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ABSTRACT 

In this research paper, we develop and extend some qualitative analyses of  

a class of a nonlinear fractional integro-differential equation involving  

𝜓 -Caputo fractional derivative (𝜓 -CFD) and 𝜓 -Riemann-Liouville fractional 

integral (𝜓 -RLFI). The existence and uniqueness theorems are obtained in 

Banach spaces via an equivalent fractional integral equation with the help of 

Banach’s fixed point theorem (B’sFPT) and Schaefer’s fixed point theorem 

(S’sFPT). An example explaining the main results is also constructed.  
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1. Introduction 

In this paper, we prove the existence and uniqueness results of a class of IVPs for a nonlinear fractional 

integrodifferential equation (FIDE):  

 𝐶𝐷
𝑎+
𝛼;𝜓

𝜛(𝑡) = 𝐹(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡)),    𝑡 ∈ 𝐽: = [𝑎, 𝑏], (1.1) 

𝜛(𝑎) = 𝜛𝑎 , 𝜛𝜓
[𝑘]

(𝑎) = 𝜛𝑎
𝑘 ,   𝑘 = 1, . . . 𝑛 − 1, (1.2) 

where 

i) 𝑛 − 1 < 𝛼 < 𝑛 = [𝛼] + 1, 𝑛 ∈ ℕ, and 𝜛𝑎 , 𝜛𝑎
𝑘 ∈ 𝑋. 

ii)  𝐶𝐷
𝑎+
𝛼;𝜓

 and 𝐼
𝑎+
𝛼;𝜓

 denote the 𝜓 -CFD and 𝜓 -RLFI of order 𝛼, respectively. 

iii) 𝔉: 𝐽 × 𝑋 × 𝑋 → 𝑋 is continuous. 

v) 𝜛 ∈ 𝐶𝑛−1(𝐽, 𝑋) such that the operator  𝐶𝐷
𝑎+
𝛼;𝜓

 exists and  𝐶𝐷
𝑎+
𝛼;𝜓

𝜛 ∈ 𝐶(𝐽, 𝑋).  

Fractional calculus (FC) may be taken into consideration as a generalization of classical calculus as there are 

many definitions for derivatives and integrals of non-integer order. Initially, FC was a purely mathematical concept 

but currently, its use has spread into many different fields of science and technology such as dynamical systems, 

physics, biology, engineering, electrochemistry, and bioengineering [1-4] and the references therein. So, in the 

literature, there are many investigations managing comparative points to different operators, and the most 

common ones are Riemann-Liouville, Caputo, and Hilfer. Be that as it may, since the operators rely upon the 

kernel of integration, there are more new types of FDs and integrals that emerge as a result of choosing an 

alternative kernel that makes the number of definitions broad and more general. For instance, see [5, 6], and the 

references therein. The utilization of fractional differential equations (FDEs) has arisen as another part of applied 

mathematics, which has been utilized for developing numerous mathematical models in engineering and science. 

Indeed FDEs are viewed as model options in contrast to nonlinear DEs and other sorts of equations. On the 

numerical side and simulation models for this path, we will refer to some recent works in [7-12], whereas the 

theory of FDEs has been broadly examined by many authors, see [13-21]. 

The integrodifferential equations (IDEs) emerge in various scientific and engineering specializations. They are 

predominantly an approximation to PDEs, which epitomize a large part of the continuum phenomena. For points 

of interest, see [22, 23] and others. Many IDEs can be expressed as fractional IDEs in some Banach spaces [24-29], 

e.g., Balachandran et al. [24] studied the existence results of Caputo-type quasilinear FIDEs in Banach spaces by 

using Banach’s fixed point theorem. In [30, 31], the authors investigated the existence theorem on abstract FDEs 

by utilizing semigroup theory and the fixed point technique. Numerous partial differential equations or 

integrodifferential equations can be communicated as FDEs or integro-FDEs in some Banach spaces [32]. Some 

recent existence and uniqueness results on FDEs involving generalized FDs have been studied by many authors, 

see [33-41]. For example, Abdo and Panchal [39] proved the existence, uniqueness, and Ulam-Hyers stability of 

solutions of 𝜓 -Hilfer FIDEs in weighted spaces via fixed point techniques. Also, Wahash et al. [38] established the 

existence and uniqueness results for the global solutions of 𝜓 -Caputo singular FDEs by means of Picard’s iterative 

method. 

Motivated by the above works, we prove the existence and uniqueness of the solution of a nonlinear FIDE 

(1.1)–(1.2) involving 𝜓 -CFD by means of B’sFPT and S’sFPT. 

The rest of this work is structured as follows. In Section 2, we provide some basic concepts, definitions, and 

elementary facts that will be useful throughout the paper. The main results are obtained in Section 3. Finally, in 

Section 4, we provide an illustrative example to justify our results. 
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2. Preliminaries 

Here, we require some essential definitions and properties of 𝜓 -fractional calculus that will be needed in this 

paper. Let 𝛼 > 0 is a real number, 𝑋 be a Banach space, 𝐶(𝐽, 𝑋) be the Banach space of continuous functions 𝜘(𝑡) ∈

𝑋 for 𝑡 ∈ 𝐽 → 𝑋 and ‖𝜘‖  =  𝑠𝑢𝑝𝑡∈𝐽 |𝜘(𝑡)|. Denote by 𝐿1,𝜓(ℝ+) the set of those Lebesgue integrable functions with 

respect to 𝜓, where ℝ+ = [0, ∞), and ‖𝜘‖𝐿1,𝜓 = ∫ 𝜓′(𝑡)|𝜘(𝑡)|𝑑𝑡 < ∞,
𝑏

𝑎
 and 𝜓 ∈ 𝐶𝑛(𝐽, 𝑋) an increasing function such 

that 𝜓′(𝑡) ≠ 0, for all 𝑡 ∈ 𝐽, 

Definition 2.1 [3] For 𝛼 > 0 and 𝜘 ∈ 𝐿1,𝜓(ℝ+), the left 𝜓 -RLFI is given by 

𝐼
𝑎+
𝛼;𝜓

𝜘(𝑡) =
1

𝛤(𝛼)
∫

𝜓′(𝑠)𝜘(𝑠)

(𝜓(𝑡) − 𝜓(𝑠))1−𝛼
𝑑𝑠,  𝑡 > 𝑎.

𝑡

𝑎

 (2.1) 

Definition 2.2 [3] For 𝑛 − 1 < 𝛼 ≤ 𝑛, the left 𝜓 -RLFD is defined by  

𝐷
𝑎+
𝛼;𝜓

𝜘(𝑡) = 𝐷𝜓
𝑛𝐼

𝑎+
𝑛−𝛼;𝜓

𝜘(𝑡), (2.2) 

where 𝐷𝜓
𝑛 = [

1

𝜓′(𝑡)

𝑑

𝑑𝑡
]

𝑛

,  𝐼
𝑎+
𝑛−𝛼;𝜓

 as in (2.1), and 𝑛 = [𝛼] + 1.  

Definition 2.3 [34] For 𝑛 − 1 < 𝛼 ≤ 𝑛, the left 𝜓 -CFD is defined by  

 𝐶𝐷
𝑎+
𝛼;𝜓

𝜘(𝑡) = 𝐷
𝑎+
𝛼;𝜓

[𝜘(𝑡) − ∑
𝐷𝜓

𝑛𝜘(𝑎)

𝑘!
(𝜓(𝑡) − 𝜓(𝑎))𝑘

𝑛−1

𝑘=0

]. 

where 𝑛 = [𝛼] + 1 for 𝛼 ∉ ℕ, 𝑛 = 𝛼 for 𝛼 ∈ ℕ. Further, for 𝛼 ∉ ℕ we can write  

 𝐶𝐷
𝑎+
𝛼;𝜓

𝜘(𝑡) = 𝐼
𝑎+
𝑛−𝛼;𝜓

𝐷𝜓
𝑛𝜘(𝑡) 

=
1

𝛤(𝑛 − 𝛼)
∫

𝜓′(𝑠)𝐷𝜓
𝑛𝜘(𝑠)

(𝜓(𝑡) − 𝜓(𝑠))1−𝑛+𝛼
𝑑𝑠

𝑡

𝑎

, (2.3) 

and for 𝛼 = 𝑛 ∈ ℕ, one has  𝐶𝐷
𝑎+
𝛼;𝜓

𝜘(𝑡) = 𝐷𝜓
𝑛𝜘(𝑡). In particular, if 𝑛 = 1, then 𝐷𝜓

1 𝜘(𝑡) =
𝜘′(𝑡)

𝜓′(𝑡)
, for all 𝑡 ∈ 𝐽.  

Note that, if 𝜓(𝑡) = 𝑡, then the relations (2.1), (2.2), and (2.3) are reduced to the classical FC (see [3]). 

The above definitions have the following properties proved in [3] and [34]. 

Lemma 2.1 Let 𝑛 − 1 < 𝛼 < 𝑛 and 𝜘: 𝐽 → 𝑋 be a function. 

(1)  If 𝜘 ∈ 𝐶(𝐽, 𝑋), then  𝐶𝐷
𝑎+
𝛼;𝜓

𝐼
𝑎+
𝛼;𝜓

𝜘(𝑡) = 𝜘(𝑡). 

(2)  If 𝜘 ∈ 𝐶𝑛−1(𝐽, 𝑋), then 𝐼
𝑎+
𝛼;𝜓

 𝐶𝐷
𝑎+
𝛼;𝜓

𝜘(𝑡) = 𝜘(𝑡) − ∑
𝜘𝜓

[𝑘]
(𝑎)

𝑘!
(𝜓(𝑡) − 𝜓(𝑎))𝑘 .𝑛−1

𝑘=0  

(3)  𝐼
𝑎+
𝛼;𝜓

 𝐼
𝑎+
𝛽;𝜓

𝜘(𝑡) = 𝐼
𝑎+
𝛼+𝛽;𝜓

 𝜘(𝑡), for 𝛼, 𝛽 > 0. 

(4)  𝐼
𝑎+
𝛼;𝜓

(⋅)maps 𝐶(𝐽, 𝑋) into 𝐶(𝐽, 𝑋). 

(5)  𝐼
𝑎+
𝛼;𝜓

𝜘(𝑎) = 𝑙𝑖𝑚
𝑡→𝑎+

𝐼
𝑎+
𝛼;𝜓

𝜘(𝑡) = 0.  

Lemma 2.2 [3, 34] Let 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 < 𝛽 ∈ ℝ and let 𝜓𝑡,𝑎 = 𝜓(𝑡) − 𝜓(𝑎). Then 



Mohammed S. Abdo  Journal of Advances in Applied & Computational Mathematics, 9, 2022 

 

4 

(1) 𝐼
𝑎+
𝛼;𝜓

(𝜓𝑡,𝑎)𝛽−1 =
𝛤(𝛽)

𝛤(𝛼+𝛽)
(𝜓𝑡,𝑎)

𝛼+𝛽−1
. 

(2)  𝐶𝐷
𝑎+
𝛼;𝜓

(𝜓𝑡,𝑎)𝛽−1 =
𝛤(𝛽)

𝛤(𝛽−𝛼)
(𝜓𝑡,𝑎)

𝛽−𝛼−1
. 

(3)   𝐶𝐷
𝑎+
𝛼;𝜓

(𝜓𝑡,𝑎)𝑘 = 0, ∀𝑘 ∈ {0,1, . . . , 𝑛 − 1}, 𝑛 ∈ ℕ.  

3. Main Results 

In this portion, we investigate the existence and uniqueness theorems on (1.1)–(1.2) under B’sFPT and S’sFPT. 

For convenience, we put 𝜓𝑡,𝑎: = 𝜓(𝑡) − 𝜓(𝑎). Firstly, we need the following hypotheses: 

𝔉: 𝐽 × 𝑋2 → 𝑋 is continuous and there exists a constant 𝐿 > 0 such that  

 ‖𝔉(𝑡, 𝜛1, 𝜛2) − 𝔉(𝑡, 𝑣1, 𝑣2)‖ ≤ 𝐿[‖𝜛1 − 𝑣1‖ + ‖𝜛2 − 𝑣2‖], 𝑡 ∈ 𝐽, 𝜛𝑖 , 𝑣𝑖 ∈ 𝑋, 𝑖 = 1,2. 

There exists an 𝜌 ∈ 𝐿1,𝜓(ℝ+) such that‖𝔉(𝑡, 𝜛, 𝑣)‖ ≤ 𝜌(𝑡)‖𝜛‖, for all (𝑡, 𝜛, 𝑣) ∈ 𝐽 × 𝑋2.  

It is easy to show that problem (1.1)–(1.2) is equivalent to the following FIE:  

𝜛(𝑡) = ∑
𝑥𝑎

𝑘

𝑘!
[𝜓𝑡,𝑎]

𝑘
𝑛−1

𝑘=0

+
1

𝛤(𝛼)
∫ 𝜓′(𝑠)(𝜓𝑡,𝑠)𝛼−1

𝑡

𝑎

𝔉(𝑠, 𝜛(𝑠), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑠))𝑑𝑠. (3.1) 

For more details see [39, 40]. 

By a solution of the problem (1.1)–(1.2), we mean the function 𝜛 such that the accompanying conditions are 

fulfilled: (i) 𝜛 ∈ 𝐶𝑛−1(𝐽, 𝑋); (ii)  𝐶𝐷
𝑎+
𝛼;𝜓

 exists and  𝐶𝐷
𝑎+
𝛼;𝜓

𝜛 ∈ 𝐶(𝐽, 𝑋), where 0 < 𝛼 ≤ 1; (iii) 𝜛 satisfies the FIE (3.1). 

Now, the first result relying on S’sFPT. 

Theorem 3.1 Suppose 𝔉: 𝐽 × 𝑋 × 𝑋 is continuous and (𝐻𝑦2) holds. If  

[𝜓𝑎+𝜁,𝑎]
𝛼−1

‖𝜌‖𝐿1,𝜓

𝛤(𝛼)
< 1,  𝜁 > 0,  𝑎 + 𝜁 ≤ 𝑏, (3.2) 

then the problem (1.1)-(1.2) has at least one solution on [𝑎, 𝑎 + 𝜁] ⊆ 𝐽.  

Proof. Set the following space 

𝛥 = {𝜛 ∈ 𝐶𝑛−1([𝑎, 𝑎 + 𝜁], 𝑋):𝐶 𝐷
𝑎+
𝛼;𝜓

𝜛(𝑡) ∈ 𝐶([𝑎, 𝑎 + 𝜁], 𝑋)}. (3.3) 

In view of (3.1), we define the operator 𝑇: 𝛥 → 𝛥 by 𝑇𝜛(𝑡) = 𝜛(𝑡), i.e.,  

𝑇𝜛(𝑡) = ∑
𝑥𝑎

𝑘

𝑘!
[𝜓𝑡,𝑎]

𝑘
𝑛−1

𝑘=0

+
1

𝛤(𝛼)
∫ 𝜓′(𝑠)(𝜓𝑡,𝑠)𝛼−1

𝑡

𝑎

𝔉(𝑠, 𝜛(𝑠), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑠))𝑑𝑠. (3.4) 

Now, we will divide the proof into several steps as follows: 

Step 1. 𝑇 is continuous. Let {𝜛𝑛}𝑛∈ℕ be a sequence in 𝛥 such that 𝜛𝑛 → 𝜛 in 𝛥, as 𝑛 → ∞. Then for 𝑡 ∈ [𝑎, 𝑎 + 𝜁], 

we have 
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‖𝑇𝜛𝑛(𝑡) − 𝑇𝜛(𝑡)‖ = sup
𝑡∈[𝑎,𝑎+𝜁]

{|𝐼
𝑎+
𝛼;𝜓

𝔉(𝑡, 𝜛n(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛n(𝑡)) − 𝐼
𝑎+
𝛼;𝜓

𝔉(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡))|} 

≤ 𝐼
𝑎+
𝛼;𝜓

sup
𝑡∈[𝑎,𝑎+𝜁]

{|𝔉(𝑡, 𝜛n(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛n(𝑡)) −  𝔉(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡))|} 

≤
[𝜓𝑎+𝜁,𝑎]

𝛼

𝛤(𝛼 + 1)
‖(𝔉(⋅, 𝜛𝑛(⋅), 𝐼

𝑎+
𝛼;𝜓

𝜛𝑛(⋅)) − 𝔉(⋅, 𝜛(⋅), 𝐼
𝑎+
𝛼;𝜓

𝜛(⋅))‖. 

From the continuity of 𝔉, and the Lebesgue dominated convergence theorem, we find ‖𝑇𝜛𝑛 − 𝑇𝜛‖ → 0 as 𝑛 →

∞. Thus, 𝑇 is continuous. 

Step 2. 𝑇 is uniformly bounded in 𝛥. 

Here, we prove that, for 𝑟 > 0, there exists some 𝑟′ > 0 such that  

∀𝜛 ∈ 𝐵𝑟: = {𝜛 ∈ 𝛥: ‖𝜛‖ ≤ 𝑟}: ‖𝑇𝜛‖ ≤ 𝑟′. 

Indeed, let 𝜛 ∈ 𝐵𝑟, and 𝑡 ∈ [𝑎, 𝑎 + 𝜁]. Then 

‖𝑇𝜛‖ = sup
𝑡∈[𝑎,𝑎+𝜁]

{|∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑡,𝑎]

𝑘
+  𝐼

𝑎+
𝛼;𝜓

𝔉(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡))|} 

≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+ 𝐼

𝑎+
𝛼;𝜓

sup
𝑡∈[𝑎,𝑎+𝜁]

| 𝔉(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡))| 

= ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+ 𝐼

𝑎+
𝛼;𝜓

‖𝐹(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡))‖ 

≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+ 𝐼

𝑎+
𝛼;𝜓

𝜌(𝑡)‖𝜛‖ 

= ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+ 𝐼

𝑎+
𝛼−1;𝜓

𝐼
𝑎+
1;𝜓

𝜌(𝑡)‖𝜛‖ 

≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+

[𝜓𝑡,𝑎]
𝛼−1

𝛤(𝛼)
‖𝜌‖𝐿1,𝜓𝑟 

≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+

[𝜓𝑎+𝜁,𝑎]
𝛼−1

𝛤(𝛼)
‖𝜌‖𝐿1,𝜓𝑟: = 𝑟′. 

Thus ‖𝑇𝜛‖ ≤ 𝑟′. Hence, {𝑇𝜛} is uniformly bounded set. 

Step3. 𝑇 is equicontinuous in 𝛥. 

Let 𝜛 ∈ 𝐵𝑟 such that 𝐵𝑟 be bounded set defined as in step 2, and set  

𝑠𝑢𝑝
(𝑡,𝜛,𝐼

𝑎+
𝛼;𝜓

𝜛)∈𝑎,𝑎+𝜁]×𝔹𝑟×𝔹𝑟

‖𝔉(𝑡, 𝜛, 𝐼
𝑎+
𝛼;𝜓

𝜛)‖ = 𝔉𝑚𝑎𝑥 

For 𝑡1, 𝑡2 ∈ 𝑎, 𝑎 + 𝜁], with 𝑡1 < 𝑡2, we have 



Mohammed S. Abdo  Journal of Advances in Applied & Computational Mathematics, 9, 2022 

 

6 

‖(𝑇𝜛)(𝑡2) − (𝑇𝜛)(𝑡1)‖ = ‖∑

𝑛−1

𝑘=0

𝜛𝑎
𝑘

𝑘!
[𝜓𝑡2,𝑎]

𝑘
+ 𝐼

𝑎+
𝛼;𝜓

𝔉(𝑡2, 𝜛(𝑡2), 𝐼
𝑎+
𝛼;𝜓

𝜛2(𝑡)) 

− ∑

𝑛−1

𝑘=0

𝜛𝑎
𝑘

𝑘!
[𝜓𝑡1,𝑎]

𝑘
+ 𝐼

𝑎+
𝛼;𝜓

𝔉(𝑡1, 𝜛(𝑡1), 𝐼
𝑎+
𝛼;𝜓

𝜛1(𝑡))‖ 

≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
([𝜓𝑡2,𝑎]

𝑘
− [𝜓𝑡1,𝑎]

𝑘
) 

+
1

𝛤(𝛼)
∫

𝑡1

𝑎

𝜓′(𝑠) [[𝜓𝑡2,𝑠]
𝛼−1

− [𝜓𝑡1,𝑠]
𝛼−1

] ‖𝔉(𝑠, 𝜛(𝑠), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑠)‖𝑑𝑠 

+
1

𝛤(𝛼)
∫

𝑡2

𝑡1

𝜓′(𝑠)(𝜓𝑡2,𝑠)𝛼−1‖𝔉(𝑠, 𝜛(𝑠), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑠)‖𝑑𝑠 

≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
([𝜓𝑡2,𝑎]

𝑘
− [𝜓𝑡1,𝑎]

𝑘
) 

+
𝔉𝑚𝑎𝑥

𝛤(𝛼)
 ∫ 𝜓′(𝑠)

𝑡1

𝑎

[[𝜓𝑡1,𝑠]
𝛼−1

− [𝜓𝑡2,𝑠]
𝛼−1

]  𝑑𝑠 

+
𝔉𝑚𝑎𝑥

𝛤(𝛼)
∫ 𝜓′(𝑠)

𝑡2

𝑎

(𝜓𝑡2,𝑠)
𝛼−1

𝑑𝑠 

≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
([𝜓𝑡2,𝑎]

𝑘
− [𝜓𝑡1,𝑎]

𝑘
) +

𝔉𝑚𝑎𝑥

𝛤(𝛼 + 1)
 [([𝜓𝑡2,𝑎]

𝛼
+ [𝜓𝑡2,𝑡1

]
𝛼

− [𝜓𝑡1,𝑎]
𝛼

)]. 

+
𝔉𝑚𝑎𝑥

𝛤(𝛼+1)
 [𝜓𝑡2,𝑡1

]
𝛼

 

= ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
([𝜓(𝑡2) − 𝜓(𝑎)]𝑘 − [𝜓(𝑡1) − 𝜓(𝑎)]𝑘) 

+
2𝔉𝑚𝑎𝑥

𝛤(𝛼 + 1)
[𝜓(𝑡2) − 𝜓(𝑡1)]𝛼 +

𝔉𝑚𝑎𝑥

𝛤(𝛼 + 1)
[([𝜓(𝑡2) − 𝜓(𝑎)]𝛼  − [𝜓(𝑡1) − 𝜓(𝑎)]𝛼 )]. 

Clearly, the R.H.S of the above inequality tends to zero as 𝑡2 → 𝑡1. Therefore 𝑇(𝔹𝑟) is equicontinuous in 𝛥. From 

Arzela-Ascoli theorem, 𝑇 is completely continuous. 

Step 4. We show that the set 

𝛱 = {𝜛 ∈ 𝛺: 𝜛 = 𝜆𝑇𝜛, for some 𝜆 ∈ (0,1)} 

is bounded. Let 𝜛 ∈ 𝛱 and 𝜆 ∈ (0,1) be such that 𝜛 = 𝜆𝑇𝜛. By Step 2, then for all 𝑡 ∈ 𝑎, 𝑎 + 𝜁], we have  

|𝑇𝜛(𝑡)| ≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+

[𝜓𝑎+𝜁,𝑎]
𝛼−1

𝛤(𝛼)
‖𝜛‖‖𝜌‖𝐿1,𝜓 

As 𝜆 ∈ (0,1) then 𝜛 < 𝑇𝜛, and  

‖𝜛‖ < ‖𝑇𝜛‖ 
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≤ ∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
+

[𝜓𝑎+𝜁,𝑎]
𝛼−1

𝛤(𝛼)
‖𝜛‖‖𝜌‖

𝐿1,𝜓 . 

As per (3.2), we obtain 

‖𝜛‖ ≤
1

(1 −
[𝜓𝑎+𝜁,𝑎]

𝛼−1

𝛤(𝛼)
‖𝜌‖𝐿1,𝜓)

∑

𝑛−1

𝑘=0

|𝜛𝑎
𝑘|

𝑘!
[𝜓𝑎+𝜁,𝑎]

𝑘
, 

which implies that 𝛱 is bounded. An application of S’sFPT shows that there exists at least a fixed point 𝜛 of 𝑇 in 𝛥. 

Therefore, 𝜛 is the solution to (1.1)-(1.2) on [𝑎, 𝑎 + 𝜁] ⊆ 𝐽.  

Theorem 3.2. Suppose that (𝐻𝑦1) holds. If  

𝑤: =
[𝜓𝑎+𝜁,𝑎]

𝛼

𝛤(𝛼 + 1)
𝐿 (1 +

[𝜓𝑎+𝜁,𝑎]
𝛼

𝛤(𝛼 + 1)
) < 1,  𝜁 ∈ ℝ+,  𝑎 + 𝜁 ≤ 𝑏, (3.5) 

then the problem (1.1)-(1.2) has a unique solution on [𝑎, 𝑎 + 𝜁] ⊆ 𝐽.  

Proof. Consider the set 𝛥 and the operator 𝑇: 𝛥 → 𝛥 defined by (3.3) and (3.4), respectively. 

We prove that 𝑇(𝛥) ⊆ 𝛥, and 𝑇 is a contraction mapping. For that, first we consider 𝜛 ∈ 𝐶𝑛−1([𝑎, 𝑎 + 𝜁], 𝑋). It is 

clear that 𝑇𝜛(𝑡) ∈ 𝐶𝑛−1([𝑎, 𝑎 + 𝜁], 𝑋). Also, by (3.4), and Lemmas 2.2, 2.1, we have  

 𝐶𝐷
𝑎+
𝛼;𝜓

(𝑇𝜛)(𝑡) =𝐶 𝐷
𝑎+
𝛼;𝜓

∑

𝑇−1

𝑘=0

𝜛𝑎
𝑘

𝑘!
[𝜓𝑡,𝑎]

𝑘
+𝐶𝐷

𝑎+
𝛼;𝜓

𝐼
𝑎+
𝛼;𝜓

𝐹(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡)) 

= 𝔉(𝑡, 𝜛(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛(𝑡)). 

Since 𝔉 is continuous on [𝑎, 𝑎 + 𝜁], then  𝐶𝐷
𝑎+
𝛼;𝜓

(𝑇𝜛)(𝑡) ∈ 𝐶([𝑎, 𝑎 + 𝜁], 𝑋). 

Next, let 𝜛1, 𝜛2 ∈ 𝛥 and for 𝑡 ∈ 𝑎, 𝑎 + 𝜁]. Then 

‖𝑇𝜛1(𝑡) − 𝑇𝜛2(𝑡)‖ = ‖𝐼
𝑎+
𝛼;𝜓

[𝔉(𝑡, 𝜛1(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛1(𝑡)) − 𝔉(𝑡, 𝜛2(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛2(𝑡))]‖ 

≤
[𝜓𝑡,𝑎]

𝛼

𝛤(𝛼 + 1)
‖𝔉(𝑡, 𝜛1(𝑡), 𝐼

𝑎+
𝛼;𝜓

𝜛1(𝑡)) − 𝔉(𝑡, 𝜛2(𝑡), 𝐼
𝑎+
𝛼;𝜓

𝜛2(𝑡))‖ 

≤
[𝜓𝑡,𝑎]

𝛼

𝛤(𝛼 + 1)
[ 𝐿‖𝜛1(𝑡) − 𝜛2(𝑡)‖ + 𝐿‖𝐼

𝑎+
𝛼;𝜓

𝜛1(𝑡) − 𝐼
𝑎+
𝛼;𝜓

𝜛2(𝑡)‖] 

=
[𝜓𝑡,𝑎]

𝛼

𝛤(𝛼 + 1)
[ 𝐿‖𝜛1(𝑡) − 𝜛2(𝑡)‖ + 𝐿

[𝜓𝑡,𝑎]
𝛼

𝛤(𝛼 + 1)
‖𝜛1(𝑡) − 𝜛2(𝑡)‖] 

≤ [
[𝜓𝑡,𝑎]

𝛼

𝛤(𝛼 + 1)
𝐿 (1 +

[𝜓𝑡,𝑎]
𝛼

𝛤(𝛼 + 1)
)] ‖𝜛1(𝑡) − 𝜛2(𝑡)‖ 

≤ 𝑤‖𝜛1(𝑡) − 𝜛2(𝑡)‖. 

Since 𝑤 < 1, 𝑇 is a contraction. Then by B’sFPT, there exists a unique fixed point 𝜛 ∈ 𝛥 such that 𝑇𝜛(𝑡) = 𝜛(𝑡). 

Therefore 𝜛 is the unique solution to the problem (1.1)-(1.2) on [𝑎, 𝑎 + 𝜁] ⊆ 𝑎, 𝑏].  
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4. An Example  

Consider the following 𝜓 -CFIDE 

 𝐶𝐷
𝑎+
𝛼;𝜓

𝜛(𝑡) =
𝑒−𝑡𝜛(𝑡)

(8 + 𝑒𝑡)(1 + 𝜛(𝑡))
+

1

9
𝐼

𝑎+
𝛼;𝜓

𝜛(𝑡), (4.1) 

with initial conditions 

𝜛(0) = 𝜛0,   𝜛𝜓
′ (0) = 𝜛0

1, (4.2) 

where 𝑛 = 2, 𝛼 =
3

2
, and 𝜛0, 𝜛0

1 ∈ 𝑋. Take 𝑋 = ℝ+ and [𝑎, 𝑏] = [0,1]. Set 𝔉(𝑡, 𝜛, 𝐼
𝑎+
𝛼;𝜓

𝜛) =
𝑒−𝑡𝜛

(9+𝑒𝑡)(1+𝜛)
+

1

9
𝐼

𝑎+
𝛼;𝜓

𝜛. Let 𝜛, 𝑣 ∈

ℝ+ and 𝑡 ∈ 0,1]. Then 

‖𝔉(𝑡, 𝜛, 𝐼
𝑎+
𝛼;𝜓

𝜛) − 𝔉(𝑡, 𝑣, 𝐼
𝑎+
𝛼;𝜓

𝑣)‖ ≤
𝑒−𝑡

(8 + 𝑒𝑡)
‖

𝜛 − 𝑣

(1 + 𝜛)(1 + 𝑣)
‖ +

1

9
‖𝐼

𝑎+
𝛼;𝜓

𝜛 − 𝐼
𝑎+
𝛼;𝜓

𝑣‖ 

≤
1

9
[‖𝜛 − 𝑣‖ + ‖𝐼

𝑎+
𝛼;𝜓

𝜛 − 𝐼
𝑎+
𝛼;𝜓

𝑣‖]. 

Hence, the assumptions (𝐻𝑦1) holds with 𝐿 =
1

9
. We will check that 𝑤 < 1. Indeed, we select 𝜁 =

1

2
, and 𝜓(𝑡) =

𝜓𝑡 = 2𝑡 for all 𝑡 ∈ 0,1]. It follows that 𝑤 ≈ 0.03 < 1. Thus, by Theorem 3.2, the problem (4.1)-(4.2) has a unique 

solution on [0,
1

2
]. Now, we apply Theorem 3.1. For 𝜛 ∈ ℝ+ and 𝑡 ∈ 0,

1

2
], we have 

‖𝔉(𝑡, 𝜛, 𝐼
𝑎+
𝛼;𝜓

𝜛)‖ ≤
𝑒−𝑡‖𝜛‖

(8 + 𝑒𝑡)(1 + ‖𝜛‖)
+

1

9
𝐼

𝑎+
𝛼;𝜓‖𝜛‖ ≤ (

𝑒−𝑡

(8 + 𝑒𝑡)
+

4(√2 − 1)
3

2

27√𝜋
) ‖𝜛‖. 

Hence, the assumption (𝐻𝑦2) holds with 𝜌(𝑡) =
𝑒−𝑡

(8+𝑒𝑡)
+

4(√2−1)
3
2

27√𝜋
∈ 𝐿1,𝜓(ℝ+), due to  

‖𝜌‖𝐿1,𝜓 = ∫
1

0

𝜓′(𝑠) |
𝑒−𝑠

(8 + 𝑒𝑠)
+

4(√2 − 1)
3

2

27√𝜋
| 𝑑𝑠 

= ∫
1

0

2𝑠 𝑙𝑜𝑔 2 |
𝑒−𝑠

(8 + 𝑒𝑠)
+

4(√2 − 1)
3

2

27√𝜋
| 𝑑𝑠 

= 6.1845 × 10−2 +
1

𝑙𝑛 2
𝑙𝑛

8

27√𝜋
(√2 − 1)

3

2 < ∞. 

Finally, the condition (3.2) is satisfied, that is 
[𝜓𝑎+𝜁,𝑎]

𝛼
‖𝜌‖

𝐿1

𝛤(𝛼+1)
≈ 0.5 < 1. By Theorem 3.1, the problem (4.1)-(4.2) has a 

solution on [0,
1

2
]. 
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