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ABSTRACT 

Brain-Computer Interface (BCI) paradigms based on Motor Imagery 

Electroencephalogram (MI-EEG) signals have been developed because the related 

signals can be generated voluntarily to control further applications. Researches using 

strong and stout limbs MI-EEG signals reported performing significant classification 

rates for BCI applied systems. However, MI-EEG signals produced by imagined 

movements of small limbs present a real classification challenge to be effectively 

used in BCI systems. It is due to a reduced signal level and increased noisy distorted 

effects. This study aims to decode individual right-hand fingers’ imagined movements 

for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this 

purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary 

and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory 

(BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % 

was achieved for ring-finger movements decoding using k-fold cross-validation on a 

public dataset (Scientific-Data). The obtained results support that the proposed 

framework can be used for BCI control applications. 
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1. Introduction 

BCI applications based on EEG signals have continued to capture the scientific community’s interest [1]. These 

BCI applications emerge in medicine [2], aerospace systems, autonomous cars [3], internet browsers [4], and 

scientific research [5]. BCIs assisting people with motor disabilities in interacting with their surrounding 

environment wake up the researchers’ interest because these applications directly impact people’s lives. This 

motivation is focused on the automation of wheelchairs [6], feeding devices control [7], and assistive robots [8].  

Motor Imagery (MI) EEG signals are widely used in BCI applications since they give users total control by 

imagining body limb movements [9]. Imagined and physical limb movements provoke mu-rhythm synchronization 

and desynchronization, which can be explored using the EEG technique on the sensorimotor cortex [10]. 

Numerous works have implemented specific techniques for features selection and dimensionality reduction, 

among which, the genetic algorithm (GA) [11], the Sequential Forward Feature Selection (SFFS) [12], the Linear 

Discriminant Analysis (LDA) [13], Empirical Mode Decomposition (EMD) [14], and the Fisher Discriminant Analysis 

(FDA) [15]. So, efficient linear classifiers such as Support Vector Machines (SVM) [16] and LDA [17] were extensively 

used for features’ classification. Besides, Bayesian classifiers [18], Hidden Markov Model classifiers (HMM) [19], 

and k-Nearest Neighbors (k-NN) classifiers [20] likewise offered competitive results for EEG feature classification. 

In this sense, Miao et al. [21] applied the right-hand index finger decoding for finger rehabilitation. For their part, 

Nijisha et al. [22] used a spatial filter based on Common Spatial Pattern (CSP) and a single convolutional layer to 

classify left hand, right hand, both hands, and feet MI-EEG signals. 

However, EEG electrodes dispose of unstable impedance, causing a weaker Signal-to-Noise Ratio (SNR) [23], 

conjointly with the volume conduction effects between the scalp surface and brain activity fitting the signal 

potential [24], make laborious and complex the EEG signals classification. These challenges are increased in the 

case of imagined movements classification of interfered signals generated by continuous or adjacent fingers. This 

phenomenon is precisely the practical difficulty found by Kaya et al. [25] in classifying finger movements with their 

5F paradigm dataset. Specifically, some finger signals were hardly decoded (43 %) employing the efficient SVM 

classifier. Such results were improved by Anam et al. [26], achieving an accuracy of 77 % in decoding imagined 

finger movements. 

In another related work, Quandt et al. developed an approach based on Spatiotemporal patterns to 

discriminate individual finger movements achieving an EEG decoding accuracy of 54 % with the best subject [27]. 

They also found that decoding thumb finger movements were the most reliable strategy for controlling a 

neuroprosthesis. 

Recently, Artificial Neural Networks (ANN) [28], Convolutional Neural Networks (CNN) [29], and Recurrent 

Neural Networks (RNN) [30] are being implemented to learn the data features deeply and achieve improved 

classification results. For instance, Kwon-Woo Ha and Jin-Woo proposed a multi-layer temporal pyramid pooling 

approach to improve Motor Imagery (MI) classification for BCI systems [31]. Similarly, Yang et al. successfully 

implemented a Bidirectional Long Short-Term Memory (BiLSTM) network to classify EEG-based emotion signals, 

achieving an accuracy of 84.21 % for four emotional states [32]. 

Therefore, the purpose of the present article is to decode right-hand MI-EEG signals using the EMD method 

and a Bidirectional Long Short-Term Memory (BiLSTM)-based network. The EMD method preprocessed finger 

imagined data dealing with the MI-EEG noisy problem and the BiLSTM, Recurrent Neural Network (RNN), decode 

the EEG signals related to the finger movements. The framework contributions are resumed as follows,  

1.  Decoding of individual right-hand fingers imagined movements with reliable accuracy for BCI applications.  

2.  Diversified MI signals decoding considering subject-dependent and subject-independent approaches.  

3.  Preprocessing and decomposing of MI signals based on the EMD to improve the BiLSTM efficiency in 

classification accuracy and test iterations convergence.  
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2. Materials and Methods 

The proposed framework shown in Figure 1 is fundamentally based on the MI-EEG signals paradigm. So, the 

project aims to decode the right-hand finger imagined movements using signals from the EEG-1200 C3, C4, P3, 

and Pz channels since those are close correlated with the predefined task [33]. Table 1 presents the fingers 

combination logic developed and implemented in this work to accomplish such a task.  

 

Figure 1: The proposed flowchart. The digits 1, 2, 3, 4, and 5 appear above the fingers on the Experimental Graphical User 

Interface (eGUI) as the task start. During the stimulus appearance, the test subject produces the imagined movement of the 

corresponding finger. Finally, EEG signals from the sensors C3, Cz, P3, and Pz are processed to be decoded using the EMD and 

a BiLSTM architecture. 

Table 1: The fifteen finger combinations are considered in this study. The used fingers nomenclature consists of 

Thumb (T), Index Finger (IF), Middle Finger (MF), Ring Finger (RF), and Pinkie Finger (PF). 

Combination  Fingers  Stimuli Succession  

1.   T vs. IF   1 - 2  

2.   T vs. MF   1 - 3  

3.   T vs. RF   1 - 4  

4.   T vs. PF   1 - 5 

5.   T vs. {IF, MF, RF, PF}   1 - {2, 3, 4, 5}  

6.   IF vs. MF   2 - 3  

7.   IF vs. RF   2 - 4  

8.   IF vs. PF   2 - 5  

9.   IF vs. {T, MF, RF, PF}   2 - {1, 3, 4, 5}  

10.   MF vs. RF   3 - 4  

11.   MF vs. PF   3 - 5  

12.   MF vs. {T, IF, RF, PF}   3 - {1, 2, 4, 5}  

13.   RF vs. PF   4 - 5  

14.   RF vs. {T, IF, MF, PF}   4 - {1, 2, 3, 5}  

15.   PF vs. {T, IF, MF, RF}   5 - {1, 2, 3, 4}  

 



Empirical Mode Decomposition and a Bidirectional LSTM Architecture Mwata-Velu et al. 

 

35 

2.1. The Project Dataset 

A public dataset related to right-hand finger MI provided the EEG signals for the numerical analysis [25]. The 

EEG series were recorded at 200 Hz and 1.0 kHz with the Nihon Kohden-Japan EEG-1200 JE-921A standard 

equipment between 2015 and 2016, associating six men and two women in the experiment. According to the 

author, the eight subjects were declared in good mental and physical health for the test. The dataset includes 

4,600 samples recorded in thirteen files at 1.0 kHz and six files at 200 Hz. 

Figure 2 shows the right-hand five fingers displayed on an eGUI. Regularly, digit from 1 to up 5 appears on each 

finger to guide the subject under tests to imagine the up and down finger flexion movements. At the same time, 

the EEG-1200 equipment captures and registers the corresponding signals via Neurofax recording software [34]. 

 

Figure 2: The dataset capturing experiment sequence. The digits 1, 2, 3, 4, and 5 symbolically represent the imaged movement 

of the thumb, index finger, middle finger, ring finger, and pinkie, respectively, displayed on the eGUI guiding the subject to start 

the corresponding task.  

Recorded MI-EEG signals were filtered during and after capture, using passband filters from 0.53 to 70 Hz and 

from 0.53 to 100 Hz for signals sampled at 200 Hz and 1.0 kHz, respectively. 

2.2. MI-EEG Preprocessing Using EMD 

EEG signals are naturally non-stationary and sometimes random due to changes in brain functioning, which 

also depend on the subject mood state [35]. Therefore, this non-stationarity makes the EEG signal processing 

complex and avoids applying corresponding deep neural network architectures straightforwardly. Lentka et al. 

have proposed methods based on trend removal to deal with the EEG signals’ non-stationarity, like the EMD [37]. 

Indeed, Huang et al. [36] introduced the EMD algorithm to decompose non-linear and non-stationary signals into a 

sum of Intrinsic Mode Functions (IMFs), to simplify complex signal analysis in the time domain. It is noteworthy 

that the distinctive and unique oscillation modes of the EEG signal are the specific characteristic of each IMF. 

Specifically, the signal decomposition into IMFs follows characteristics from high frequency towards low frequency, 

meeting the following conditions for each IMF:  

1.  The number of local extrema and zero-crosses must be equal to or differ from at most one unit, 

considering the whole signal.  

2.  The average value between the lower and upper envelope curves should be zero.  

Thus, the EMD method for an assumed non-stationary signal represented by )(tX  is detailed in Algorithm 1. 
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Algorithm 1. Non-stationary Signal Decomposition performed by EMD. 

 Input: Raw MI-EEG Signal: Vector )(tX   

 Output: All )(tIMFi  and Residue  

1 
)(=)(0 tXtR

  

2 0=i   

3 repeat 

4  
)(=)( tRth i  

5  repeat 

6   Find local extrema points of ).(th  

7   Use Cubic Spline interpolation to:  

8    Obtain the upper )(tXup
 envelope.  Connecting all maxima  

9    Obtain the lower )(tX lo  envelope.  Connecting all minima  

10   Find the Local Mean 

11    
( ))()(

2

1
=)( tXtXtX loupc +

. 

12   Calculate the remainder signal,  

13    
)()(=)( tXthth c−

 

14  until )(th  satisfies the IMF conditions; 

15  1= +ii   

16  
)(=)( thtIMFi   

17  Compute the remainder; 

18   
)(IMF)(= 1 ttRR iii −−  

19  Repeat the sifting process.  

20 until No More Oscillation Modes Found; 

21 return All IMF )(ti  and Residue )(tRi   

 

Once the sifting process is completed, the signal )(tX  is represented by  

𝑋(𝑡) = ∑

𝑛

𝑘=1

IMF𝑘(𝑡) + 𝑅(𝑡),  (1) 

where n  is the quantity of IMFs extracted from the original signal )(tX , and R(t) is the last residue. The sifting 

process requires the traditional stopping criteria [38] given by:  

1. All local maxima and local minima are oppositely positive and negative; and  

2. The extrema points number remains unchanged.  

Besides, during the sifting steps, iS  at the 
thi  iteration, the sifting process may stop if  

TSS iisd <|)(| 1−−
 

(2) 

where sd  is the standard deviation and T  a user-defined threshold. 
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This study uses the EMD method as a 1-D filter bank for EEG signals, taking advantage of the frequency 

decaying property between two sifting operations [39]. Therefore, the first four IMFs were considered signal 

features since they accumulated a specific variance contribution rate [40]. For instance, Figure 3 shows one EEG 

signal after processing and decomposing using the EMD. MI-EEG signals and the corresponding IMFs are drawn 

from top to bottom and, at last, the signal trend (residue). Besides, Figure 4 shows that only the sum of the first 

four IMFs is used from the EMD process to be classified by the BiLSTM network.  

 

Figure 3: Illustrative examples of an MI-EEG signal decomposition based on EMD. The MI-EEG data is the input in red, and in 

blue, the IMFs and residue represent the output. 

2.3. BiLSTM Network 

LSTM networks were proposed [41] to solve the vanishing gradient problem in RNNs training when processing 

large-scale sequences. In general, Hochreiter et al. [42] proposed four strategies to overcome the vanishing 

gradient problem during learning RNN: implementing methods that do not require gradients, enforcing higher 

gradients, operating on higher levels, or using special architectures. 
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Figure 4: From the top to the bottom: Original EEG signal, the sum of the first four IMFs serving as input to the BiLSTM 

network, and the corresponding residue. 

Figure 5 shows the architecture of an LSTM network, it is constituted by LSTM units and a standard 

feedforward network. The outcome of the input gate at the time t  is given by  

 

Figure 5: A Long Short-Term Memory (LSTM) unit flowchart. The activation function typically receives as fundamental 

parameters the weighted variables 1−th  and 1−tC  to predict an output. 

),(= 1 it

h

it

x

it bhWxWi ++ −
 

(3) 

where 
x

iW  and 
h

iW  are the weight matrices, 1−th  is the previously hidden state unit, ib  represents the bias vector, 

and )(x  is the sigmoid activation function. 

Meanwhile, the forget gate uses )(x  the activation function to produce the forget output tf  as follows,  

).(= 1 ft

h

ft

x

ft bhWxWf ++ −
 

(4) 
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The output gate generates a result depending on the current input tx , the precedent state 1−th , and the 

current cell state 1−tc  as follows,  

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐̃
𝑥𝑥𝑡 +𝑊𝑐̃

ℎℎ𝑡−1 + 𝑏𝑐̃), (5) 

𝑐𝑡 = 𝑖𝑡 ⊙ �̃�𝑡 + 𝑓𝑡 ⊙ 𝑐𝑡−1, (6) 

𝑜𝑡 = 𝜎(𝑊𝑜
𝑥𝑥𝑡 +𝑊𝑜

ℎℎ𝑡−1 + 𝑏𝑜), (7) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡), (8) 

considering ⊙ as the Hadamard product and 
x

oW , 
h

oW  as the output weight matrices. 

A bidirectional LSTM has two parallel LSTM structures working, one in the backward direction and the other in 

the forward direction [41]. Besides, BiLSTM provides faster convergence and better classification accuracy than 

the basic LSTM because each data sequence is processed twice, significantly improving predictions [43]. Figure 6 

illustrates the past and future sequence context at any time in the BiLSTM unit.  

 

Figure 6: A Bidirectional LSTM (BiLSTM) unfolded structure. The former processes data from past to future (forward LSTM), and 

the latter processes data from future to past (backward LSTM). This architecture preserves both types of data all the time and 

consequently improves learning.  

Formally, Eq. (9) summarizes the t
th

 BiLSTM output, assuming that the Dense layers th  combine the forward 

and backward outputs during the features classification. This operation is represented by  

ℎ𝑘 = [𝐹𝑡
→ 
⊕𝐵𝑡

← 
], (9) 

Where 𝐹𝑡
→ 

 and 𝐵𝑡
← 

 and represent the t
th

 LSTM memory block on the forward and backward directions, 

respectively; meanwhile,   is the element-wise sum. The LSTM outputs are combined as follows  

𝑦𝑡 = 𝑊
ℎ𝑦
→ 

 
ℎ𝑡
→ 
+𝑊

ℎ𝑦
←  ℎ𝑡

← 
+ 𝑏𝑦, (10) 

where ℎ𝑡
→ 

 and ℎ𝑡
← 

 are the outcomes from the forward and backward LSTMs, respectively. 

Three stacked Bidirectional LSTM layers were configured in this project, each one consisting of twelve memory 

units, as shown in Figure 7.  
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Figure 7: Proposed BiLSTM architecture consisting of three BiLSTM layers, one flatten and one dense layer. 

Therefore, the stacked BiLSTMs dispose of an output matrix, 
12 W

oY R . This matrix is then converted 

(unwrapped) into a vector, 
112ˆ  WoY R . The parameter W is 170 and 850 for signals at 200 Hz and 1.0 kHz, 

respectively. Additionally, Table 2 summarizes the main network parameters used in the numerical results.  

Table 2: Recurrent Neural Network parameters summary. 

Layer 

Type 
Cells 

Output Shape 

200 Hz 

Parameters 

200 Hz 

Output Shape 

1.0 kHz 

Parameters 

1.0 kHz 

Bidirectional 12 (None,170,24) 1632  (None,850,24) 1632 

Bidirectional_1 12 (None,170,24) 3552 (None,850,24) 3552 

Bidirectional_2 12 (None,170,24) 3552 (None,850,24) 3552 

Flatten – (None,40,80) 0 (None,20400) 0 

Dense_1 – (None,2) 8162 (None,2) 40802 

Activation – (None,2) 0 (None,2) 0 

Total   29,171  145,855 

 

Finally, the dense layer receives this vector as the input to predict the classification results. This layer has a 

SoftMax activation function, which is mainly associated with the sigmoid activation function, it considers the 

probability that a feature sequence belongs to the class iŷ  in an M-classes problem. Thus, the SoftMax function is 

given by  
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𝜎(�⃗�)𝑖 =
𝑒𝑥𝑖

∑𝑀
𝑗=1 𝑒𝑥𝑗

,  ∀�⃗� = [𝑥1, 𝑥2, … , 𝑥𝑀]
T, (11) 

where the denominator is the normalization term needed for the probability distribution. 

The project was implemented in Python 3.6 under Keras and TensorFlow, using the Nadam optimizer, the 

Accuracy metric, and the Binary cross-entropy as the loss function. Also, the Cyclical Learning Rate (CLR) [44] was 

applied to accelerate the training algorithm convergence. Effectively, the CLR algorithm helps the learning 

algorithm to jump out from local minima. The minimum learning rate was set to  
910−

, the maximum learning rate 

to 
310−

, and the step size to eight times the number of iterations per epoch. The complete model was trained 

during 300 epochs with a batch size of 330, on a Windows 10 OS desktop with an NVIDIA GTX 1080 Ti GPU. 

3. Results and Discussion 

Two factors have mainly been considered: the stimuli display succession and the fingers’ proximity. This choice 

obeys the particular EEG patterns of each finger [25]. k -fold cross-validation was used, splitting the data into 

10=k  partitions. Each one served iteratively as the learning data and evaluated with the remainder data; finally, 

the statistical results are measured. 

3.1. Subject-Dependent Classification Approach 

In this approach, the signals of each subject were processed individually. Several combinations of one finger 

versus the others were considered, as detailed in Table 3.  

Table 3: Accuracies achieved according to the finger combination pairs. 

Subjects Finger Combination 
Training (%) Testing (%) Training (%) Testing (%) 

1.0 kHz 200 Hz 

A 

T vs. {IF, MF, RF, PF} 

IF vs. {T, MF, RF, PF} 

MF vs. {T, IF, RF, PF} 

RF vs. {T, IF, MF, PF} 

PF vs. {T, IF, MF, RF} 

98.8 

99.1 

98.2 

98.7 

97.9 

74.3 

78.2 

75.5 

98.9 

77.0 

98.2 

98.6 

99.0 

99.4 

98.6 

79.1 

76.5 

76.8 

96.5 

80.3 

B 

T vs. {IF, MF, RF, PF} 

IF vs. {T, MF, RF, PF} 

MF vs. {T, IF, RF, PF} 

RF vs. {T, IF, MF, PF} 

PF vs. {T, IF, MF, RF} 

99.2 

98.9 

98.1 

98.6 

98.2 

73.8 

78.0 

74.9 

99.3 

76.0 

97.3 

98.7 

98.5 

92.6 

97.3 

77.8 

77.3 

77.0 

96.6 

81.2 

C 

T vs. {IF, MF, RF, PF} 

IF vs. {T, MF, RF, PF} 

MF vs. {T, IF, RF, PF} 

RF vs. {T, IF, MF, PF} 

PF vs. {T, IF, MF, RF} 

97.9 

99.2 

98.3 

99.0 

99.3 

74.9 

78.3 

76.0 

99.1 

76.9 

98.8 

99.2 

98.6 

94.0 

98.9 

84.8 

79.6 

82.5 

98.0 

85.1 

F 

T vs. {IF, MF, RF, PF} 

IF vs. {T, MF, RF, PF} 

MF vs. {T, IF, RF, PF} 

RF vs. {T, IF, MF, PF} 

PF vs. {T, IF, MF, RF} 

98.4 

98.9 

99.2 

98.5 

97.8 

74.1 

79.3 

99.0 

98.1 

76.8 

98.1 

91.3 

97.8 

99.2 

98.7 

80.3 

78.6 

79.0 

99.0 

82.6 

Averages 

Thumb 
Index-finger 

Middle-finger 

Ring-finger 

Pinkie-finger 

98.5 

99.0 

98.4 

98.7 

98.3 

74.2 

78.4 

81.3 

98.8 

76.6 

98.1 

96.9 

98.4 

96.3 

98.3 

80.5 

78.0 

78.8 

97.5 

82.3 
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The numerical results were split depending on the sampling frequency. 

Firstly, each subject’s finger signals at 1.0 kHz were decoded. In such analysis, all subjects performed the ring 

finger decoding compared to other fingers, obtaining 98.9 %, 99.3 %, 99.1 %, and 98.1 % accuracy for subjects A, B, 

C, and F. 

Figure 8 shows that the thumb decoding for its share provided the most limited accuracies, 74.3 %, 73.8 %, 74.9 

%, and 74.1 % for subjects A, B, C, and F, respectively.  

 

Figure 8: The lowest and highest accuracies achieved with signals at 1.0 kHz for the subject-dependent classification approach. 

Secondly, subject finger signals at 200 Hz were decoded. At this step, signals at 200 Hz performed better than 

those at 1.0 kHz in decoding imaginary finger movements. Figure 9 shows the results achieved with signals at 1.0 

kHz, the ring-finger signals decoding was successful with accuracies of 96.5 %, 96.6 %, 98.0 %, and 99.0 % for 

subjects A, B, C, and F.  

 

Figure 9: Accuracies achieved with signals at 200 Hz for the subject-dependent classification approach. 
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The index finger decoding accuracies were lowest for almost all subjects. The highest mean accuracies 

obtained were 98.8 % and 97.5 % in decoding the ring finger signals at 1.0 kHz and 200 Hz, respectively.  

3.2. Subject-Independent Classification Approach 

The subject-independent classification approach aims to consider all subjects A, B, C, F altogether and decode 

signals from the respective fingers. This perspective offers an advantage for practical BCI applications in which all 

the subjects considered are eligible as BCI system users. Therefore, the imaginary movements decoded of each 

finger concern the subjects A, B, C, and F for signals at 200 Hz and 1.0 kHz. 

3.2.1. Decoding Thumb Finger Movements 

Five thumb combinations were processed to classify thumb signals. The classification models were trained to 

distinguish among the movements of the thumb finger and the other fingers. The decoding accuracies for signals 

at 200 Hz were found in the following order: thumb against the pinkie finger (80.08 %), thumb against the ring 

finger (76.8 %), thumb against the middle finger (73.35 %), and thumb against the index finger (65.2 %). The first 

block in Table 4 shows that the best accuracies of 78.9 % and 80.5 % were achieved by decoding thumb 

movements at 1.0 kHz and 200 Hz against other fingers.  

Table 4: Average accuracies (Acc) for all finger combinations at 1.0 kHz and 200 Hz using k -fold cross-validation 

( 10=k ). 

Finger Combination 
Training (%) Testing (%) Training (%) Testing (%) 

1.0 kHz 200 Hz 

T vs. IF 

T vs. MF 

T vs. RF 

T vs. PF 

T vs. {IF, MF, RF, PF} 

98.8 

98.1 

98.9 

99.1 

98.6 

65.65 

72.67 

75.18 

76.71 

78.90 

97.6 

99.3 

99.4 

98.9 

90.6 

65.20 

73.35 

76.80 

80.08 

80.5 

IF vs. MF 

IF vs. RF 

IF vs. PF 

IF vs. {T, MF, RF, PF} 

98.4 

99.5 

90.1 

98.7 

65.51 

68.87 

70.71 

78.9 

99.6 

98.2 

98.1 

98.8 

66.03 

70.92 

73.54 

81.80 

MF vs. RF 

MF vs. PF 

MF vs. {T, IF, RF, PF} 

96.8 

98.6 

98.7 

63.64 

66.43 

77.6 

98.7 

98.9 

98.8 

65.8 

68.4 

79.8 

RF vs. PF 

RF vs. {T, IF, MF, PF} 

98.3 

98.4 

67.2 

81.20 

97.5 

98.6 

65.12 

80.30 

PF vs. {T, IF, MF, RF} 98.8 82.9 98.6 80.7 

 

Contrarily, the lowest accuracy (65.20 %) was found for decoding thumb signals against those of the index 

finger at 200 Hz. These results agree with the results reported by Anam et al. [45] and Kaya et al. [25], where the 

thumb and pinkie MI signals were clearly distinguished. 

3.2.2. Decoding Index-Finger Movements 

The second block in Table 4 presents the results of four index-finger combinations at 1.0 kHz and 200 Hz. The 

highest accuracy was achieved decoding index-finger signals against those of other fingers (78.9 %) and (81.8 %) 

combination at 1.0 kHz and 200 Hz, respectively. These results prove that the discrimination of signals is much 

more significant when fingers are more separated from each other. 
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3.2.3. Decoding Middle-Finger Movements 

Middle-finger movements were decoded using three-finger combinations evaluated: the first combination, 

according to the stimulus progress, compared Middle-Finger signals against Ring-finger, where a notable accuracy 

was achieved with signals at 200 Hz (65.8 %). The second combination aimed to decode Middle-Finger signals from 

those of Pinkie-Finger’s, obtaining an accuracy of 68.4 % for signals at 200 Hz. The latest combination decoded the 

Middle-Finger signals from all fingers, achieved the best accuracy of 79.8 % with signals at 200 Hz, as given in the 

third block in Table 4. 

3.2.4. Decoding Ring-Finger and Pinkie Finger Movements 

Specific ring-finger signals are decoded using the following two-finger signal combinations: (1) the ring-finger 

against the pinkie and (2) the ring-finger against the other fingers set. Table 4 in the fourth block presents 80.3 % 

and 81.2 % accuracy achieved while decoding Ring-Finger signals against those of other fingers, at 200 Hz and 1.0 

kHz, respectively. 

The last block in Table 4 shows accuracies of 80.7 % and 82.9 % reached while decoding Pinkie-Finger for 

signals at 200 Hz and 1.0 kHz, respectively. 

3.3. Fingers Decoding Evaluation 

Globally, several performances were observed while decoding finger signals. Firstly, considering the subjects 

separately (subject-dependent approach), decoding for subjects C and F was (averages of 86 % and 83 %) more 

accurate than for subjects A and B (averages of 81 %). Posteriorly, the subject-independent approach was 

considered to decode finger signals of all subjects. In this last case, Ring-Finger signals were decoded more 

efficiently (82.9 % and 80.7 % of accuracy at 1.0 kHz and 200 Hz, respectively) than the Middle-Finger signals (77.6 

% and 79.8 % at 1.0 kHz and 200 Hz, respectively). Middle-Finger combinations presented the lowest accuracies 

justified by the closeness of all other fingers, producing noise and signal mixtures. These results express clearly 

that the more distant fingers are, the better the classification accuracy is. Figure 10 summarizes the achieved 

accuracies for each finger while exploring the finger combinations presented in Table 4.  

 

Figure 10: Graphical representation of summary results in decoding the fingers flexion-extension imagined 

movements for MI-EEG signals at 1.0 k Hz and 200 Hz, respectively. 

This study also evaluated the EMD as a contribution according to the training convergence speed of the 

implemented network model. Tables 5 shows the improvement by including or excluding EMD in the proposed 

approach.  

This comparison is based on analyzing the convergence (number of epochs) and the accuracy results related to 

the inclusion (or not) of the EMD in the training process of the neural network. 
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Table 5: A 2-class global improvement regarding the convergence speed (number of epochs) and the accuracy to 

decode finger imaginary movements while including or excluding EMD processing. 

Finger 

Combination 

Training without EMD Training using EMD 
Convergence 

Improvement 

Accuracy 

Improvement 

1.0 kHz 200 Hz 1.0 kHz 200 Hz Rel. [%] Rel. [%] 

T vs. All 135 182 97 117 31.9 4.9 

IF vs. All 176 198 101 142 35.4 4.0 

MF vs. All 150 174 94 113 36.1 4.0 

RF vs. All 157 186 97 148 29.3 3.6 

PF vs. All 142 208 82 168 30.7 4.4 

Average 152 189.6 94.2 137.6 32.6 4.1 

 

The relative Convergence Improvement (CI) was calculated regarding the maximum accuracy obtained using 

raw data, without EMD, as follows  

],Hz[{200,1000}100,1=CI
0

1 









− ff




 

(12) 

where }{=1 EpDE  is the mean value of the Epochs number using EMD, while }{=0 DEpE  is the mean value 

of the Epochs number using raw data (without EMD), and E  is the mathematical expectation. Therefore, the 

Average Relative Convergence Improvement (ARCI) using all data, at 200 and 1.0 kHz is given by  

( ).CICI
2

1
=ARCI 1000200 +

 
(13) 

Similarly, the Relative Accuracy Improvement (RAI) was found considering the maximum number of epochs, 

which were fixed at 1000, and the neural network was trained with data using (or not) the EMD, as follows  

],Hz[{200,1000}100,1=RAI
3

2 









− ff




 

(14) 

where }{=3 EpDE  is the mean value of accuracy using EMD, }{=2 DEpE  is the mean value of accuracy using 

raw data (without EMD), computed with the total number of epochs. Finding the Accuracy Relative Benefit as 

follows,  

).RAIRAI(
2

1
=ARAI 1000200 +

 
(15) 

It is noteworthy that, on average, the Convergence and Accuracy Relative improvements were 32.6 % and 4.1 

%, respectively, while preprocessing signals with the EMD method. One final remark on fingers’ decoding is 

focused on the training convergence, which was even faster for all conducted tests while using the EMD 

preprocessing. From the results in analyzing MI-EEG signals, it was found that EMD adapts better to the non-

stationary signals filtering than other traditional filters as moving average removal and polynomial fitting, as it was 

previously remarked by Lentka et al. [36]. 
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4. Conclusions 

Fingers Motor Imagery EEG signals for Brain-Computer Interfaces applications present indubitable challenges 

for their preprocessing and classification. In this work, the EMD method was employed to filter MI-EEG signals 

before decoding individual finger features utilizing a BiLSTM network. This framework contemplated two 

approaches: in the subject-dependent approach, finger imagined movements were decoded for each subject 

separately, while for the subject-dependent approach, the finger movements decoding concerned all the subject’s 

data together. The two approaches offer advantages for specific BCI applications. All subjects performed the 

finger movement decoding with the first approach, especially for Ring-Finger signals (98.8 % at 1.0 kHz). The 

second approach achieved the most superior accuracy of 82.9% decoding Pinkie signals at 1.0 kHz. The 

advantages of using EMD as a filter to preprocess signals were also evaluated. The improvements achieved using 

EMD, in terms of convergence epochs and accuracy, have been seen as another method contribution. MI-EEG 

signal classification approaches addressed in this work can be used for BCI applications to take control of two or 

more tasks. 
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