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ABSTRACT 

A modern approach to solving mathematical models involving differential equations, 

the so-called Physics-Informed Neural Network (PINN), is based on the techniques 

which include the use of artificial neural networks and the method of fitting the 

governing differential equations at collocation points. In this paper, training of the 

PINN with an application of optimization techniques is performed on simple one-

dimensional mechanical problems of elasticity, namely rods and beams. Different 

boundary conditions are considered.  

Required computer algorithms are implemented using Python programming packages 

with the intention of creating neural networks. Numerical results are presented, and 

the efficiency of the proposed technique is investigated through numerical 

experiments with different numbers of epochs, batches, hidden layers, neurons, and 

collocation points. 

The paper provides useful skills for using a PINN for different problems of solid 

mechanics. The proposed methodology is a continuation of our intention of using 

PINNs for problems of the theory of elasticity. The objectives are to present simply the 

main steps of constructing PINN and an implementation of it. A detailed explanation 

of the Python programming code, based on the scientific software Tensorflow, built in 

the Keras library and optimizers, may help compose an effective code for complicated 

models in mechanics.  

PINNs are proposed in many recent publications to solve complicated direct and 

inverse problems. It seems to be a promising method that will play a central role in 

the development of computational mechanics in the near future. Nevertheless, the 

lack of educational material does not help new users to enter this scientific area. The 

present contribution describes the method for the solution of elementary rod and 

beam problems and gives computer codes that may help the reader to understand 

the method and to apply it to other problems. 
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1. Introduction 

In contrast with usual applications of a neural network (NN), based on giving examples of inputs and outputs in 

order to allow for training, a physics-informed neural network (PINN) exploits the input data and currently 

available techniques οf automatic differentiation in order to create approximations of all terms involved in the 

differential equations and the initial/boundary conditions of the investigated model at every point in space and 

possibly in time. 

Artificial neural networks (ANNs) were developed a long time ago (see, e.g., McCulloch and Pitts [16]). Artificial 

intelligence is a branch of computer science that seeks to create machines - models that operate autonomously in 

complex and changing environments (Russel and Norvig [25]. 

In recent years thanks to the technological progress in the development of robust, powerful computer 

software, an elaboration of backpropagation training and deep learning became possible to solve many 

complicated problems in science and engineering using artificial intelligence ([23]). The crucial role belongs to 

artificial neural networks. The history starts from the first hypotheses of Aristotle, who tried to explain a 

complicated mechanism of working of a human brain which receives and trains information coming from outside. 

The modern ANNs are based on the principle of operation of biological neurons.  

The structure of ANN includes three main parts. The first part is intended for input data, and it is called an 

input layer. The second part consists of hidden layer/layers, where the treatment of the input data is performed 

with the help of activation functions for an approximate presentation of a solution to a considered problem. The 

third part is an output layer where the output data are produced.  

ANNs have been applied in different areas of science and engineering. In particular, ANNs are employed in 

elastoplastic and contact problems in mechanics by minimizing energy. The Hopfield and Tank neural networks 

have been proposed by Kortesis and Panagiotopoulos [10] and Avdelas et al. [1]. The Feedforward NNs trained by 

the backpropagation algorithm has been used for an approximation of several problems in mechanics based on 

examples (supervised learning). Inverse and parameter-identification problems in mechanics have been solved by 

using backpropagation neural networks in Stavroulakis et al. [29], Stavroulakis [28], Waszczyszyn and Ziemiański 

[31]. Buckling loads in nonlinear problems for elastic plates have been calculated in Muradova and Stavroulakis 

[18]. A recent review of classical usage of neural networks within computational mechanics can be found in 

Yagawa and Oishi [32].  

A recent direction in ANNs for solving scientific and mechanical problems, which became widely distributed 

and popular in modern times, is a physics-informed neural network. PINNs are used in case of lack of output data 

for training or/and complexity of the explored system and presence of a mathematical model, which is a 

differential equation or a system of differential equations with initial/boundary conditions. Recent developments 

related to Automatic Differentiation in neural networks in order to approximate the required derivatives and then 

an implementation with an application of open-source software have also promoted the development of PINNs 

(see, among others, Raisi et al. [22], Baydin et al. [2], Shin et al. [27], Karniadakis et al. [7]). The technique of using 

the governing partial differential equations, together with boundary conditions for training an artificial neural 

network to solve the problem, has been proposed by Lagaris et al. [11]. In a PINN, the input data are collocation 

points for fitting the governing differential equations. Here we can also mention the works of Tartakovsky et al. 

[30], Kadeethum et al. [6], Guo and Haghighat [5] and Zhang et al. [33]. 

Two main classes of problems: data-driven solution and data-driven discovery of partial differential equations 

are solved using PINN in the work of Raissi et al. [22]. Depending on the nature and arrangement of the available 

data, we devise two distinct algorithms, namely continuous-time and discrete-time models. 

Another recent direction is the application of neural operators. Here we can mention the papers of Lu et al. 

[14] and Lu et al. [15] about the DeepONet neural operator and the works of Li et al. [13] and Kovachki et al. [9] 

with Fourier Neural Operator (FNO). These techniques are more general in the sense that they learn how to 

approximate the differential equations, and then they can solve any new problem with different initial or 

boundary conditions and physical parameters. The DeepONet has a NN for encoding the discrete input function 
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space and a NN for encoding the domain of the output functions, and it is based on the universal approximation 

theorem. In the FNO approach, the integral kernel is parameterized in the Fourier space.  

In the work of Zhao et al. [34], a physics-informed convolutional neural network for the thermal simulation 

surrogate models is developed. This new approach is used for temperature field prediction of heat source layout 

without labeled data. In general, the method is important for engineering analysis and optimization. 

A PINN architecture requires the classical elements of feedforward and backpropagation of neural networks, 

like nodes, hidden layers, and activation functions. Training of the neural network is performed with the use of 

optimization techniques. The PINNs are based on the universal approximation theorem for the underlying neural 

networks, and in this sense, they are considered suitable for the solution of problems with expected continuity, as 

the examples used here. If several parts with different material constants or cross-sections are considered, one 

may need to use families of different neural networks, one for each part, and add the continuity assumption as an 

additional term in calculating the error function. 

In the present paper, the PINN is applied to beam and rod engineering problems. The simply supported, 

clamped, and free boundary conditions are considered. The programming code has been composed in Python 3.9 

using Tensorflow 2.4.1 in the Pycharm environment. It is a modification of the code which implements the PINNs 

method for the problem of the Burgers equation in the paper of Raissi et al. [21]. The Adam’s optimization 

algorithm (Kingma and Ba [8]), based on the gradient descent method and more commonly used in deep learning, 

together with the L-BFGS (Limited- Broyden–Fletcher–Goldfarb–Shanno) technique (Fletcher [4]) are applied in this 

work for solving the unconstrained nonlinear optimization problem arising during parameter estimation in 

training. 

The paper is educational and aims to help people entering the area of PINN understand the method, based on 

elementary material from technical mechanics (rod and beam problems) and elementary material from neural 

networks (backpropagation neural network). Further knowledge is not required, provided that one uses the 

proposed software tools in Python. The paper provides useful skills for the understanding of a PINN with a 

detailed explanation of the application steps of it to rod and beam problems. 

Here, the output of the PINN is compared with the exact solution to the problems. The effectiveness of neural 

networks in several areas gives hope that the method will contribute similarly to the solution of direct and, most 

importantly, inverse problems in mechanics. PINNs are directly comparable to collocation type, mesh-free 

numerical methods. Also, PINNs provide flexibility in the complexity of the domain of the definitions of the 

differential equations and initial/boundary conditions. For example, in variational methods, a special choice of 

local or global basis functions is crucial. In contrast, in PINNs, an approximation is represented with the help of 

activation functions, which are known beforehand. It is only needed to select an activation function for the 

considered problem properly. However, in order to reach a good approximation by PINN, sometimes many 

training epochs must be performed. Contemporary programming software intended for NNs allows us to 

overcome difficulties connected with the time of computations. Thus, PINNs can be applied to various problems in 

mechanics, science, and engineering. The PINN method is implemented and compared with the spectral method 

on an example of the Kirchhoff plate problem in [19]. In general, the question of comparing PINN with other 

numerical methods is still open and cannot be replied to easily. The effectiveness of using neural networks in 

several areas gives hope that the method will contribute similarly to the solution of direct and, most importantly, 

inverse problems in mechanics. PINN is directly comparable to collocation type, mesh-free numerical methods. 

The present paper is organized as follows. In Section 2, elements of feedforward and backpropagation neural 

networks are given. The mathematical models involving partial differential equations and initial or boundary 

conditions for rods and beams are summarized in Section 3. Numerical examples are presented in Section 4. 

Conclusions are given in Section 5. 

2. The Architecture of an Artificial Neural Network 

The principle of operation of the biological neural networks of living organisms has played an important role in 

creating artificial neural networks. Through the biological NN understanding came the inspiration for machine 
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learning. Information processing and the way how biological neurons send signals is significantly more complex 

than the way how an artificial neural network works. Nevertheless, it becomes obvious that the human nervous 

system, and at a lower level of all living beings, consists of input units, central units for processing information, 

and output units. An interesting conclusion is that a collection of individual cells can lead to thought, action, and 

consciousness; in other words, the brain creates intellect (Searle [26]). 

In accordance with biological NNs, the basic building block of artificial neural networks consists of a neuron 

that essentially receives information from network inputs or other neurons, processes it, and then transmits it to 

the subsequent neurons.  

Let the values 𝑥1, 𝑥2, … , 𝑥𝑛 be the inputs for a neuron. Then for each neuron in an input layer of a neural 

network, the following quantity is calculated,  

𝑎 =  𝑤1 𝑥1 +  𝑤2 𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛  + 𝑏 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

, (2.1) 

where 𝑤1 , 𝑤2, … , 𝑤𝑛 are the weights, b is the bias, and 𝑛 is the number of inputs. For convenience, the expression 

(2.1) can be written in the following form 

𝑎 =  𝐰 ⋅ 𝐱 +  𝑏, (2.2) 

where 𝐰 = [𝑤1, 𝑤2, … , 𝑤𝑛], 𝐱 = [𝑥1, 𝑥2, . . , 𝑥𝑛]𝑇. 

Furthermore, we introduce an activation function that is computed for the 𝑎. An activation function plays an 

important role in ANNs. It decides whether a neuron should be activated or not, which depends on the 

importance of the neuron’s input in the process of prediction. The activation functions were introduced based on 

harmonic analysis (e.g., Cande`s [3]). The most used activation functions are the Heaviside, Sigmoid /logistic, 

Hyperbolic tangent (tanh), and ReLU. For example, the sigmoid nonlinear function is 

𝑓(𝑥) =
1

1 +  𝑒−𝑥
 (2.3) 

and the tanh nonlinear function is 

𝑓(𝑥) = tanh(x) =
𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
 .  (2.4) 

The sigmoid function is used in the logistic regression classification algorithm. It shows very smooth behavior. 

The hyperbolic tangent (tanh) is also a smooth nonlinear activation function applied in this work for the examples 

in Section 4.  

The connectivity of many neurons like those described above contributes to an ANN. The procedure which 

supplies the network with the information spreading from the input layer to the outputs, penetrating all the 

hidden layers with neurons, is called feedforward. An example of a neural network is depicted in Figure 2.1. 

In order to explain the feedforward way of ANN, it is useful to define the following weight matrices. Let a 

matrix 𝑊1 contains the weights between the connections of the neurons from the input layer to the 1st hidden 

layer, a matrix 𝑊2 contains the weights from the 1st hidden layer to the 2nd hidden layer and a matrix 𝑊3 includes 

the weights from the 2nd hidden layer to the output layer (Figure 2.1). In general, the elements of the matrices 

𝑊𝑘  are denoted by 𝑤𝑘,𝑖𝑗, where 𝑤𝑘,𝑖𝑗 is the weight from 𝑖 - neuron of layer 𝑘 − 1 to the j - neuron of layer 𝑘. By 

convention, the layers are numbered as 𝑘 =  1, 2, … , 𝑁𝐿, where 𝑁𝐿 is the number of layers. The input layer is 

numbered as 0, and the corresponding inputs in it with 𝑖 = 1,2, … , 𝑛0  (𝑛0 = 𝑛). For the elements 𝑤1,𝑖𝑗 of 𝑊1,  

𝑖 = 1,2, … , 𝑛0, 𝑗 = 1,2, . . 𝑛1, for the elements 𝑤2,𝑖𝑗  of 𝑊2, 𝑖 = 1,2, … 𝑛1, 𝑗 = 1,2, … 𝑛2 and so on. The quantity 𝑛𝑘 refers to 

the number of neurons in layer k. The output of each layer is a vector denoted by 𝐳𝑘 and therefore, the input 

vector can be written as 𝐳0. Figure 2.1 applies 𝑁𝐿 = 3, 𝑛0 = 4,  𝑛1 = 𝑛2 = 5,  𝑛3 = 3. Hence, the dimensions of 

matrices 𝑊1, 𝑊2, 𝑊3 are derived as (4×5), (5×5), and (5×3), respectively.  
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Figure 2.1: ANN with 4 inputs, 2 hidden layers with 5 neurons, and 3 outputs. Weights of connections leading to node a11 are 

also depicted. 

An additional vector 𝐛 includes the bias of the neurons. The input layer has no bias, so the numbering of the 

vectors starts with 𝐛1 which is the vector that includes the biases of the 1st hidden layer. The elements of the 

vectors of biases 𝐛𝑘 are defined as 𝑏𝑘𝑗.  

A general formula for the feedforward process with the activation function 𝜎(𝑥) is  

𝐳0  = 𝐱,                                                                              

𝐳𝑘  = 𝜎(𝑊𝑘
𝑇 ⋅ 𝐳𝑘−1  +  𝐛𝑘) , 𝑘 = 1,2, … , 𝑁𝐿 .  (2.6) 

where 𝑊𝑘 is the matrix of the dimension (𝑛𝑘−1 × 𝑛𝑘) and 𝐳𝑁𝑙
is the output of the neural network. 

Tensorflow uses the equation (2.6) repeatedly for all layers to calculate the output of the AAN for every input 

from the data set. 

The training of a network is perhaps the most important part of machine learning since, through this process, a 

loss function (prediction error of neural network) is minimized, and the weights and biases are updated. To 

minimize the loss function, it is necessary to calculate the derivatives of the function with respect to its variables, 

weights, and biases. The backpropagation algorithm calculates all the necessary derivatives, with the rule of chain 

derivation, starting from the last layer and moving backward to the input layer. The general steps of the training 

process are the following: 

1.  Forward Pass - Input the data for the artificial neural network, a number of epochs, and physical 

parameters for the problem. 

2.  Loss function calculation. 

3.  Calculation of some derivatives of the Loss function in relation to all trainable parameters starting from 

the last layer and continuing backward (backpropagation). 

4.  Change the trainable parameters in the direction that minimizes the Loss function. 

5.  Repeat steps 1, 2, 3 and 4 for all data (training set). 

Repeat steps 1, 2, 3, and 4 for those training courses (epochs) that have been defined. 
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In order to complete a training cycle, it is necessary to calculate the loss function and change the parameters 

for each separate pair of inputs-outputs, which causes a high computational cost and long delays in the 

convergence of the algorithm. For this reason, often in applications, a training set is divided into individual 

sections called batches. 

The main optimization algorithms used in ANN training are the Gradient Decent Algorithm, the L-BFGS 

algorithm, and the Adam (Adaptive moment estimation) algorithm. The Gradient Descent Algorithm minimizes the 

loss function with respect to the weights and the biases of the network, which change in the opposite direction of 

the feedforward. The partial derivatives of the function for each parameter are calculated (Ruder [24]). The L-BFGS 

algorithm opens up to the family of quasi-Newton methods developed by Broyden, Fletcher, Goldfard, and 

Shanno. Newton's method for minimization problems requires the calculation of the Hessian matrix of the 

objective function, i.e., it requires the calculation of second derivatives with respect to all the parameters, which is 

computationally prohibitive in deep learning problems. In contrast, the quasi-Newton methods approach finds 

zeroes or local maxima and minima of functions. The Adam algorithm, proposed by Kingma and Lei Ba [8], has the 

advantage because it calculates a learning rate separately for different parameters. 

3. Implementation of Physics Informed Neural Network 

The first proposals for the use of ANN for solving differential equations have been given in the works of Lee 

and Kang [12], Lagaris et al. [11], and Meade Jr and Fernadez [17]. Here one can also mention the most recent 

work of Karniadakis et al. [7] on this topic and the work of Muradova and Stavroulakis [19], where the PINN for 

solving the Kirchhoff plate bending problem is applied. Recent developments of the PINNs method are presented 

in Raissi et al. [21] and Peng et al. [20], in which a reader can find more detailed information on the 

implementation of the method. 

Most engineering problems are modeled through differential equations. One way to solve them is to find an 

analytical solution, i.e., the expression of unknown function 𝑢(𝑥), which satisfies exactly the differential equations 

and the initial/boundary conditions. Another way is to use semi-analytical or numerical methods, such as, e.g., the 

Runge – Kutta methods or finite element method (FEM) etc., in which the 𝑢(𝑥) is approached point by point by an 

approximate solution, function �̂�(𝑥). The physics-informed neural network method is a numerical method 

intended to find an approximation of the exact solution 𝑢(𝑥) via an ANN. Therefore, 𝑢(𝑥) ≈ �̂�(𝑥) = 𝑁𝑁 (𝑥). 

The phrase ‘Physics-Informed’ refers to the fact that the network is trained based on the mathematical model 

imposed by physics and mathematics. It is a kind of self-supervised learning where the training is carried out with 

pairs of inputs and desired outputs that are not introduced before but are produced by differential equations 

themselves. The network inputs are only one independent variable if the model consists of static ordinary 

differential equations and two or more independent variables of the function if the model consists of partial 

differential equations. The inputs are derived from the domain of the definition of 𝑢(𝑥). The corresponding output 

during feedforward supplies the function 𝑁𝑁(𝑥). The peculiarity of the method and the point that distinguishes it 

from the common ANNs is the fact that during the training, in addition to the calculation of the derivatives of the 

loss function for all trainable parameters of the network, one uses the derivatives of the neural network with 

respect to input variables. If it is a solution of a partial differential equation, all partial derivatives of �̂�(𝑥) 

concerning the independent variables are calculated. A loss function is constructed in order to check whether the 

approximate solution �̂�(𝑥) is far from 𝑢(𝑥).  

3.1. Feedforward in a PINN 

This section studies the process of propagation of input data from the input layer to the hidden layers and 

then to the output of the neural network. This process will be examined through an example of the second-order 

ordinary differential equation with initial conditions, 

𝑑2𝑢(𝑥)

𝑑𝑥2
+ 𝑎 

𝑑u(𝑥)

𝑑𝑥
= 𝑏,        𝑥 ∈ (𝑥0, 𝐿], 𝐿 ∈ 𝑅, (3.1) 
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𝑢(𝑥0) =  𝑢0 ,   
𝑑u(𝑥0)

𝑑𝑥
=  𝑢1,  (3.2) 

where a, b are the constant parameters. To find the solution 𝑢(𝑥) of the problem (3.1), (3.2), a PINN is used, where 

the output of the neural network, 𝛮𝛮(x), is the approximation of the solution 𝑢(x). The following formulas 

describe the calculation of the output vector from each layer. 

𝐳0  = 𝐱                     

𝐳𝑘  = 𝜎(𝑊𝑘
𝑇 ⋅ 𝐳𝑘−1  +  𝐛𝑘) , 𝑘 = 1,2, … , 𝑁𝐿 − 1.    

𝐳𝑁𝐿
= 𝑊𝑁𝐿

𝑇 ⋅ 𝐳𝑁𝐿−1  +  𝐛𝑁𝐿 
 (3.3) 

The PINNs output is linearly dependent on the last hidden layer. Note that the output layer (3.3) does not enter 

the activation function as it usually is in ANNs (see (2.6), 𝑘 = 𝑁𝐿). The 𝑧𝑁𝐿−1 is defined as the vector containing the 

outputs of the last hidden layer, 𝑊𝑁𝐿
𝑇  is the matrix containing the weights between the last hidden layer and the 

output of the network and 𝐛𝑁𝐿 
 as the bias vector of the output layer. Thus, the approximate solution is written as  

 �̂�(𝐱) = 𝑁𝑁(𝐱) = 𝑊𝑁𝐿

𝑇 ⋅ 𝐳𝑁𝐿−1  +  𝐛𝑁𝐿 
.  (3.4) 

The elements of the input vector 𝐱 are the collocation points for (3.1). Note that the neural network provides a 

value of the displacement at each collocation point, 𝑁𝑁(𝑥𝑖), 𝑖 = 1,2, … , 𝑛. 

3.2. Training & Backpropagation in PINNs 

The training process is performed by modifying the trainable parameters (weights and biases) in such a way 

that the function 𝑁𝑁(𝑥) = �̂�(𝑥) satisfies the differential equation and the initial conditions with as little error as 

possible. The weights and biases are adapted by minimizing the loss function (mean square error),  

𝑀𝑆𝑅 =
1

𝑛
∑ (

𝑑2�̂�(𝑥𝑖)

𝑑𝑥2
 +  𝑎  

𝑑�̂�(𝑥𝑖)

𝑑𝑥
 –  𝑏)

2𝒏

𝒊=𝟏

   +  (�̂�(𝑥0)– 𝑢0)2  +  (
𝑑�̂�(𝑥0)

𝑑𝑥
 – 𝑢1)

2

,  (3.5) 

where 𝑥𝑖 , 𝑖 = 1,2, … , 𝑛 are the collocation points. For the construction of the loss function, the error from the 

differential equation and errors from initial – boundary conditions must be added. In Figure 3.1, the architecture 

of the PINN for this example is presented. 

 

Figure 3.1: The architecture of ANN, in combination with the formation of the differential equation and the initial conditions. 

The first block is the classical backpropagation neural network. The second block is the extension for physics-informed learning.  
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The training algorithm can work with known optimization algorithms such as the Gradient Descent or L-BFGS, 

or Adam method. In this work, first L-BFGS has been used and then the Adam method. In applying the method to 

real problems listed below, the training set is divided into batches. The steps of implementation of the PINN in the 

general case are the following: 

1. Input the data for the neural network: the collocation points for the differential equation and 

initial/boundary conditions, weights, biases, a number of epochs, and the physical parameters for the 

mechanical problem. 

2. Calculate �̂�(𝑥) as a function of the values of 𝑥𝑖, using the activation function, weights, and biases 

(Feedforward). 

3. Compute necessary derivatives of �̂�(𝑥) with respect to 𝑥 contained in the differential equation and in the 

initial/boundary conditions. 

4. Construct the loss function.  

5. Calculate derivatives of the loss function concerning all trainable parameters starting from the last layer 

(Backpropagation). 

6. Minimize the loss function using an optimization technique. 

7. Update the weights and biases parameters in the NN. 

8. Repeat steps 2, 3, 4, 5, 6, and 7 for all data (training set) that have been set until the desired accuracy for 

the loss function is achieved or until training cycles (epochs). 

3.3. Automatic Differentiation 

For the implementation of PINN, the calculation of all derivatives appearing in the differential equation, in the 

initial/boundary conditions, and for all trainable parameters is required. Therefore, an efficient way of calculating 

derivatives is needed so that the process is achieved faster with low memory requirements. The Automatic 

Differentiation using Python's Tensorflow library is implemented here. Tensorflow is an open-source program for 

machine learning and deep learning. It provides suitable functions which are used extensively in this work. The 

Automatic Differentiation option mainly combines two positive options. The chain rule essentially results with the 

same accuracy as the "symbolic differentiation" with comparable speed. Information on how it works has been 

taken from the article of Baydin et al. [2]. Below is an example used to illustrate the process of calculating 

derivatives with the help of Automatic Differentiation. 

3.4. Implementation in Python Code Via Tensorflow 

The implementation of Automatic Differentiation in Python is performed through Tensorflow, which includes a 

package of functions suitable for implementing ANNs. The Tensorflow provides the tf.GradientTape() API 

(Application Programming Interface) function which is responsible for calculating derivatives through Automatic 

Differentiation Reverse Mode. The following commands are used for the calculation of the derivative of the 

sigmoid function at a specific point x: 

``` 
import TensorFlow as tf 

import NumPy as np 

x = tf.Variable(3.0) 

with tf.GradientTape() as tape: 

    y = tf.sigmoid(x) 

dy_dx = tape.gradient(y, x) 

print(f"dy_dx = {dy_dx}") 

``` 
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If, for example, there is a simple neural network without any hidden layer, with 3 input neurons and 2 output 

neurons, then the following program calculates the loss function and the Jacobian array that also includes some 

derivatives of the loss function with respect to trainable parameters. 

``` 
w = tf.Variable([[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]) 

b = tf.Variable(tf.zeros(2, dtype=tf.float32), name='b') 

x = [[1., 2., 3.]] 

with tf.GradientTape(persistent=True) as tape: 

z = x @ w + b    # z = [z1  z2] 

loss = tf.reduce_mean(z ** 2)  # loss = z1^2 + z2^2 

print("Loss = ") 

print(loss) 

[dL_dw, dL_db] = tape.gradient(loss, [w, b]) 

print("dL_dw = ") 

print(dL_dw) 

print("dL_db") 

print(dL_db) 

``` 
The command loss = tf.reduce_mean(z ** 2) creates the error function: 

3.5. Construction of ANN Models through Keras Library  

The Keras module library of Tensorflow allows us to implement the Automatic Differentiation steps described 

in the previous section. The Keras is a high-level interface of the Tensorflow 2 platform (API) to implement 

machine learning models and especially deep learning, which usually requires less computing time. Practical use 

of the Keras for the Automatic differentiation is shown in the following command lines: 

``` 
import TensorFlow as tf 

layer = tf.keras.layers.Dense(2, activation='relu') 

x = tf.constant([[1., 2., 3.]]) 

with tf.GradientTape() as tape: 

  # Forward pass 

  y = layer(x) 

  loss = tf.reduce_mean(y**2) 

# Calculate gradients with respect to every trainable variable 

grad = tape.gradient(loss, layer.trainable_variables) 

# layer.trainable_variables is a list 

print(layer.trainable_variables) 

for var, g in zip(layer.trainable_variables, grad): 

print(f'{var.name}, shape: {g.shape}') 

``` 

4. Numerical Results and Discussions 

4.1. Numerical Examples 

In this section, the PINN for some engineering problems, in particular, for the models of solid deformable rods 

and beams, is tested. The considered problems include ordinary differential equations and initial and boundary 

conditions. 
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Problem 1: A rod with distributed forces (Figure 4.1). 

 
Figure 4.1: Rod fixed to one end. 

If distributed tensile forces 𝑐𝑥 exert on a rod, then the load at an elementary point 𝑥 is equivalent to 

∫ 𝑐 𝑥 𝑑𝑥
𝐿

𝑥
=

𝑐

2
(𝐿2 − 𝑥2) where 𝐿 is the total length of the rod, 𝑐 is the constant coefficient. The stresses on the rod are 

computed as 

𝜎 =
𝐿𝑜𝑎𝑑

𝐴𝑟𝑒𝑎
=

𝑐 (𝐿2 −  𝑥2) 

2 𝐴
, (4.1) 

where A is the cross-sectional area. In the rod subjected to axial loading, the strain is defined through the first 

derivative of the deformation (displacement) at a specific point  

𝜀 =  
𝑑𝑢

𝑑𝑥
 . (4.2) 

Here 𝑢(𝑥) is the displacement of the rod at point x. Further, as it is known the Young’s modulus (modulus of 

elasticity) is expressed as 𝐸 = 𝜎/𝜀 . Therefore, it follows that, 

𝐸 
𝑑𝑢

𝑑𝑥
=

𝑐 (𝐿2 −  𝑥2) 

2 𝐴
 (4.3) 

or  

𝛢𝛦 
𝑑𝑢

𝑑𝑥
 =  

𝑐

2
 (𝐿2 −  𝑥2). (4.4) 

Hence, 

𝐴𝐸
𝑑2𝑢

𝑑𝑥2
= −𝑐𝑥,    𝑥 ∈ (0, 𝐿). (4.5) 

The bountry conditions for the fixed rod are 

𝑢(0) =  0,   
𝑑𝑢

𝑑𝑥
|

𝑥=L
= 0.  (4.6) 

The exact solution of (4.5), (4.6) is  

𝑢(𝑥) =
𝑐

6 𝐴𝐸 
(– 𝑥3 + 3𝐿3𝑥). (4.7) 

The PINN is also applied to the case when except for the tensile forces, an additional force of the opposite 

direction is applied to the end of the rod. The boundary conditions, in this case, are defined as follows: 

𝑢(0) =  0,     𝐸
𝑑𝑢

𝑑𝑥
|

𝑥=𝐿
 𝑛 +

𝑐𝐿2

𝐴
= 0, (4.8) 

The exact solution for (4.5) and (4.8) is  
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𝑢(𝑥) =
𝑐

𝐴𝐸
(− 

𝑥3

6
 + 𝐿2𝑥).  (4.9) 

The composed code consists of the main module and other 5 modules, the network, the layer, the PINN, the 

optimizer, and the tf_silent modules. The network module includes a class named Network which, through a 

function named build, constructs the network and returns it. As it is mentioned in Section 3, the output of the last 

hidden layer does not enter any activation function, and the approximate solution is calculated by the formula 

(3.4). This detail is confirmed and becomes even more evident in the build function in which, for the calculation of 

the output, no activation function is mentioned in contrast to the other layers. Below are the corresponding lines 

of code from the module network. 

```` 

# input layer 

inputs = tf.keras.layers.Input(shape=(num_inputs,)) 

# hidden layers 

x = inputs 

for layer in layers: 

    x = tf.keras.layers.Dense(layer, activation=activation, 

         kernel_initializer='he_normal')(x) 

# output layer 

outputs = tf.keras.layers.Dense(num_outputs, 

    kernel_initializer='he_normal')(x) 

return tf.keras.models.Model(inputs=inputs, outputs=outputs) 

``` 

The module layer has the role of calculating the necessary derivatives of the network with respect to the input 

x, which in this case are the derivatives 𝑑�̂�/𝑑𝑥, 𝑑2�̂�/𝑑𝑥2. This module includes a class named GradientLayer () 

which is called by the module PINN and takes as input the network. Finally, the numerical values of the first and 

the second derivatives are returned as well as the numerical value of �̂�(x) for each x value that enters the network. 

The derivatives are calculated using the Tensorflow GradientTape() function. Below are the corresponding lines of 

code from the module layer. 

``` 

with tf.GradientTape() as g: 

    g.watch(x) 

    with tf.GradientTape() as gg: 

        gg.watch(x) 

        u = self.model(x) 

    du_dx = gg.gradient(u, x) 

d2u_dx2 = g.gradient(du_dx, x) 

return u, du_dx, d2u_dx2 

``` 

The module PINN communicates with the module layer as it receives the derivatives from it in order to 

construct the second neural network called the PINN. It includes the class named PINN, in which the PINN 

network is constructed and finally returned. In fact, the inputs 𝐱 that enter two networks are used to calculate the 

derivatives through the module layer, and then the differential equation and the initial conditions are constructed 

as an additional custom layer to complete the PINN network and are finally returned. 

For every 𝑥 ∈ (0, 𝐿) it is calculated the quantity 𝑢1 = 𝐴𝐸
𝑑2𝑢

𝑑𝑥2 + 𝑐𝑥 for the equation, then the quantity 𝑢2 = �̂�(0) 

and the quantity 𝑢3 = 𝐸
𝑑𝑢

𝑑𝑥
|

𝑥=𝐿
n +

𝑐𝐿2

𝐴
 are calculated for the boundary conditions, respectively. The target values for 
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the network output are set to 𝑢1  =  0, 𝑢2  =  0 και 𝑢3 = 0. Below are the code lines of the module PINN in which the 

GradientLayer class is called from the module layer, as well as the 𝑢1, 𝑢2, 𝑢3 are calculated, respectively. 

``` 
self.grads = GradientLayer(self.network) 

# compute gradients 

u, du_dx, d2u_dx2 = self.grads(x_1) 

# equation output being zero 

u_1 = self.A * self.E * d2u_dx2 + self.c * x_1 

# initial condition output 

u_2 = self.network(x_2) 

# boundary condition output 

u, du_dx, d2u_dx2 = self.grads(x_3) 

u_3 = self.E * du_dx * self.n + self.c * (self.L)**2 / self.A 

# build the PINN model for BAR' equation 

return tf.keras.models.Model( 

    inputs=[x_1, x_2, x_3], outputs=[u_1, u_2, u_3]) 

``` 

The module optimizer performs the PINN network training process through the L-BFGS optimization algorithm. 

It includes the class, named L_BFGS_B, which takes as parameters the neural network PINN, the inputs x with the 

corresponding target values 𝑢1, 𝑢2, 𝑢3, as well as the parameters factr, m, maxls, maxiter. Initially the weights are 

initialized through the function set_weights (self, flat_weights). Also, in this module, there is the function 

tf_evaluate (self, x, y), in which the derivatives of the loss function are calculated with respect to the common 

weights and the biases of the two networks. In the fit (self) function, the parameters are modified through the L-

BFGS algorithm. Below are the code lines of the module optimizer in which the backpropagation process and the 

parameter modification process are performed, respectively. 

``` 

with tf.GradientTape() as g: 

    loss = tf.reduce_mean(tf.keras.losses.mse(self.model(x), y)) 

grads = g.gradient(loss, self.model.trainable_variables) 

return loss, grads 

scipy.optimize.fmin_l_bfgs_b(func=self.evaluate, x0=initial_weights, 

    factr=self.factr, m=self.m, maxls=self.maxls, maxiter=self.maxiter) 

``` 

The tf_silent module is auxiliary, and its only task is to delete the unnecessary messages that are printed at the 

start of the program due to the call of the Tensorflow library. 

The main module must first include the libraries that will be used, as well as the necessary classes from the 

modules mentioned above. Specifically, in the main program the PINN class from the module PINN, the Network 

class from the module network, and finally, the L_BFGS_B class from the module optimizer are called. From the 

line containing the if __name__ == ‘__main__’ command: and below, the program starts running. Initially, the values 

of the variables num_train_samples and num_test_samples are defined, whereas in this case, the values 1000 and 

100 were given, respectively. Num_train_samples is defined as the number of x points (colocation points) with 

which the training will be done, while num_test_samples is defined as the number of x points that after the 

training will be used to check and construct a graph of �̂�(𝑥). The physical constants A, E, c, and L are defined. Then 

the input and output vectors - target 𝑥1 , 𝑥2, 𝑥3 and 𝑢1, 𝑢2, 𝑢3 are defined, respectively. 



PINN with Applications in Static Rod and Beam Problems Katsikis et al. 

 

115 

``` 

# build a core network model 

network = Network.build() 

# build a PINN model 

pinn = PINN(network, E, A, c, n, L).build() 

# create training input 

x_1 = 2*L*np.random.rand(num_train_samples, 1)  # x_1 =  0 ~ 2*L 

x_2 = np.zeros((num_train_samples, 1))                      # x_2 =  0 

x_3 = 2*L*np.ones((num_train_samples, 1))               # x_3 =  2*L 

# create training output - target 

u_1 = np.zeros((num_train_samples, 1))                      # u_1 = 0 

u_2 = np.zeros((num_train_samples, 1))                      # u_2 = 0 

u_3 = np.zeros((num_train_samples, 1))                      # u_3 = 0 

lbfgs = L_BFGS_B(model=pinn, x_train=x_train, y_train=y_train) 

lbfgs.fit() 

``` 

The two networks for Problem 1 are illustrated in Figure 4.2. 

 

Figure 4.2: Illustration of the two networks for Problem 1. 

The numerical results are shown in Figure 4.3 and Tables 4.1 and 4.2 after applying the L-BFGS and the Adam 

algorithms, respectively. 

Looking at Table 4.1, one first gets the impression that the original program with the L-BFGS optimizer brings 

very satisfactory approaches. Successful program executions were mediated by several failed approaches with an 

error greater than 0.05 or even worse. In these cases, the graph of the approximate solution was quite common 

with the graph of the analytical solution 𝑢(𝑥), but their difference in the graph was noticeable. The lack of stability 

became the reason for using the Adam algorithm as an optimizer, as well as the removal of the module network 

and module optimizer in order to make the code more readable and easier to manage. 

The Adam algorithm appeared to have much better and more stable performance. As shown in Table 4.2, the 

error did not show any significant improvement compared to the previous program, but during the execution, 

there was great stability. 
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Figure 4.3: Graphical representation – No 8 from Table 4.1. 

Table 4.1: The results of solving Problem 1 with using the L-BFGS algorithm. 

Νο. Layers Training Sample Loss Mse Time(Sec) 

1 [15, 30, 60, 30, 15] 1000 0.009804 7167 

2 [15, 30, 60, 30, 15] 1000 0.002842 4508 

3 [15, 30, 60, 30, 15] 1000 0.001222 388 

4 [15, 30, 60, 30, 15] 1000 0.004778 5150 

5 [15, 30, 60, 30, 15] 1000 0.000596 5341 

6 [15, 30, 60, 30, 15] 1000 0.002389 1323 

7 [15, 30, 60, 30, 15] 1000 0.003372 3119 

8 [20, 30, 60, 40, 20] 1000 0.000352 3307 

9 [20, 30, 60, 40, 20] 1000 0.001479 3060 

 

Table 4.2: The results of solving Problem 1 using Adam’s algorithm. 

Νο. Layers Batch Size Epochs Training Sample Loss Mse Time(Sec) 

1 [15, 30, 60, 30, 15] 16 1151 1000 0.008200 256 

2 [30, 60, 30] 16 398 10000 0.008100 736 

3 [30, 60, 30] 32 982 1000 0.007300 1015 

4 [30, 60, 30] 32 1717 1000 0.009700 1798 

 
Comparison with classical computational methods will be fair if, for example, within a finite element analysis, 

the same number of nodes with the collocation points of PINN is used. The results for this academic example are 

identical. 
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 Problem 2. Simply Supported Beam (Figure 4.4).  

 
Figure 4.4: Simply supported beam.  

If a bending moment M is exerted on a beam where 𝑀 =  −𝑃𝑥 with the concentrated load 𝑃, then from the 

static theory, it is known that the differential equation describing the beam in bending reads: 

𝑑2𝑦

𝑑𝑥2
=

𝑀(𝑥)

𝐸𝐼
.  (4.10) 

However, if a distributed load 𝑤(𝑥) is applied to the beam understudy, then the differential equation (4.10) 

should be properly formed. For this to happen, the magnitude V is defined as the shear force and the following 

relationships hold for the magnitude, 

𝑑𝑀

𝑑𝑥
= 𝑉,             

𝑑𝑉

𝑑𝑥
= −𝑤.  (4.11) 

Hence in virtue of (4.10) and (4.11), it follows 

𝑑4𝑦

𝑑𝑥4
= −

𝑤(𝑥)

𝐸𝐼
 . (4.12) 

If it is a totally clamped beam, and the beam has length L, it holds that 𝑦(0)  =  0, 𝑀(0)  =  0, 𝑦 (𝐿) = 0, and 

𝑀(𝐿) = 0. Thus, the boundary conditions are  

𝑦(0) =  0,    𝑦(𝐿) =  0,
𝑑2𝑦(0)

𝑑𝑥2
= 0,

𝑑2𝑦(𝐿)

𝑑𝑥2
= 0,  (4.13) 

In order to have realistic values a W - Beam (Wide Flange Beam) is considered, with a measure of elasticity E = 

200 GPa (200 * 1e9 Pa), moment of inertia I = 0.000038929334 (𝑚4), length L = 2.7 m and distributed load w = 60 

KN / m. 

The exact solution of the problem (4.6), (4.7) is 

𝑦(𝑥) =
𝑤

24 𝐸𝐼
(−𝑥4 + 2𝐿𝑥3 − 𝐿3𝑥).  (4.14) 

The programming code performed is similar to the code in Problem 1. However, the L-BFGS optimization 

algorithm was replaced by the Adam algorithm. In addition, some simplifications were made to make the code 

more readable, while the Class called StopAtLossValue (Callback) was added, which defines a minimum loss 

function value as the termination criterion, as well as a runtime counter so that there is an image of the program 

computational costs. 

In the module PINN, through the function build, it is built a network u_model and network PINN_model. The 

vectors 𝑢1, 𝑢2, 𝑢3 for the differential equation and boundary conditions are computed.  
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``` 

# compute gradients 

u, d2u_dx2, d4u_dx4 = grads(x_1) 

# equation output being zero 

u_1 = d4u_dx4 + self.w/(self.E * self.I) 

# initial condition output 

u_2 = u_model(x_2) 

u, d2u_dx2, d4u_dx4 = grads(x_3) 

u_3 = d2u_dx2 

 

# build the PINN model for beam's equation 

return u_model, tf.keras.models.Model( 

    inputs=[x_1, x_2, x_3], outputs=[u_1, u_2, u_3]) 

``` 

The module layer has the same structure as in the previous problem with the difference that in this case, the 

calculations until the 4th order derivatives of the u_model network is needed. 

``` 

with tf.GradientTape() as g: 

    g.watch(x) 

    with tf.GradientTape() as gg: 

        gg.watch(x) 

        with tf.GradientTape() as ggg: 

            ggg.watch(x) 

            with tf.GradientTape() as gggg: 

                gggg.watch(x) 

                u = self.model(x) 

            du_dx = gggg.gradient(u, x) 

        d2u_dx2 = ggg.gradient(du_dx, x) 

    d3u_dx3 = gg.gradient(d2u_dx2, x) 

d4u_dx4 = g.gradient(d3u_dx3, x) 

return u, d2u_dx2, d4u_dx4 

``` 

In the main, the build function is initially called by the module PINN, in order to define the two networks 

u_model and PINN_model. The target input and output vectors for the PINN_model network of this problem are 

defined, according to which the training will take place. Finally, the compile and fit functions where the training will 

take place are called. The above processes are implemented sequentially through the commands shown in the 

following lines. 

``` 

u_model, PINN_model = PINN(w, L, E, I).build() 

# create training input 

x_1 = L*np.random.rand(num_train_samples, 1)            # x_1 = 0 ~ L 

x_2 = np.random.rand(num_train_samples, 1) 

x_2 = L*np.round(x_2)                                                    # x_2 = 0 or L 

x_3 = np.random.rand(num_train_samples, 1) 

x_3 = L*np.round(x_3)                                                    # x_3 = 0 or L 
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# create training output 

u_1 = np.zeros((num_train_samples, 1))                       # u_1 = 0 

u_2 = np.zeros((num_train_samples, 1))                       # u_2 = 0 

u_3 = np.zeros((num_train_samples, 1))                       # u_3 = 0 

x_train = [x_1, x_2, x_3] 

y_train_target = [u_1, u_2, u_3]\ 

PINN_model.compile(optimizer='adam', 

                   loss=tf.keras.losses.mse, 

                   metrics=[tf.keras.metrics.mse], 

                   ) 

model_history = PINN_model.fit(x_train, y_train_target, batch_size=64, epochs=3000, callbacks=callbacks) 

``` 

The structure of the PINN is depicted in Figure 4.5, and the numerical results are presented in Figures 4.6 and 

4.7 and in Table 4.3. 

 

Figure 4.5: Illustration of the two networks for Problem 2. 

  
Figure 4.6: Graphical representation– Νο 4 from Table 4.3. 
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Table 4.3: The results of solving Problem 2 using Adam’s algorithm. 

Νο. Layers Batch Size Epochs Training Sample Loss Mse Time(Sec) 

1 [15, 30, 60] 128 3000 10000 1.84E-08 1763 

2 [15, 30, 60] 128 870 10000 9.80E-11 491 

3 [15, 30, 60, 30] 64 398 10000 9.96E-11 429 

4 [15, 30, 60, 30, 15] 64 398 10000 6.74E-11 61 

5 [15, 30, 60, 30, 15] 64 476 10000 9.67E-11 839 

6 [15, 30, 60, 30, 15] 64 560 10000 9.97E-11 992 

7 [15, 30, 15] 64 555 10000 8.52E-11 517 

8 [15, 30, 15] 64 1456 10000 6.24E-11 1308 

9 [15, 30, 15] 32 395 10000 7.75E-11 713 

10 [40, 40] 32 1701 1000 9.25E-11 239 

 

 

Figure 4.7: Indicative graph of the analytical solution and the discrete values of the approximate solution, provided by the ANN, 

trained with error 9.9340e-11. 

Problem 3: Cantilever Beam (Figure 4.8). 

In this example, we consider the differential equation describing the behavior of a cantilever beam in bending.  

 
Figure 4.8: Model of a cantilever beam. 
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The equation is the same as in Problem 2, i.e., (4.12) holds. The boundary conditions for the fixed edge 𝑥 =  0 are  

𝑦(0) =  0,   
𝑑𝑦(0)

𝑑𝑥
= 0. (4.15) 

For the free edge 𝑥 =  𝐿, it is true 𝛭(𝐿) =  0, 𝑉(𝐿)  =  0. Therefore,  

𝑑2𝑦(𝐿)

𝑑𝑥2
= 0,   

𝑑3𝑦(𝐿)

𝑑𝑥3
= 0.  (4.16) 

The exact solution 𝑦(𝑥) of the problem (4.12), (4.15) and (4.16) is given by 

𝑦(𝑥) =  
𝑤

24𝐸𝐼
(−𝑥4 + 4𝐿𝑥3 − 6 𝐿2𝑥2). (4.17) 

Below, the required scripts in Python for computing the derivatives in the governing equation (4.12) and the 

boundary conditions (4.15) and (4.16) are outlined. The scientific software for neural networks Tensorflow in 

Python, and Numerical computing tools Numpy is used. Here one needs to change the input-output vectors in the 

main. The quantities 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5 which correspond to the equation (4.12) and the boundary conditions (4.15), 

(4.16). These processes are performed through the commands of the following lines of code. 

``` 

# create training input 

x_1 = L*np.random.rand(num_train_samples, 1)            # x_1 = 0 ~ L 

x_2 = np.zeros((num_train_samples, 1))                          # x_2 = 0 

x_3 = np.zeros((num_train_samples, 1))                          # x_3 = 0 

x_4 = L*np.ones((num_train_samples, 1))                       # x_4 = L 

x_5 = L*np.ones((num_train_samples, 1))                       # x_5 = L 

# create training output 

u_1 = np.zeros((num_train_samples, 1))                   # u_1 = 0 

u_2 = np.zeros((num_train_samples, 1))                   # u_2 = 0 

u_3 = np.zeros((num_train_samples, 1))                   # u_3 = 0 

u_4 = np.zeros((num_train_samples, 1))                   # u_4 = 0 

u_5 = np.zeros((num_train_samples, 1))                   # u_5 = 0 

with tf.GradientTape() as g: 

    g.watch(x) 

    with tf.GradientTape() as gg: 

        gg.watch(x) 

        with tf.GradientTape() as ggg: 

            ggg.watch(x) 

            with tf.GradientTape() as gggg: 

                gggg.watch(x) 

                u = self.model(x) 

            du_dx = gggg.gradient(u, x) 

        d2u_dx2 = ggg.gradient(du_dx, x) 

    d3u_dx3 = gg.gradient(d2u_dx2, x) 

d4u_dx4 = g.gradient(d3u_dx3, x) 

return u, du_dx, d2u_dx2, d3u_dx3, d4u_dx4 

# compute gradients 

u, du_dx, d2u_dx2, d3u_dx3, d4u_dx4 = grads(x_1) 

# equation output being zero 
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u_1 = d4u_dx4 + self.w/(self.E * self.I) 

# initial condition output 

u_2 = u_model(x_2) 

u, du_dx, d2u_dx2, d3u_dx3, d4u_dx4 = grads(x_3) 

u_3 = du_dx 

u, du_dx, d2u_dx2, d3u_dx3, d4u_dx4 = grads(x_4) 

u_4 = d2u_dx2 

u_5 = d3u_dx3 

``` 

The architecture of the PINN is illustrated in Figure 4.9, and the numerical results are presented in Figures 4.10 

and 4.11 and in Table 4.4. 

 

Figure 4.9: Illustration of the two networks for problem 3. 

 

Figure 4.10: Graphical representation – Νο 7 from Table 4.4. 
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Table 4.4: The results of solving Problem 3 with using Adam’s algorithm. 

Νο. Layers Batch Size Epochs Training Sample Loss Mse Time(Sec) 

1 [15, 30, 60] 64 1000 1000 8.45E-10 360 

2 [15, 30, 60] 32 1000 10000 6.66E-11 2000 

3 [15, 30, 60] 32 1000 1000 2.47E-07 500 

4 [15, 30, 60] 32 3000 1000 6.70E-10 720 

5 [15, 30, 60] 32 4000 1000 6.24E-09 1020 

6 [15, 30, 60] 32 1000 5000 4.15E-08 1080 

7 [15, 30, 60] 32 1000 10000 1.60E-11 1860 

8 [15, 30, 60] 32 900 10000 3.16E-08 1740 

9 [15, 30, 60] 32 1000 10000 1.58E-10 1500 

10 [15, 30, 60] 32 702 10000 7.44E-11 1200 

 

 

Figure 4.11: Indicative graph of the analytical solution and the discrete values of the approximate solution, provided by the 

ANN, trained with error 8.7555e-11. 

Problem 4: Cantilever, Simply Supported Beam (Figure 4.12) 

 

Figure 4.12: Model of a beam with anchoring at the left end (𝑥 =  0) and simply supported at the right end (𝑥 =  𝐿). 
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In this problem, the boundary conditions associated with one fixed edge and the supported the other one of 

the beam are as follows. At the left end, it holds that 𝑦(0) = 0 and 𝑑𝑦(0)/𝑑𝑥 = 0 while at the right end, it holds that 

𝑦(𝐿) = 0 and 𝑀(𝐿) = 0. The differential equation is the same as the equation in Problems 2 and 3, i.e. (4.12). The 

boundary conditions of the present problem are 

y(0) =  0,
𝑑𝑦(0)

𝑑𝑥
= 0,   𝑦(𝐿) =  0,   

𝑑2𝑦(𝐿)

𝑑𝑥2
= 0 (4.18) 

The exact solution of the differential equation (4.12) with the boundary conditions (4.18) is 

𝑦(𝑥) =
𝑤

24 𝐸𝐼
(−𝑥4 +

5

2
 𝐿𝑥3 −

3

2
𝑥2). (4.19) 

As in Problem 3, some modifications in the Python code that implements the PINN method are needed. For 

this problem, it is necessary to create 5 input vectors 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 which are needed for training 

(num_train_samples). At the same time, the corresponding output vectors must be created - target 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5 

which, as shown by (4.12), (4.18) must consist of zero elements. The corresponding scripts are listed below. 

``` 

# create training input 

x_1 = L*np.random.rand(num_train_samples, 1)     # x_1 = 0 ~ L 

x_2 = np.zeros((num_train_samples, 1))                   # x_2 = 0 

x_3 = np.zeros((num_train_samples, 1))                   # x_3 = 0 

x_4 = L*np.ones((num_train_samples, 1))                # x_4 = L 

x_5 = L*np.ones((num_train_samples, 1))                # x_5 = L 

# create training output 

u_1 = np.zeros((num_train_samples, 1))                   # u_1 = 0 

u_2 = np.zeros((num_train_samples, 1))                   # u_2 = 0 

u_3 = np.zeros((num_train_samples, 1))                   # u_3 = 0 

u_4 = np.zeros((num_train_samples, 1))                   # u_4 = 0 

u_5 = np.zeros((num_train_samples, 1))                   # u_5 = 0 

return u, du_dx, d2u_dx2, d4u_dx4 

grads = GradientLayer(u_model) 

# compute gradients 

u, du_dx, d2u_dx2, d4u_dx4 = grads(x_1) 

# equation output being zero 

u_1 = d4u_dx4 + self.w/(self.E * self.I) 

# initial condition output 

u_2 = u_model(x_2) 

u, du_dx, d2u_dx2, d4u_dx4 = grads(x_3) 

u_3 = du_dx 

u, du_dx, d2u_dx2, d4u_dx4 = grads(x_4) 

u_4 = u_model(x_4) 

u_5 = d2u_dx2 

``` 

The architecture of the PINN is illustrated in Figure 4.13, and the numerical results are presented in Figures 

4.14 and 4.15 and Table 4.5. 
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Figure 4.13: Illustration of the two networks for Problem 4. 

 

Figure 4.14: Graphical representation – Νο 1 from Table 4.5. 

Table 4.5: The results of solving Problem 4 using Adam’s algorithm. 

Νο. Layers Batch Size Epochs Training Sample Loss Mse Time(Sec) 

1 [15, 30, 60] 32 676 10000 7.70E-11 1504 

2 [15, 30, 60] 32 3000 1000 1.93E-08 695 

3 [15, 30, 60] 32 2446 1000 9.82E-11 608 

4 [15, 30, 60] 16 2519 1000 9.99E-11 1036 

5 [15, 30, 60] 64 3000 1000 1.11E-08 414 

6 [15, 30, 60] 64 789 10000 7.98E-11 1002 

7 [25, 50, 25] 64 900 10000 9.09E-11 1054 

8 [25, 50, 25] 128 1021 10000 9.96E-11 1555 

9 [25, 50, 25] 128 3000 1000 1.04E-07 215 

10 [25, 50, 25] 64 3000 1000 6.84E-10 302 

11 [25, 50, 50, 25] 16 2083 1000 9.26E-11 1053 
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Figure 4.15: Indicative graph of the analytical solution and the discrete values of the approximate solution, provided by the 

ANN, trained with error 7.4316e-11. 

4.2. Discussions 

Problem 1 was solved by the L-BFGS algorithm and with by Adam algorithm. Problems 2, 3, and 4 were solved 

only with the program using the Adam algorithm. In all implementations, the hyperbolic tangent tanh(x) was used 

as an activation function. The choice of numerical accuracies has been based on trial and error and previous 

information from the literature. 

5. Remarks and Conclusions 

The mechanical boundary value problems for a rod and a beam have been solved numerically with the 

application of PINN. The computational techniques have been described in detail, and the main programming 

parts of the code, based on the Tensorflow scientific software in Python for neural networks for each investigated 

model, have been presented. The results obtained after solving the considered problems are promising. As the 

numerical results have shown, the usage of Adam’s optimization method within the Keras library seems to be 

more effective than the L-BFGS algorithm. The rate of convergence and the accuracy of the approximate solution 

can be improved by increasing the number of epochs, the batch size, the number of collocation points etc. 

Even though the problems considered here are academic examples, i.e., the exact solutions exist, the proposed 

techniques can be easily modified and applied to more complex mechanics problems with unknown analytical 

solutions. The introduced techniques, together with programming snippets, can be very helpful for readers in 

order to understand the steps of implementation of PINN for mechanical models. They also can be easily 

extended to dynamic problems, direct and inverse (parameter identification) problems, and contact problems in 

continuum mechanics.  

Nomenclature 

PINN = Physics-informed neural network 

𝑤𝑘,𝑖𝑗 = Weight from i - neuron to j – neuron of layer k 

𝑏𝑘𝑗 = Biases to j – neuron of layer k 

𝑁𝐿 = Number of layers 
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𝑛𝑘 = Number of neurons in layer k 

𝑁𝑁 (𝑥) = Output of the neural network 

�̂�(𝑥) = Approximate solution 

𝑢(𝑥) = Exact solution 

L = Total length of the rod/beam 

C = Constant coefficient 

A = Cross sectional area 

𝜀 = Strain in the rod/beam 

𝜎 = Stress in the rod/beam 

E = Young’s modulus 

𝑀(𝑥) = Bending moment 

P = Concentrated load 

I = Moment of inertia 

L-BFGS = Limited- Broyden–Fletcher–Goldfarb–Shann 

Adam = Adaptive moment estimation 
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