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ABSTRACT 

Coronary stenosis results from unnatural narrowing of the heart arteries due to the 

accumulation of adipose depots, leading to different heart diseases and yielding top 

mortality worldwide. Thus far, deep learning-based methods for automatic stenosis 

over X-ray Coronary Angiography (XCA) have employed state-of-the-art architectures 

to solve the ImageNet challenge. With the advance of deep learning, contemporary 

architectures incorporated a variety of attention mechanisms to improve 

performance. Therefore, this paper presents a study of three attention mechanisms 

for stenosis detection in XCA images. Extensive experiments and comparisons over 

different Residual backbone networks are presented to verify the effectiveness of 

including such attention modules. An improvement of 4%, 10%, and 10% on the 

accuracy, recall, and F1-score was achieved using the approach, reaching mean values 

of 0.8787, 0.8610, and 0.8732, respectively. 
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1. Introduction 

Convolutional Neural Networks (CNNs) have been applied successfully in the medical imaging domain for 

different tasks, such as segmentation and classification [1, 2]. However, a CNN requires a sizeable training dataset 

to perform effectively. One of the main limitations of medical image datasets is that they are time-consuming, 

requiring professional expertise to label them. For such a reason, the amount of label data is restricted [3,4]. 

Data augmentation [5] is a widely used method as an effective way to generate new training samples to 

improve performance. Also, Transfer Learning is another important method [6], where the network is previously 

trained on a large dataset (data source) instead of training from scratch with the target dataset. Recently, attention 

modules [7-9] are being developed and included in the network architectures to enhance intermediate feature 

maps by learning channel and spatial information. 

Detecting stenosis plays an essential role in cardiology because Coronary Heart Disease (CHD), including 

stenosis, is the leading cause of death worldwide [10]. X-ray Coronary Angiography (XCA) remains the gold-

standard vascular imaging modality despite other available angiographic techniques (e.g., magnetic resonance 

imaging, computed tomography, and ultrasound angiography). In comparison, XCA provides the ability of in vivo 

assessment and treatment, such as angioplasty, where a catheter is used to clear a stenotic artery (narrowed or 

blocked artery) [11]. 

Fig. 1 shows a representative XCA image where stenosis and non-stenosis areas are highlighted. Nevertheless, 

manual stenosis detection requires an exhaustive visual examination by the specialist. Besides, automatic stenosis 

detection is considered a challenge because of corrupted or noisy data (resolution, contrast, signal-to-noise), 

typically caused by image acquisition [12, 13]. 

 

Figure 1: X-ray coronary angiography image within two marked regions corresponding to a non-stenosis and stenosis case. The 

stenosis case presents a partial artery blockage.  

The main contribution of this paper is a comparative evaluation of different state-of-the-art attention modules 

to improve stenosis detection. This work is the first comparative study of attention modules for stenosis detection 

on XCA images to the best of our knowledge. Plus, the hyperparameters’ selection for such modules is studied and 

discussed. So, data augmentation is set in place to deal with a limited amount of training data: random horizontal 

flip, random vertical flip, and discrete rotations. 

Experimental results prove the significant impact of including an attention module into the CNN, boosting 

accuracy up to 4%. 
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2. Related Work 

Recent works attempt to automatically detect coronary artery stenosis in XCA employing Deep Learning 

models [14-20]. One of the main advantages of these algorithms rely on feature extraction, feature selection, and 

classification, requiring traditional machine learning-based methods [21-23], which is realized within the 

optimization step of the same deep architecture. 

Zhao et al. [14] developed an automatic approach to extract coronary arteries and detect arterial stenosis from 

a collection of 314 XCA images. First, a UNet++ [15] with Feature Pyramid techniques (FP-UNet) performs 

segmentation of coronary arteries. Second, centerlines of arterial segments are extracted to measure the 

diameter of each segment. Finally, according to a stenotic threshold, the segment is classified. 

Some approaches take advantage of the availability of the full screening test. For instance, Cong et al. [16] put 

forward a deep-learning-based workflow divided into three steps: 1) artery/angle view choice, 2) candidate frame 

selection, and 3) stenosis classification localization. These steps employ a pre-trained Inception-v3 [24] with the 

ImageNet [25] dataset as the backbone network. First, an XCA video is classified into a left or right coronary artery 

employing the backbone network. Then, candidate frames (with clearly contrasted vessel borders) and 

redundancy frames (background frames) are chosen. To do so, the fully-connection layer of the Inception-v3 

network feeds a bi-directional Long-Short-Term Memory (LSTM). Finally, stenosis classification is performed using 

the backbone network over the final candidate frames. Redundant frames are employed as additional training 

data. 

Wu et al. [17] introduced a coronary artery stenosis deep learning-based object detection network working as 

follows: first, from the input XCA sequence, only the contrast-filled frames are selected based on U-Net 

segmentation results. Next, a Deconvolutional Single-Shot multi-box Detector (DSSD) with a Visual Geometry 

Group (VGG) [26] backbone model provides potential stenosis regions. Finally, a sequence-non-maximum 

suppression algorithm removes false positives stenosis cases. 

Similarly, Pang et al. [18] disposed of the complete video to propose the Stenosis-DetNet, an end-to-end 

network for stenosis detection. The method consists of a Sequence Feature extraction and Fusion (SFF) module 

and a Sequence Consistency Alignment (SCA) module. First, the SFF fuses candidate object bounding box and 

feature maps obtained by a ResNet50 [27] from the continuous frames of the XCA test. Second, the SCA module 

optimizes the initial bounding boxes by prior coronary artery displacement information and adjacent image 

features. This two-step workflow improves the final detection. 

These methods exploit the availability of the complete angiography image sequence acquired during the 

screening test. However, the last step detects stenosis from candidates’ bounding boxes seen as an image patch 

classifier in the previous two approaches. Antczak and Liberadzki [19] introduce a shallow patch-based CNN only 

five-layer deep for small XCA image patches stenosis classification. Additionally, to deal with the limited training 

dataset and improve classification performance, the network is pre-trained by synthetic images where vessels are 

modeled as Bezier curves. Ovalle et al. [20] evaluate three CNN pre-trained on the ImageNet dataset (VGG16, 

ResNet50, and Inception-v3) following a patch-based classification. Hence, the number of layers needed to fine-

tune is determined by an exhaustive search. Additionally, it was proven that the last convolutional layers can be 

cut from the network. Therefore, the training time and the number of parameters are reduced without 

compromising the detection rates. 

3. Methods 

Recently, different state-of-the-art networks for natural image classification have leveraged attention 

mechanisms to improve network performance [7-9]. The attention mechanisms are focused on refining the 

feature maps learning channel attention or spatial attention relationships of features. This section analyzes three 

attention modules that will be evaluated in XCA images for stenosis detection. 



Attention Mechanisms Evaluated on Stenosis Detection Ovalle-Magallanes et al. 

 

65 

3.1. Squeeze-and-Excitation Attention 

Squeeze-and-Excitation Networks (SENets) [7] investigate the relationships between channels, learn global 

information weighting the relevance of the features, emphasize discriminant features and remove less useful 

ones. 

SENets have a channel attention mechanism consisting of two components: a Squeeze Block and an Excitation 

Block. Given the input feature map 𝐗 ∈ ℝ𝐶×𝐻×𝑊, the Squeeze Block collects global information for each channel 𝑥𝑐, 

with 𝑐 indicating the channel index in the input map, i.e., 𝑐 ∈ ℕ, 𝑐 ≤ 𝐶, is expressed as follows  

𝑧𝑐  =  𝑔(𝐗) =  
1

𝐻 ×  𝑊 
∑ ∑ 𝑥 (𝑖, 𝑗),

𝑐
1

𝑊

𝑗=1

𝐻

𝑖=1

 
(1) 

 

where 𝑧𝑐 is the channel-wise Global Average Pooling (GAP) associated with the c-th input feature channel. As such, 

a statistic 𝒛 ∈ ℝ𝐶×1×1 is generated, noticing that the number of channels remains the same. 

The Excitation block is a Multi-Layer Perceptron (MLP) bottleneck responsible for capturing channel-wise 

dependencies, i.e., learning the channel attention weights. The MLP comprises two Fully-Connected (FC) layers 

around the non-linearity acting as a dimensionality-reduction layer with a reduction ratio 𝑟; a dimensionality-

increasing layer returns to the original channel dimension. Formally, the Squeeze-Excitation (SE) block takes the 

form:  

𝝎 = 𝜎(𝑓(𝒘1, 𝒘2)(𝒛)) (2) 

= 𝜎(𝑾2𝛿(𝑾1𝒛)), (3) 

where 𝜎 refers to sigmoid and 𝛿 to the ReLU activation function, 𝑾1 ∈ ℝ𝐶×(
𝐶

𝑟
) and 𝑾2 ∈ ℝ(

𝐶

𝑟
)×𝐶. Therefore, the total 

parameters of the SE attention module are 
2𝐶2

𝑟
. 

Fig. 2 summarizes the SE module procedure from the given intermediate feature maps, generally obtained by a 

previous convolutional layer. Finally, the refined feature maps are obtained by  

�̂� = 𝐗 ⊗  𝝎, (4) 

where ⊗ denotes channel-wise multiplication. 

 

Figure 2: Squeeze-and-Excitation Attention module. Global information for each channel is obtained by the Squeeze Block 

(AvgPool), then the Excitation Block is an MLP capturing the channel-wise dependencies. 

3.2. Efficient Channel Attention 

Efficient Channel Attention Networks (ECANet) [9] introduced an attention mechanism based on SE blocks 

without dimensionality reduction. By a local cross-channel interaction strategy, each channel from a given input 

feature map 𝑿 ∈ ℝ𝐶×𝐻×𝑊 has interdependence on every other channel in a small local group. Thus, once computed 

the feature vector 𝒛 ∈ ℝ𝐶×1×1 (GAP outcome), the local cross-channel interaction-based attention can be written as  
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𝜔𝑐  =  𝜎 (∑ 𝑤 𝑧 ,𝑐
𝑗

𝑐

𝑗

𝑘

𝑗=1

) , 𝑧 ,𝑐
𝑗 ∈ 𝛺𝑐

𝑘 , (5) 

where 𝛺𝑐
𝑘 is the set of 𝑘 adjacent channels of the query channel 𝑤𝑐, i.e., a neighborhood of size 𝑘 of the c-th 

channel and 𝜎 stands for the sigmoid activation function. 

Furthermore, if the channels share the same learning weights 𝑤𝑐, the parameters can be reduced from 𝐶 ⋅ 𝑘 to 

𝑘. Thus, the above equation can be re-written as follows  

𝝎𝑐  =  𝜎 (∑ 𝑤 𝑧 ,𝑐
𝑗

.

𝑗

𝑘

𝑗=1

) , 𝑧 ,𝑐
𝑗 ∈ 𝛺𝑐

𝑘 . (6) 

This local interaction can be seen as a 1D convolution (Conv1D) with kernel size 𝑘. In such a way, the Efficient 

Channel Attention (ECA) can be defined as: 

 𝝎 =  𝜎(𝐶𝑜𝑛𝑣1𝐷(𝑘)(𝐳)). (7) 

The size of the kernel is obtained adaptive and proportional to the number of channels 𝐶 as follows,  

𝑘 =  |
𝑙𝑜𝑔2(𝐶)

𝛾 
 +

𝛽

𝛾 
 |

𝑜𝑑𝑑
 ,  (8) 

here | ⋅ |odd indicates the nearest odd number, 𝛽 = 1 and 𝛾 = 2. Fig. 3 shows the ECA module, where one can 

clearly see that a 1D convolution layer now obtains the channel-wise dependencies.  

 

Figure 3: Efficient Channel Attention module. After the global Average Pooling (AvgPool) infer global information, the local 

interaction between channels is acquired by a 1D convolution of adaptive kernel size 𝑘.  

3.3. Convolutional Block Attention  

Convolutional Block Attention Module (CBAM) [8] contains two sequential sub-modules: the Channel Attention 

Module (CAM) and the Spatial Attention Module (SAM). From a given input feature map 𝑿 ∈ ℝ𝐶×𝐻×𝑊, the CBAM 

mechanism infers attention maps along the channel and spatial dimensions to generate a refined feature map �̂� ∈

ℝ𝐶×𝐻×𝑊. 

First, the CAM is based on the SE module; wherein besides using the global average-pooled features, a max-

pooling operation is carried out to generate two different spatial feature vectors: 𝒛𝒄
avg, 𝒛𝒄

max ∈ ℝ𝐶×1×1, respectively. 

Both feature vectors are forwarded through an MLP sharing the weights with each input. This shared network 

comprises dimensionality-reduction and dimensionality-increasing layers, with a ReLU activation function between 

them. Hence, the channel attention map 𝝎𝒄 ∈ ℝ𝐶×1×1 is computed as  

𝝎𝒄 = 𝜎(𝑓(𝒘1, 𝒘2)(𝒛𝒄
avg) + 𝑓(𝒘1, 𝒘2)(𝒛𝒄

max)) (9) 
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= 𝜎(𝑾2𝛿(𝑾1𝒛𝒄
avg) + 𝑾2𝛿(𝑾1𝒛𝒄

max)). (10) 

It is noteworthy that the number of parameters of the CAM is the same as the SE attention module with 
2𝐶2

𝑟
, 

where 𝑟 is the feature reduction ratio involving the MLP. Fig. 4 illustrates the CAM procedure. At this point, an 

intermediate refined feature map 𝑿′ is obtained by  

𝐗′ =  𝝎𝒄 ⊗  𝐗, (11) 

where ⊗ denotes element-wise multiplication. 

 

Figure 4: The Channel Attention sub-module includes two pooling layers and a shared MLP to exploit the inter-channel 

relationship of features from a given input 𝑿. 

Secondly, the SAM is generated by using the refined intermediate features as input. In order to obtain the 

spatial attention feature map, two pooling operations along the channel axis were applied: an average-pooling 

and max-pooling generating two 2D maps 𝒛𝒔
avg, 𝒛𝒔

max ∈ ℝ1×𝐻×𝑊, respectively. Subsequently, those feature maps are 

concatenated and convolved by a 2D convolution layer (Conv2D). Therefore, the spatial attention is computed as  

𝝎𝒔 =  𝜎(Conv2D(𝑘)(𝒛𝐬
avg;  𝒛𝐬

max)), (12) 

where 𝑘 is the filter size, set as 𝑘 = 7 × 7 by default. 

Fig. 5 depicts the computation process of this sub-module, requiring 2𝑘2 parameters.  

 

Figure 5: Spatial Attention sub-module. Similarly, two pooling operations are required. Their outputs are concatenated and 

sent to a 2D convolutional layer. 

Finally, the overall CBAM process is expressed as an element-wise multiplication between the intermediate 

feature map and the spatial attention map,  

�̂�  =  𝝎𝒔 ⊗  𝐗′. (13) 

Similar to the previous attention mechanisms, the output refined feature map shares the exact dimensions 

concerning the input feature map, i.e., �̂� ∈ ℝ𝐶×𝐻×𝑊. 

It is essential to point out that the attention modules mentioned above can be easily plugged into a CNN 

architecture. More commonly, the attention module is included after a convolutional or residual block (before 

subsampling) to improve the feature relevance at each scale level. 
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4. Results 

This work conducted extensive experiments to evaluate the relevance of including an attention module into a 

ResNet backbone network for stenosis detection in a limited XCA dataset. The analysis includes the effect of the 

reduction ratio and the choice of the ResNet depth ( i.e., 18, 50, and 101). 

4.1. Dataset 

The three attention modules were evaluated with the public stenosis dataset presented by Antczak and 

Liberadzki [19]. This dataset consists of 250 image patches produced from real XCA images acquired from internal 

and internet sources. The data are labeled as stenosis and non-stenosis, containing 125 images for each class. The 

dataset is split in a stratified manner into three subsets: training (100 images), validation (25 images), and testing 

(125 images). This amount of data is really limited for a robust CNN training process. For this reason, a 

combination of random horizontal and vertical flip and discrete rotation as data augmentation is conducted 

during the training procedure. These particular transformations do not modify the geometrical structure of the 

images ( i.e., vessels), being crucial not to create stenosis structures where is a negative case or vice-versa. 

Fig. 6 shows XCA real samples (first column), followed by the output images generated by the data 

augmentation procedure.  

 

Figure 6: Two examples of XCA images and their corresponding data-augmentation-generated images (Top: a stenosis case, 

bottom: a non-stenosis case). For each row, the first image corresponds to the original image. 

4.2. Implementation Details 

Three different backbone networks (part of the family of the ResNet) were evaluated: the ResNet18, ResNet50, 

and ResNet101. To plug the different attention modules and avoid the input for the last residual block from being 

minimal (a feature map in ℝ𝐶×1×1), two changes are made on the ResNets. First, the last residual block is ignored, 

i.e., changed by an Identity block, reducing the network depth, therefore, the number of parameters. Secondly, the 

kernel size of the first convolutional layer was set to 3 × 3 instead of 7 × 7. Besides, the stride was changed from 2 

to 1 to avoid subsampling. 

Table 1 shows the backbone architectures evaluated and their configuration characteristics, including the 

kernel size, number of filters, and output of the layers. Notice that the attention module included in each residual 

block does not change the layer output size. Layer removal has been employed to improve accuracy and speed 

the inference up in pre-trained networks used in transfer learning and pre-defined architectures employed for the 

ImageNet challenge [20, 28]. Such an approach is based on the intuition that features at the bottom of a network 

extract high-level features ( i.e., edges) [6].  

Conversely, the top layers (last layers in the models) extract more abstract features being not necessarily useful 

enough when are extracted from small feature maps. For instance, the convolution kernel is bigger than the input 

feature map. Therefore, it makes the last layers more suitable for removal or change, i.e., for an identity layer. 
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Table 1: Backbone architectures. Building blocks are shown in the matrix notation, with the numbers of stacked 

blocks. The input sample size is a 𝟑𝟐 × 𝟑𝟐 image patch. 

Layer  Output Size  18-Layer  50-Layer  101-Layer  

Conv1   32 × 32   3 × 3, Stride 1  

Pool1   16 × 16   3 × 3 Max-pooling, Stride 2  

Residual1   8 × 8   [
3 × 3,  64
3 × 3,  64

] × 2  
 [

1 × 1,    64
3 × 3,    64
1 × 1,  256

] × 3   [
1 × 1,    64
3 × 3,    64
1 × 1,  256

] ×   3 

Residual2   4 × 4   [
3 × 3,128
3 × 3,128

] × 2  
 [

1 × 1,  128
3 × 3,  128
1 × 1,  512

] × 4   [
1 × 1,  128
3 × 3,  128
1 × 1,  512

] ×   4 

Residual3   2 × 2   [
3 × 3,256
3 × 3,256

] × 2  
 [

1 × 1,  256
3 × 3,  256
1 × 1,1024

] × 6   [
1 × 1,  256
3 × 3,  256
1 × 1,1024

] × 23  

Identity1   2 × 2   –   –   –  

GAP   –   Global Average Pooling 

Class   2   SoftMax  

 

The training process employs the Adam [29] optimizer with an initial learning rate of 1 × 10−3. The learning rate 

follows a cosine annealing schedule [30] with a restart period of 10 epochs, a minimum learning rate of 1 × 10−4, 

and a batch size of 4. A total of one hundred epochs were executed, saving the best weights of the model only if 

the validation loss manifested substantial improvement. Furthermore, the experiments were implemented 

employing the Pytorch framework and the Timm library [31] and running on Google’s cloud servers, including a 

Tesla P4 GPU. 

4.3. Evaluation Metrics 

All the network configurations were evaluated under different metrics based on true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) measures. The considered metrics are Accuracy (Acc), 

Precision (Pr), Recall (Rec), F-score (F𝛽), and Specificity (Sp), defined as follows 

Acc =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, 

(14) 

Pr =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 

(15) 

Rec =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
, 

(16) 

𝐹𝛽 =
(1 + 𝛽2)𝑇𝑃

(1 + 𝛽2)𝑇𝑃 + 𝛽2(𝐹𝑁 + 𝐹𝑃)
, 

(17) 

Sp =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. 

(18) 

A particular factor, 𝛽 = 1, was chosen for the F-score, given the harmonic mean of the precision and recall 

known as F1-score. 

4.4. Stenosis Detection Results 

Experiments are conducted with three different backbone residual networks and three attention modules. 

Each network was trained using the same hyperparameters. Besides, the experiments were repeated five times, 

using different seeds for the weights’ initialization. 
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Table 2 shows the results for the ResNet18, where the best accuracy, recall, and F1-score are obtained within 

an SE attention module with a reduction ratio of 𝑟 = 8.  

Table 2: Performance comparison on ResNet18 as backbone network.  

 Attention   𝒓   Accuracy   Precision   Recall   F𝟏-score   Specificity  

N/A   N/A   0.8361±0.046   0.8903±0.0592   0.7627±0.1216   0.8140±0.0684   0.9048±0.0561  

SE 

 1  

 2  

 4  

 8  

 16  

 0.8672±0.0359  

 0.8738±0.0299  

 0.8492±0.0396  

 0.8787±0.0280  

 0.8525±0.0353  

 0.8963±0.0123  

 0.8955±0.0173  

 0.8630±0.0513  

 0.8873±0.0474  

 0.8488±0.0392  

 0.8203±0.0809  

 0.8373±0.0735  

 0.8203±0.0594  

 0.8610±0.0303  

 0.8508±0.1020  

 0.8550±0.0457  

 0.8639±0.0383  

 0.8400±0.0439  

 0.8732±0.0269  

 0.8457±0.0476  

 0.9111±0.0142 

 0.9079±0.0207  

 0.8762±0.0531  

 0.8952±0.0522  

 0.8540±0.0543  

CBAM 

 1  

 2  

 4  

 8  

 16  

0.8721±0.0408 

0.8429±0.0286 

0.8246±1.0197 

0.8344±0.0340 

0.8508±0.0135 

0.8784±0.0455 

0.8467±0.0272 

0.8762±0.0246 

0.8688±0.0444 

0.8593±0.0402 

0.8576±0.0877 

0.8271±0.0939 

0.7424±0.0251 

0.7763±0.0528 

0.8305±.0339 

0.8650±0.0480 

0.8336±0.0402 

0.8036±0.0225 

0.8190±0.0384 

0.8435±0.0108 

0.8857±0.0543 

0.8571±0.0435 

0.9016±0.0207 

0.8889±0.0435 

0.8698±0.0481 

ECA   N/A   0.8607±0.0317   0.871±0.0568   0.8407±0.0517   0.8538±0.0327   0.8794±0.0631 

 

Table 3: Performance comparison on ResNet50 as a backbone network.  

 Attention   𝒓   Accuracy   Precision   Recall   F𝟏-score   Specificity  

N/A   N/A   0.8344±0.0303   0.9106±0.0500   0.7322±0.0639   0.8096±0.0390   0.9302±0.0414  

SE   1  

 2  

 4  

 8  

 16  

 0.8574±0.0310  

 0.8426±0.0354  

 0.8361±0.0192  

 0.8525±0.0284  

 0.8361±0.0441  

 0.8760±0.0402  

 0.8928±0.0312  

 0.8955±0.0206  

 0.8758±0.0200  

 0.8799±0.0525  

 0.8237±0.0663  

 0.7661±0.0554  

 0.7492±0.0470  

 0.8102±0.0627  

 0.7661±0.0514  

 0.8474±0.0359  

 0.8242±0.0434  

 0.8149±0.0269  

 0.8406±0.0353  

 0.8187±0.0488  

 0.8889±0.0405  

 0.9143±0.0241  

 0.9175±0.0207  

 0.8921±0.0207  

 0.9016±0.0455 

CBAM   1  

 2  

 4  

 8  

 16  

 0.8361±0.0471  

 0.8295±0.0187  

 0.8574±0.0250  

 0.8508±0.0212  

 0.8689±0.0301  

 0.8654±0.0495  

 0.8594±0.0584  

 0.8863±0.0322  

 0.8595±0.0313  

 0.8910±0.0213  

 0.7831±0.0661  

 0.7831±0.0682  

 0.8102±0.0470  

 0.8102±0.0733  

 0.8305±0.0623  

 0.8214±0.0530  

 0.8158±0.0210  

 0.8457±0.0297  

 0.8388±0.0310  

 0.8588±0.0368  

 0.8857±0.0440  

 0.8730±0.0753 

 0.9016±0.0344 

 0.8889±0.0337 

 0.9048±0.0194 

ECA   N/A   0.8639±0.0351   0.8895±0.0172   0.8203±0.0735   0.8523±0.0435   0.9048±0.0159 

 

Moreover, with this attention module, the best precision and specificity are achieved, but with a reduction ratio 

of 𝑟 = 1 ( i.e., with no reduction). Incorporating an attention module into the ResNet18 boosts up to four points in 

the accuracy concerning the model without attention. 

Table 3 compares the ResNet50 performance; the best accuracy, recall, and F1-score are reached when the 

CBAM (with a reduction ratio of 𝑟 = 16) is plugged in the network.  

Table 4 shows a deeper ResNet, where the ECA module obtains the best accuracy, recall, and F1-score. The 

CBAM (with 𝑟 = 8) has the best precision and specificity. Notice that incorporating the attention module into the 

ResNet18 and the ResNet101 improves the values of five evaluation metrics. Contrarily, in the ResNet50, the 

precision and recall were not surpassed by plugging the attention module into the network. The numerical result 

shows that there is no need to train a very deep network to get high performance in stenosis detection, where 

three of the best overall metrics are achieved by the ResNet18 + SE with 𝑟 = 8. 
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Table 4: Performance comparison on ResNet101 as a backbone network.  

 Attention   𝒓   Accuracy   Precision   Recall   F𝟏-score   Specificity  

N/A   N/A   0.8344±0.0340   0.8620±0.0423   0.7864±0.0853   0.8196±0.0439   0.8794±0.0429  

SE 

 1  

 2  

 4  

 8  

 16  

 0.8509±0.0554  

 0.8328±0.0250  

 0.8557±0.0160  

 0.8230±0.0539  

 0.8639±0.0293  

 0.8804±0.0372  

 0.8633±0.0539  

 0.8881±0.0382  

 0.8527±0.0667  

 0.9062±0.0205  

 0.8068±0.1316  

 0.7864±0.0978  

 0.8068±0.0652  

 0.7695±0.0663  

 0.8034±0.0827  

 0.8424±0.0753  

 0.8176±0.0409  

 0.8431±0.0234  

 0.8077±0.0569  

 0.8492±0.0399  

 0.9079±0.0344  

 0.8762±0.0658  

 0.9016±0.0440  

 0.8730±0.0673  

 0.9206±0.0251  

CBAM 

 1  

 2  

 4  

 8  

 16  

 0.8459±0.0212  

 0.8525±0.0239  

 0.8574±0.0321  

 0.8721±0.0197  

 0.8279±0.0430  

 0.8576±0.0443  

 0.8535±0.0322  

 0.8895±0.0364  

 0.9202±0.0310  

 0.8646±0.0550  

 0.8203±0.0351  

 0.8407±0.0458  

 0.8068±0.0663  

 0.8068±0.0425  

 0.7661±0.0723  

 0.8375±0.0205  

 0.8462±0.0258  

 0.8446±0.0388  

 0.8589±0.0239  

 0.8106±0.0524  

 0.8698±0.0481  

 0.8635±0.0398 

 0.9048±0.0355  

 0.9333±0.0284  

 0.8857±0.0531  

ECA   N/A   0.8754±0.0354   0.9075±0.0336   0.8305±0.1024   0.8660±0.0522   0.9175±0.0379 

 

The best precision and specificity are obtained without any attention module. 

Additionally, Table 5 shows a comparison study with other proposed deep learning architectures employing the 

same dataset. Only the models trained from scratch are included to make a fair comparison. The ResNet18 + SE 

using 𝑟 = 8 surpassed four over five metrics concerning the analyzed baseline models. 

Table 5: Performance comparison concerning models using the same dataset and training/testing partitions. The 

results are taken as presented in the original paper [20]. 

 Approach   Backbone   Accuracy   Precision   Recall   F𝟏-score   Specificity  

Antczak and Liberadzki [19]   Plain CNN   0.59   0.55   0.87   0.68   0.33  

Ovalle-Magallanes et al. [20] 

 VGG16  

 ResNet50  

 Inception-v3  

 0.50  

 0.82  

 0.71  

 0.50  

 0.77  

 0.70  

 1.00  

 0.94  

 0.75  

 0.67  

 0.84  

 0.72  

 0.00 

 0.71  

 0.68 

Best Proposed   ResNet18   0.8787   0.8873   0.8610   0.8732   0.8952  

 

The Gradient-weighted Class Activation Map (Grad-CAM) [32] is a visualization method based on gradients 

designed to examine class-discriminative regions ( i.e., a heat-map) learned throughout the network. So, the Grad-

CAM for each class 𝑐 is generated as follows  

𝐿𝑐  =  𝛿 (∑ 𝛼 𝐴𝑘𝑘

𝑐

𝑘

), (19) 

where 𝐴𝑘 ∈ 𝑅(𝑢×𝑣) is the output k-feature map, generally the last convolutional layer, 𝛼𝑘
𝑐 is the weight concerning 

the k-th feature map with the c-th class, and 𝛿 is the ReLU activation function. Hence, this weight 𝛼𝑘
𝑐 is computed 

by  

𝛼𝑘
𝑐 =  𝑔 (

𝜕𝑦𝑐

𝜕𝐴𝑘 
), (20) 

where 𝑔(⋅)is the global average pooling operation, and 𝑦𝑐 is the score for class 𝑐 before the SoftMax. 

For challenging test images, one non-stenosis, and one stenosis case, the Grad-CAM images are shown in  

Fig. 7.  
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a.  

b.  

c.  

Figure 7: Grad-CAM feature visualization for negative and positive stenosis cases, respectively. Left to right, input image, 

backbone ResNet((a) 18, (b) 50, (c) 101), SE, CBAM, and ECA outputs.  
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The figure illustrates high discriminative regions for stenosis detection in hot tones (red colors) and otherwise 

cold tones (purple colors). In the first case, with a ResNet18 as the backbone, when the SE attention module is 

employed, the more discriminant regions correspond to almost all vessel pixels and areas with a particular grade 

of stenosis. 

For the ResNet50 backbone, the artery vessel pixels present a better visual delineation when the CBAM module 

is incorporated. Finally, in the case of the ResNet101, the ECA network configuration set greater attention over the 

artery tree than the other networks variants. Notice that this visual examination agrees with the obtained 

numerical results, showing that the network focuses on some distinctive regions of the image, including an 

attention mechanism. 

5. Discussion 

This work examined three attention mechanisms for stenosis detection in XCA images. In particular, while 

discussing the classification performance for the networks, numerical results suggest that ResNet50 and 

ResNet101 are unnecessarily large and more susceptible to overfitting than the ResNet18. This phenomenon can 

also be observed in very deep networks where attention modules are not included. A similar situation can be seen 

with the ResNet + SE and the ResNet + CBAM. The ResNet101 model is unnecessarily large. Only a slight 

improvement of going deeper was found in the ResNet + ECA. However, the ResNet18 + SE outperforms them 

with fewer parameters. As such, deeper ResNets learn irrelevant or repetitive features in the learning procedure 

for the two-class stenosis detection task, which in turn causes reductions in the classification performance. 

Therefore, attention modules do not contribute to the learning processes when they are incorporated into deeper 

architectures. Moreover, the ResNet architectures lack dropout layers which can be considered as one of the 

reasons for accuracy degradation. 

6. Conclusions 

This paper evaluates three state-of-the-art attention mechanisms and their impact on stenosis detection in X-

ray coronary angiography images. As the backbone network for the detection task, the ResNet employed three 

deep variants with a depth of 18, 50, and 101. The method achieves a maximum accuracy, recall, and F1-score 

when a ResNet18 with a SE attention module is used. This network configuration significantly boosts these metrics 

by 4%, 10%, and 6%, respectively, concerning the basic ResNet18 (without attention). However, the SE module 

requires 
2𝐶2

𝑟
 additional parameters per block. In this case, a reduction ratio of 𝑟 = 8 obtains the best results. 

Numerical and visual results (obtained by Grad-CAM) agree that incorporating an attention mechanism allows the 

network to focus on more rich-feature areas ( i.e., vessel pixel) to improve the performance. 

Additionally, attention modules allow the generation of fine-grained attention maps, which are exploited for 

lesion localization. These maps enable explainable deep learning-based methods, vital for medical imaging 

analysis and diagnosis support. Moreover, the current approach can classify a full-size XCA image by dividing the 

image into patches and classifying them individually. 

Future work will focus on lighted attention modules suitable for stenosis detection and localization in a full-size 

XCA image, with fewer parameters without compromising the network performance. 
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