with the core test data from the well profile and 
the cross plot (Figs. 9, 10). The predicted permeability is mostly greater than the measured permeability. This 
phenomenon might have been caused by errors in porosity calculation. The neutron-density method gives a result 
of bulk porosity, which is always greater than effective porosity.  

5.2. Validation of permeability estimation by dynamic production performance 

Formation coefficient ( 𝑘𝐻), which is the multiplication of the effective reservoir thickness and effective 
permeability, can be used to determine the production allocation proportion of the oil-bearing layers of the wells. 
The 𝑘𝐻 portion is the portion of the 𝑘𝐻 of a specific layer out of all layers in a well, which represents the weight of 
this layer among all production layers. The comparison of production allocation proportion and productivity data 
or production log (PLT) profiles could then validate the accuracy of permeability prediction. The results of 𝑘𝐻 
portion, productivity test, and PLT of 6 representative wells are listed in Table 3 and Fig. 11. 

The 𝑘𝐻 portion and productivity are much the same within each oil-bearing layer. Considering the effective 
thickness of the oil layers does not vary much between wells, the correlation can be stated as oil layers with better 
productivity are with better porosity and permeability. This conclusion indicates the predicted permeability is 
appropriate.  

When correlated with the productivity index and water absorption index, good reservoir quality tends to yield 
better productivity and water injection performance (Table 4). Well A3 and A4 are with better porosity and 
permeability than Well A2, A5, and A6, accordingly the productivity index is better of the former two wells than of 
the other three. This correlation demonstrates reservoirs with better porosity and permeability has more 
favourable production ability than those with the poor property. This conclusion is consistent with common sense, 
proving the predicted permeability is reliable. 
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Figure 9: Profile of Well A3. 

 

Figure 10: Crossplot of core permeability and predicted permeability. 
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Table 3: Formation coefficient ( 𝑘𝐻), productivity test and PLT data of selected wells 

Well Oil-bearing layer 𝒌𝑯 𝒌𝑯 portion  
(%) 

Productivity  
(%) 

PLT  
(%) 

A1 

L1I 32333 86.79  90.52  78.45  

L1Ⅲ 1602 4.30  3.74  11.12  

L1IV 1985 5.33  4.35  10.43  

L1V 1335 3.58  1.39  0.00  

A2 

L1I 13657 67.44  71.05  58.30  

L1II 2171 10.72  15.04  17.35  

L1IV 4421 21.83  13.91  24.34  

A4 
L1II 4623 59.59   77.24  

L1IV 3234 40.40   22.76  

A5 
L1II 3225 39.08  44.35  38.27  

L1IV 5027 60.92  55.65  61.73  

A6 
L1II 2565 74.09  80.93  80.46  

L1V 897 25.91  19.07  19.54  

 

 

Figure 11: Comparison of 𝑘𝐻 and productivity in different oil-bearing layers (There is only one set of data for L1III and the 𝑘𝐻 is 
close to the productivity; In Well A4 there is no productivity test so the PLT data is adopted to demonstrate the consistency 
of 𝑘𝐻 and production performance.) 
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Table 4: Comparison of physical property and Liquid production/water absorption capability estimation of L1 II oil layer 

Well Thickness 
m 

Porosity 
% 

Permeability (mD) Productivity index  
m3/(MPa·d·m) 

Water absorption index 
m3/(MPa·d·m) Ave.  Min.  Max.  

A2 12.3  13.7  73.8  3.0  373.4 0.20  

A3 27.9  16.9  148.4  3.0  1031.8 1.11  

A4 21.7  15.4  135.6  3.0  819.2 0.95  

A5 38.7  14.9  105.9  3.0  365.3 0.47  

A6 41.4  14.2  81.1  3.0  265.9 0.62 
 

A8 24.9  12.8  53.8  3.0  343.5  4.42 

A9 30.9  16.3  125.7  3.0  276.1  29.40 

A10 23.4  12.3  46.9  3.0  204.9  10.55 

A11 16.7  13.0  122.0  73.5  157.8  24.20 

A13 25.6  17.0  154.5  3.0  356.5  27.97 

 

5. Conclusion  

(1) Grain size, porosity and resistivity can be employed to predict the permeability of L1 reservoir in Weizhou 
11-1N Oil Field. The prediction result is consistent with the laboratory test data and production performance. The 
permeability model is accurate and applicable in this area and bridges the geological parameters and production 
performance.  

(2) Multiple linear regression, instead of a single parameter (porosity), is more reasonable and practical in 
permeability analysis. But it is noteworthy that the multiple linear regression model for permeability prediction 
should be constrained by actual geological factors and validated by the production performance. 

Nomenclature 

𝑃ௗ: Displacement pressure 

𝑃ହ: Mercury saturation median pressure 

𝑅ହ: Median pore radius 

𝑆௫ : maximum injected mercury saturation 

𝑆: remaining mercury saturation 

𝑊: mercury withdraw efficiency 

𝑀ௗ: median grain diameter, μm 

𝛷: porosity, f or % 

𝛾: value of neutron log 

𝜌: value of density log 

𝐺𝑅: value of gamma ray log 

𝑘: permeability, mD (1mD≈0.987×10-3μm2) 

𝑘𝐻: the multiplication of the effective reservoir thickness and effective permeability 
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