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ABSTRACT 

This paper presents a novel approach to introducing adaptation in Model 

Predictive Control (MPC). Assuming limited a priori knowledge about the 

process, we consider a finite set of possible models (a dictionary), and use 

the theory of adversarial multi-armed bandits to develop an adaptive version 

of MPC called adversarial adaptive MPC (AAMPC). Under weak assumptions 

on the dictionary components, we then establish theoretical bounds on the 

performance of AAMPC and show its empirical behaviour via simulation 

examples.  
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1. Introduction 

Model Predictive Control (MPC) is one of the most popular control strategies used in the process industry, thanks 

to its ability to handle constraints explicitly [1-3]. 

Due to its structure, MPC requires an explicit model of the process to be controlled, and obtaining such a model 

is often a very costly operation (both in terms of time and money). Indeed, it has been estimated that modelling can 

account for up to 75% of the total control commissioning cost [4]. Among the reasons for such a high cost lie the 

complexity of the processes being controlled and the fact that, in general, the process has to be estimated in a 

closed loop (for example, under a poorly tuned MPC controller), which has many caveats [5]. 

Several approaches have been proposed to reduce the pitfalls of closed-loop identification and make it possible 

to estimate the process from operating data. For example, the data collected during the operation of a standard 

MPC controller may suffer from a lack of persistence of excitation [5], so if one is collecting data from a de-tuned 

MPC controller to re-commission it, several authors have suggested modifying the MPC strategy in order to enforce 

sufficient excitation [6-10]. Also, considerable effort has been put into experiment design for the (re-)tuning of MPC 

controllers [11-14], and into the design of MPC strategies with simultaneous model identification [15-17]. This has 

also led to the development of adaptive variants of MPC [18], where the control input aims to balance exploration 

and exploitation. In the last ten years, there have been many publications in adaptive MPC; please refer to [19,20] 

and the references therein for recent overviews of the literature. 

Researchers have developed data-driven MPC formulations as an alternative approach to reducing the cost of 

designing MPC controllers. Two such methodologies are “subspace model predictive control” [21,22], which 

combines tools from subspace system identification [23,24] and MPC, avoiding the intermediate step of building an 

explicit model of the process, and DeePC [25], where MPC is formulated directly in terms of a single batch of input-

output data, by using Willems’ Fundamental Lemma [26]. 

In this paper, we propose a new adaptive version of model predictive control, based on recent developments 

within computational learning theory, and in particular adversarial multi-armed bandits (MABs) [27,28]. MABs, in 

their most basic formulation, can be seen as a simple form of adaptive control, where an agent interacts with an 

unknown environment in order to minimize a given cost, and to do so, it has to balance the exploration of the 

environment and its exploitation; in control jargon, the input thus plays a dual role [29]. In the adversarial setup, the 

environment can behave arbitrarily (as long as the cost remains bounded), and the goal is to design an agent whose 

performance is not much worse than that of the best in a finite pool of agents. 

Adversarial MABs and the related framework of prediction with expert advice have been successfully applied to 

tasks such as iterative estimation of the 𝐻∞-norm of linear systems [30], and to the aggregative modeling of 

nonlinear systems [31, 32]. However, applications of Adversarial MABs within adaptive control have been scarce, 

and to the best of our knowledge, [33] is one of the earliest papers where these tools are used to the simple 

noiseless LQR problem. Other related techniques based on online convex programming have been discussed, e.g. , 

in [34,35]. 

Based on the above, our main contributions are:  

• A novel adversarial adaptive MPC algorithm (AAMPC) is derived by applying results from adversarial MABs (in 

particular, the EXP3 algorithm) to a standard MPC formulation. The algorithm does not make strong 

assumptions about the process but only considers a finite set, or dictionary, of process models; the models in 

the dictionary can be almost arbitrary. To the best of our knowledge, this is one of the first papers that apply 

adversarial MABs to a standard control setup such as MPC.  

• Theoretical bounds on the performance of AAMPC are established under mild requirements.  

• The empirical behaviour of the algorithm is verified through numerical simulations.  
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Note that the setup considered in the paper is fairly simple, focusing on linear state-feedback MPC, even though 

the approach is applicable under more general assumptions and controller types. However, our goal is to introduce 

the use of adversarial bandit tools in control, particularly the EXP3 algorithm, and for that purpose, the linear state-

feedback MPC case is an ideal scenario because it is a well understood and widely used in industry. 

The paper is structured as follows. In Section 2, the problem is formulated. In Section 3, the notion of 

deterministic multi-armed bandits is introduced. Section 4 presents the main contribution of the paper, namely, an 

adaptive MPC strategy (AAMPC) based on the EXP3 algorithm for deterministic multi-armed bandits, as well as some 

theoretical results to support the performance of this new method. Section 5 presents some simulation results that 

illustrate the ability of AAMPC to achieve performance similar to the MPC controller based on the best model in the 

dictionary. Finally, Section 6 concludes the paper. 

2. Problem Formulation 

Consider a scalar discrete-time linear time-invariant process described by the equation  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑒𝑘 ,   𝑘 ∈ ℕ0, (1) 

where 𝑥𝑘 ∈ ℝ𝑛 is the state, assumed to be directly measurable; 𝑢𝑘 ∈ ℝ is the input, (𝐴, 𝐵) is a pair of stabilizable but 

unknown matrices of compatible dimensions and 𝑒𝑘 ∈ ℝ𝑛 is a white noise sequence of zero mean and unknown 

covariance matrix. If the state vector, 𝑥𝑘, were not directly measurable, the control mechanism proposed in the 

paper can be combined with a suitably tuned Kalman filter for each model; Due to the construction of our method, 

the algorithm can be applied without major changes to the basic setup. 

In MPC, assuming that 𝐴 and 𝐵 are known, the input at time 𝑘, 𝑢𝑘, is determined as the solution �̃�𝑘 of the 

optimization problem  

MPC(𝐴, 𝐵, 𝑁𝑝, 𝜆, 𝑈, 𝑥𝑘): (2) 
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Here, the tilded variables represenłt predicted versions of the true (un-tilded) signals, 𝑈 > 0 is an upper bound 

on the input signal, 𝜆 ⩾ 0 is a known tuning parameter, 𝑁𝑝 is the prediction horizon, and 𝑥𝑘 is the true state at time k. 

2.1. Dictinary of Models 

Since, in practice, matrices 𝐴 and 𝐵 are not known exactly, it is necessary to estimate them. One way to do this 

is adaptive, i.e. , while the process is being controlled. One can construct different candidate models for 𝐴 and 𝐵, 

e.g. , by applying different estimation techniques leading to different competitive estimators of those matrices, by 

using a single estimation method based on different tuning parameter values, or simply by considering a set of fixed 

matrices that would play the role of models.  

In this paper, we assume that a set of Ɗ < ∞ estimators or fixed (time-independent) models is available for each 

pair of matrices 𝐴 and 𝐵 (we call this set a dictionary). For simplicity, we assume the estimators to be fixed models 

and denote them as 𝐴𝑑 and 𝐵𝑑 , respectively, where 𝑑 ∈ {1, … , Ɗ} is the estimator index. 
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Clearly, based on the limited a priori knowledge about the true process (1), one cannot directly apply MPC as in 

(2), and also having access to a (possibly large) dictionary of models {(𝐴𝑑 , 𝐵𝑑): 𝑑 = 1,2, … , Ɗ} does not provide explicit 

information on which model should be preferred. Therefore, our goal is to construct an adaptive control algorithm 

that simultaneously explores the dictionary components and exploits the collected data up to the current time for 

the selection of the model used in (2).  

3. Deterministic Multi-Armed Bandits 

Multi-armed bandits [27, 28] constitute a general framework for reinforcement learning [36], where an agent has 

to chose between different possible decisions (or arms) in each iteration in order to minimize some cumulative loss 

and where the outcome of each possible decision is not completely known. The agent, therefore, is subject to an 

exploration/exploitation tradeoff: it should play each arm enough times in order to determine how the losses depend 

on each arm, but it should also aim to play the best arm ( i.e. , the one giving the smallest loss) most of the time. 

There are three basic types of multi-armed bandits, depending on how the loss depends on the arm being taken: 

stochastic bandits, deterministic (or adversarial) bandits, and Markovian bandits. In stochastic bandits, one assumes 

that the losses are random variables (independent between iterations) whose distribution depends on the arm 

chosen. In deterministic bandits, the losses are assumed to be arbitrary but bounded, and they may depend on the 

current and past arms chosen by the agent as well as on the strategy it uses to make those choices (but not on any 

randomization mechanism used by the agent). Finally, in Markovian bandits, the loss associated with each arm is a 

Markov process that evolves when that arm is played (in that case its new state is revealed to the agent). 

In this paper, we will focus on the deterministic bandit framework since it allows for great flexibility in the 

behaviour of the losses (as long as they remain bounded). This framework is closely related to the so-called 

“prediction with expert advice” setup [37], where an agent should predict the next value of a quantity which may 

vary arbitrarily inside a bounded set, and to this end the agent may consult a set of experts, whose predictions are 

available to the agent, as well as all their past prediction successes (or failures); the goal of the agent is then to make 

a prediction almost as accurate as one derived by the best expert. To achieve this goal, a standard strategy is the 

weight majority algorithm [37,38], which consists in weighting the prediction of each expert according to their past 

successes, and then considering a weighted vote of their current predictions, or the prediction of an expert picked 

randomly according to their weights (interpreted as probabilities). 

In contrast to prediction with expert advice, for deterministic bandits, the losses of the arms/experts which were 

not picked are unknown to the agent, while in the former framework, all losses are available to it. A variant of the 

weighted majority algorithm has been developed to address this difference, where unbiased estimates replace the 

unknown losses. The resulting algorithm, known as EXP3 [28,39], will be used in the next section to incorporate 

adaptation into an MPC controller. 

4. Adversarial Adaptive MPC 

We will now describe the construction of the proposed AAMPC algorithm with a particular focus on the model 

selection routine. In general, the dictionary elements will yield MPC controllers of varying performance when applied 

to the true system. Hence, we begin with the assessment of the models selected by AAMPC. Let 𝑢𝑘
𝑑 denote a control 

value calculated as the solution of 𝑀𝑃𝐶(𝐴𝑑 , 𝐵𝑑 , 𝑁𝑝, 𝜆, 𝑈, 𝑥𝑘) at time step 𝑘, and let 𝑇 ∈ ℕ be a user-defined constant 

determining the model switching moments. If 𝑘 = 0,1,2, … denotes the time index, an active MPC model is allowed 

to be replaced by another model only if 𝑘 ∈ {𝑇, 2𝑇, … }. Since the selected model (defined by a 𝑑 ∈ {1,2, … , 𝐷}) is fixed 

within a single time interval of length 𝑇, we can define the time-windowed quality function  

𝑙𝑛(𝑑; 𝑇): =
1

𝑇
∑ [𝑥𝑘+1

𝑇 𝑥𝑘+1 + 𝜆(𝑢𝑘
𝑑)2],

𝑛𝑇−1

𝑘=(𝑛−1)𝑇

 (3) 
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where 𝜆 is the same tuning parameter used in (2). To ensure good statistical properties of the proposed algorithm, 

we will assume that 𝑙𝑛 is upper bounded by a known constant 𝐶𝑙 < ∞, as detailed in Theorem 1.  

Remark 1. The above requirement has a natural interpretation, namely, that one should avoid working with poor-

quality models leading to unacceptably high values of 𝑙𝑛. Note that for any process (1) with initial state ‖𝑥0‖ ⩽ 𝐶𝑥 ⩽ ∞, 

bounded noise 𝑒𝑘, and input 𝑢𝑘
𝑑 being a solution of 𝑀𝑃𝐶(𝐴𝑑, 𝐵𝑑 , 𝑁𝑝, 𝜆, 𝑈, 𝑥𝑘), a constant 𝐶𝑙 < ∞ always exists but may 

remain unknown.  

A natural averaged counterpart of 𝑙𝑛(𝑑; 𝑇) is  

𝐿𝑁([𝑑]; 𝑇) ≔
1

𝑁
∑ 𝑙𝑛(𝑑𝑛; 𝑇)

𝑁

𝑛=1     

 

(4) 

=
1

𝑁𝑇
∑ [𝑥𝑘+1

𝑇 𝑥𝑘+1 + 𝜆(𝑢𝑘
𝑑𝑛)2],

𝑁𝑇−1

𝑘=0

 

where [𝑑] stands for the sequence of models used by our method, 𝑛 ∈ {1,2, … , 𝑁} is the index of the consecutive 

model switchings, and 𝑁 is the total number of model switchings (to be defined by the user). Notice that 𝑘 represents 

the actual time instant and is related to 𝑛 via 𝑛 = ⌈𝑘/𝑇⌉, and 𝑑𝑛 = 𝑑⌈𝑘/𝑇⌉, where ⌈𝑥⌉ is a ceiling function ( i.e. , the 

smallest integer not less than 𝑥). 

The proposed adversarial adaptive MPC method (AAMPC) is described in Algorithm 1. There, 𝛿𝑛 ∈ {1,2, … , Ɗ} 

denotes the model selected by AAMPC at the switching step 𝑛. In the proposed approach, the decision 𝛿𝑛 is sampled 

from a discrete probability distribution 𝑃𝑛, initially uniform (for 𝑛 = 1) but adjusted after consecutive model 

selections. In particular, 𝑃𝑛 is determined by the past selections and losses (3), i.e., 𝑃𝑛(𝑑) = 𝑃{𝛿𝑛 =

𝑑|𝑑1, 𝑙1, … , 𝑑𝑛−1, 𝑙𝑛−1}, for all 𝑑 ∈ {1,2, … , Ɗ}. To simplify the notation, in Algorithm 1 and the sequel, we omit the index 

𝑛 in 𝛿𝑛 when it is clear from the context. 

Remark 2. In Algorithm 1, we use a double indexing scheme according to which 𝑘 denotes the usual time index ( cf. 

true process (1)) whereas 𝑛 = 1,2, … , 𝑁 refers to the number of consecutive model switchings, as previously defined.  

Remark 3. In general, the algorithm focuses on the overall control performance rather than on the direct selection of 

the most accurate model of the true process. This is achieved by a sequential stochastic sampling of dictionary components. 

Exploration-exploitation nature of the method prefers models with relatively low loss 𝑙𝑛(𝑑; 𝑇) but also explores other, less-

accurate, or yet unverified models of the true process (1).  

Some theoretical properties of the proposed control technique are discussed in the next section. 

4.1. Theoretical properties of AAMPC 

Given a dictionary {(𝐴𝑑, 𝐵𝑑): 𝑑 = 1,2, … , Ɗ}, one can ask about the model 𝑑∗ leading to the best control 

performance in a given sense. Based on the definition of cumulative loss in (4), such a model should be a minimizer 

of 𝐿𝑁, i.e. , 𝑑∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑑𝐿𝑁(𝑑; 𝑇); note, however that, due the presence of disturbances, even if the true process 

belongs to the dictionary, i.e. , (𝐴, 𝐵) ∈ {(𝐴𝑑, 𝐵𝑑): 𝑑 = 1,2, … , Ɗ}, it may not be the case that (𝐴, 𝐵) = (𝐴𝑑∗
, 𝐵𝑑∗

). In our 

setup, 𝑑∗ is unknown, but it can be used as a reference in the formal analysis of AAMPC. In this direction, Theorem 

1 below compares the performance of the AAMPC control policy to that of an MPC controller based on model 𝑑∗. 

Theorem 1. For the true process in (1) and an arbitrary dictionary of models {(𝐴𝑑 , 𝐵𝑑): 𝑑 = 1,2, … , Ɗ}, the performance 

of AAMPC (Algorithm 1) with model-switching horizon 𝑇 < 𝑁 satisfies 
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Algorithm 1 Adversarial Adaptive MPC 

input: {(𝐴𝑑 , 𝐵𝑑): 𝑑 = 1, … , Ɗ}, 𝑥0, 𝜆, 𝑁𝑝, 𝑁, 𝑈, 𝑇, 𝐶𝑙  

1:    set: 𝑘 = 0, 𝜂 = √𝑙𝑛( Ɗ)/(𝑁Ɗ), 𝑆0(𝑑) = 0 for all 𝑑 

2:    for 𝑛 = 1,2, … , 𝑁 do 

3:        calculate distribution 𝑃𝑛:  

𝑃𝑛(𝑑): =
𝑒𝑥𝑝( 𝜂𝑆𝑛−1(𝑑))

∑ 𝑒𝑥𝑝( 𝜂𝑆𝑛−1(𝑗))Ɗ
𝑗=1

,  1 ⩽ 𝑑 ⩽ Ɗ (5) 

4:        sample model 𝛿 ~ 𝑃𝑛 

5:        for  𝑘 = (𝑛 − 1)𝑇, … , (𝑛𝑇 − 1)  

6:            calculate 𝑢𝑘
𝛿 as the solution �̃�𝑘 of  

𝑀𝑃𝐶(𝐴𝛿 , 𝐵𝛿 , 𝑁𝑝, 𝜆, 𝑈, 𝑥𝑘) (6) 

7:            apply 𝑢𝑘
𝛿 in (1) and observe 𝑥𝑘+1  

8:       end for 

9:       calculate  

𝑙𝑛(𝛿; 𝑇) =
1

𝑇
∑ [𝑥𝑘+1

𝑇 𝑥𝑘+1 + 𝜆(𝑢𝑘
𝛿)2]

𝑛𝑇−1

𝑘=(𝑛−1)𝑇

 

10:      update 𝑆𝑛(𝑑) for all 𝑑:  

𝑆𝑛(𝑑): = 𝑆𝑛−1(𝑑) + 1 −
𝕀{𝑑 = 𝛿}𝑙𝑛(𝛿; 𝑇)

𝐶𝑙𝑃𝑛(𝑑)
 

11:    end for 

𝐸{𝐿𝑁(𝛿; 𝑇)} − min
𝑑

𝐿𝑁(𝑑; 𝑇) ⩽ 2𝐶𝑙 √Ɗ 𝑙𝑛 Ɗ/𝑁, (7) 

if 𝑙𝑛(𝑑; 𝑇) ⩽ 𝐶𝑙 for every 𝑛 = 1,2, … , 𝑁 and 𝑑 = 1,2, … , Ɗ, where 𝐶𝑙 < ∞ is a known constant. The expectation in (7) is taken 

with respect to the distribution of the AAMPC model selections.  

See Section 7 for the proof of Theorem 1. 

According to the inequality in Theorem 1, the control policy of AAMPC yields a performance that is close in the 

mean sense to that of the MPC controller based on the best model 𝑑∗. Indeed, for a fixed number of dictionary 

components, the average regret ( i.e. , the difference between the averaged performance of 𝛿 and 𝑑∗) decreases with 

rate 𝑂(𝑁−1/2). A more detailed analysis of the algorithm’s construction indicates, however, that the performance of 

AAMPC cannot be improved by tuning 𝑁 ‘on-line’ since 𝑁 needs to be a priori known for the proper initialization of 

the constant 𝜂 ( cf. line 1 of Algorithm 1). To some extent, this difficulty can be overcome by applying the so-

called ’doubling-trick’ – a technique often used in MAB approaches, but we will not pursue it here (for details, see 

e.g. , [28,37]). 

Continuing the discussion on Theorem 1, it should be emphasized that the upper-bound in (7) holds if the time-

windowed loss 𝑙𝑛 is bounded by some known constant 𝐶𝑙. In practice, assuming poor a priori knowledge about the 

true process, one can select a large value for 𝐶𝑙, and check if 𝑙𝑛 ⩽ 𝐶𝑙 during the whole duration of control. If the 

condition is met for all 𝑛 = 1,2, … , 𝑁, then (7) holds. However, since a large 𝐶𝑙 weakens the upper bound in the 

theorem, its careful selection is of crucial importance. 

Finally, regarding the influence of the model selection horizon 𝑇 on the control performance, it can be seen that 

it affects the variance of the time-windowed loss 𝑙𝑛 with respect to the noise distribution, which is of order 

𝑉𝑎𝑟{𝑙𝑛(𝛿; 𝑇)} = 𝑂(𝑇−1). However, since the optimal selection of 𝑇 depends on Ɗ and naturally influences the entire 

control duration (𝑁𝑇 time steps), further theoretical studies of its tuning should be performed.  
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Figure 1: Empirical regret of AAMPC policy (𝑅𝑘: = �̃�𝑘(𝛿; 𝑇) − �̃�𝑘(𝑑; 𝑇); red) vs. theoretical upper-bound (7) (denoted as 𝑅𝑘
∗ ; blue).  

5. Numerical Simulations 

In this section, we present simulation results performed in MATLAB with the YALMIP toolbox [40], which illustrate 

the application of the AAMPC algorithm to stabilize an unstable process with the following matrices:  

𝐴 = [
1.24 −0.15 −0.51

1 0 0
0 1 0

] ,  𝐵 = [
1
0
0

]. (8) 

This process has a real pole at 𝑝1 = −0.5 and two complex poles of magnitude |𝑝2| = |𝑝3| = 1.01 and argument  

<ʾ 𝑝2, 𝑝3 ≈ ±𝜋/6, and initial state 𝑥0 = [1,1,1]𝑇. The process noise 𝑒𝑘 is an i.i.d. uniformly distributed sequence 

𝑈[−0.05,0.05], and the state 𝑥𝑘 is observed with an i.i.d. additive noise 𝑈[−0.05,0.05] . The dictionary of models (with 

Ɗ = 10 elements) is composed of matrices as in (8) but having all entries perturbed with Gaussian white noise 

𝒩(𝜇, 𝜎Ɗ
2), with 𝜇 = 0.1, 𝜎Ɗ

2 = 0.2. Thus, the dictionary resembles a set of perturbed estimates of 𝐴 and 𝐵 and does not 

contain an exact model of the true system. For the MPC step in (6) we assume 𝑁𝑝 = 20, 𝜆 = 1 and 𝑈 = 1 whereas the 

switching horizon 𝑇 is equal to 5. The total number of model switchings 𝑁 equals 100, and 𝐶𝑙 = 5 

 

Figure 2: Evolution of the sampling distribution 𝑃𝑛, as a function of the index of model switchings 𝑛 = 1,2, … , 𝑁. 

In Figure 2 an example of the evolution of the distribution 𝑃𝑛 is presented. Clearly, the lack of knowledge at the 

beginning of the control process (for 𝑛 = 1) is represented by the uniform distribution 𝑃1. However, along with the 

consecutive switchings ( cf. Fig. 3), AAMPC tends to exploit models with relatively low losses 𝑙𝑛, and thus concentrates 

the measure 𝑃𝑛 on the corresponding dictionary elements.  

 

Figure 3: Sequence of models 𝛿 selected by AAMPC algorithm vs. index of model switchings 𝑛 = 1,2, … , 𝑁. 
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Figure 1 presents the evolution of the regret of the AAMPC policy, defined as 𝑅𝑘: = �̃�𝑘(𝛿; 𝑇) − �̃�𝑘(𝑑; 𝑇), and 

compares it with the upper bound (7) given by Theorem 1 (which is a bound on the expectation of 𝑅𝑘). As the figure 

confirms, AAMPC yields a decreasing regret 𝑅𝑘. 

 

Figure 4: Averaged losses �̃�𝑘(𝑑; 𝑇) for models (𝑑 = 1,2, … , 𝐷) fixed in a whole duration of experiment (blue), and �̃�𝑘(𝛿; 𝑇) – the 

control performance of AAMPC (red). 

For the on-line assessment of the control performance, the following counterpart of (4) is used:  

�̃�𝑘([𝑑]; 𝑇): = 𝑘−1 ∑[𝑥𝑖+1
𝑇 𝑥𝑖+1 + 𝜆(𝑢𝑖

𝑑)2].

𝑘−1

𝑖=0

 (9) 

In particular, in Fig. 4, the loss �̃�𝑘 is used to show the AAMPC control performance with respect to policies based 

on fixed models within the entire duration of the experiment. As it can be observed, the performance of the AAMPC 

policy follows closely that of the controllers based on the best dictionary components and is robust against the 

influence of the three single-model strategies with increasing (or at least constant) loss �̃�𝑘.  

6. Conclusions 

In this paper, we have proposed a new adaptive model predictive control algorithm based on the adversarial 

multi-armed bandit decision framework. In contrast to standard MPC techniques, the novel AAMPC policy does not 

require an accurate a priori knowledge about the control system but is based on a finite set of estimates of the 

process. At the heart of the AAMPC approach lies a probabilistic self-adapting mechanism that explores dictionary 

components and exploits the best-performing models. In general, since the considered self-adaptation imposes 

very mild requirements on the models/experts, the proposed scheme could also be applied to other control 

methods such as PIDs, fixed-structure parametric controllers, or even to nonlinear ones. As shown in Theorem 1, 

the applied exploration-exploitation technique leads to a control performance comparable (in the sense of 

inequality (7)) to that attainable by the best model in the dictionary, with a diminishing regret of order 𝑂(𝑁−1/2). The 

empirical performance of AAMPC has also been verified via simulation studies. 

For future work, we consider a further theoretical analysis of the algorithm, particularly its closed-loop stability 

and extended numerical examinations. 

7. Proof of Theorem 1 

The proof is based on [28, Th.~11.1]. To simplify the notation, we will omit the dependence on 𝑇. 

Define 𝜌𝑛(𝑑): = 1 − (𝕀{𝑑 = 𝛿}𝑙𝑛(𝛿))/(𝐶𝑙𝑃𝑛(𝑑)), and note that according to Lemma 1 (see Section 8), 𝜌𝑛(𝑑) is an 

unbiased1 estimate of the normalized reward 𝑟𝑛(𝑑): = 1 − 𝑙𝑛(𝑑)/𝐶𝑙, i.e., 𝐸{𝜌𝑛(𝑑)} = 𝑟𝑛(𝑑). Observe also that 𝜌𝑛(𝑑) is 

bounded from above, i.e., 𝜌𝑛(𝑑) ⩽ 1. 

 

1 All the expectations are taken with respect to the distribution of model selections (not with respect to the noise distribution). 
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Step 1) For the proof, it is enough to show that 𝐸{∑ 𝑙𝑛(𝛿)} − ∑ 𝑙𝑛(𝑑) 𝑁
𝑛=1

𝑁
𝑛=1  is upper bounded, for all 𝑑, by 

2𝐶𝑙√𝑁Ɗ 𝑙𝑛( Ɗ). Equivalently (since 𝑙𝑛(𝑑) = 𝐶𝑙(1 − 𝑟𝑛(𝑑))), we aim to show that  

∑ 𝑟𝑛(𝑑) − 𝐸{

𝑁

𝑛=1

∑ 𝑟𝑛(𝛿)} ⩽ 2√𝑁Ɗ 𝑙𝑛( Ɗ)

𝑁

𝑛=1

. (10) 

From Lemmas 2 and 3 (see Section 8), we note that  

∑ 𝑟𝑛(𝑑) = 𝐸{𝑆𝑁(𝑑)}

𝑁

𝑛=1

𝐸{∑ 𝑟𝑛(𝛿)} = 𝐸{

𝑁

𝑛=1

∑ ∑ 𝑃𝑛(𝑑)𝜌𝑛(𝑑)}

Ɗ

𝑑=1

𝑁

𝑛=1  

,

 (11) 

where 𝑆𝑁(𝑑): = ∑ [1 − (𝕀{𝑑 = 𝛿}𝑙𝑛(𝛿))/(𝐶𝑙𝑃𝑛(𝑑))].  𝑁
𝑛=1 Therefore, the left hand side of (10) is equal to  

𝑅𝑁 = 𝐸{𝑆𝑁(𝑑) − 𝑘𝑁}, (12) 

where 𝑘𝑁: = ∑  ∑  𝑃𝑛(𝑑)𝜌𝑛(𝑑).𝐷
𝑑=1

𝑁
𝑛=1  

Step 2) To bound (12), let 𝑤𝑁: = ∑ 𝑒𝑥𝑝( 𝜂𝑆𝑁(𝑑))Ɗ
𝑑=1 . Note that 𝑤0 = ∑ 𝑒𝑥𝑝( 0) = ƊƊ

𝑑=1 . Furthermore,  

𝑒𝑥𝑝( 𝜂𝑆𝑁(𝑑)) ⩽ ∑ 𝑒𝑥𝑝( 𝜂𝑆𝑁(𝑑))

Ɗ

𝑑=1

= 𝑤𝑁 = 𝑤0

𝑤1

𝑤0

⋯
𝑤𝑁

𝑤𝑁−1

,

 

(13) 

and hence  

𝑒𝑥𝑝( 𝜂𝑆𝑁(𝑑)) ⩽ Ɗ ∏
𝑤𝑛

𝑤𝑛−1

.

𝑁

𝑛=1

 
(14) 

Focusing on 𝑤𝑛/𝑤𝑛−1 observe that  

𝑤𝑛/𝑤𝑛−1 = ∑
𝑒𝑥𝑝( 𝜂𝑆𝑛−1(𝑑))

𝑤𝑛−1

𝑒𝑥𝑝( 𝜂𝜌𝑛(𝑑)).

Ɗ

𝑑=1

 

Due to (5), we obtain  

𝑤𝑛/𝑤𝑛−1 = ∑ 𝑃𝑛(𝑑) 𝑒𝑥𝑝( 𝜂𝜌𝑛(𝑑)).

Ɗ

𝑑=1

 (15) 

Next, since 𝜂 ⩽ 1, 𝜌𝑛(𝑑) ⩽ 1, and 𝑒𝑥𝑝( 𝑥) ⩽ 1 + 𝑥 + 𝑥2 for all 𝑥 ⩽ 1, we have that 𝑒𝑥𝑝( 𝜂𝜌𝑛(𝑑)) ⩽ 1 + 𝜂𝜌𝑛(𝑑) +

𝜂2𝜌𝑛
2(𝑑). Hence, for (15), we have  

𝑤𝑛

𝑤𝑛−1
⩽ 1 + 𝜂 ∑  𝑃𝑛(𝑑)𝜌𝑛(𝑑) + 𝜂2 ∑  𝑃𝑛(𝑑)𝜌𝑛

2(𝑑)Ɗ
𝑑=1 .Ɗ

𝑑=1 As 1 + 𝑥 ⩽ 𝑒𝑥𝑝( 𝑥) for all 𝑥 ∈ ℝ, 

𝑤𝑛

𝑤𝑛−1

⩽ 𝑒𝑥𝑝 (𝜂 ∑ 𝑃𝑛(𝑑)𝜌𝑛(𝑑) + 𝜂2

Ɗ

𝑑=1

∑ 𝑃𝑛(𝑑)𝜌𝑛
2(𝑑)

Ɗ

 𝑑=1

). 

An application of the above result in (14) gives  
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𝑒𝑥𝑝( 𝜂𝑆𝑁(𝑑)) ⩽ Ɗ 𝑒𝑥𝑝 (𝜂 ∑   ∑ 𝑃𝑛(𝑑)𝜌𝑛(𝑑)

Ɗ

𝑑=1

𝑁

𝑛=1

 

+𝜂2 ∑ ∑ 𝑃𝑛(𝑑)𝜌𝑛
2(𝑑)

Ɗ

  𝑑=1

𝑁

𝑛=1

). (16) 

Equivalently,  

𝑒𝑥𝑝( 𝜂𝑆𝑁(𝑑)) ⩽ Ɗ 𝑒𝑥𝑝(𝜂𝑘𝑁 + 𝜂2  ∑  ∑  𝑃𝑛(𝑑)𝜌𝑛
2(𝑑)Ɗ

𝑑=1
𝑁
𝑘=1 ), and after taking the logarithm of both sides, we obtain  

𝑆𝑁(𝑑) − 𝑘𝑁 ⩽
𝑙𝑛 Ɗ

𝜂
+ 𝜂 ∑ ∑ 𝑃𝑛(𝑑)𝜌𝑛

2(𝑑),

Ɗ

  𝑑=1

𝑁

𝑛=1

 (17) 

where the expectation of the left hand side is equal to (12). 

Step 3) Focusing on the expectation of the last (double-summation) element in (17) we see that  

𝐸{∑ ∑ 𝑃𝑛(𝑑)𝜌𝑛
2(𝑑)} =

Ɗ

  𝑑=1

𝑁

𝑛=1

∑ 𝐸{1 − 2𝑙𝑛(𝛿) + 𝐸𝑛{

𝑁

𝑛=1

∑
𝕀{𝑑 = 𝛿}𝑙𝑛

2(𝛿)

𝑃𝑛(𝑑)
}},

Ɗ

𝑑=1

 (18) 

where 𝑙𝑛(𝛿): = 𝑙𝑛(𝛿)/𝐶𝑙 (i.e., 𝑙𝑛(𝛿) ∈ [0,1]) and 𝐸𝑛 is the expectation conditioned by prior decisions and rewards, i.e. , 

𝐸𝑛{⋅} = 𝐸𝑛{⋅ |𝛿1, 𝑟1, … , 𝛿𝑛−1, 𝑟𝑛−1}. Hence, (18) is equal to  

∑ 𝐸{1 − 2𝑙𝑛(𝛿) + ∑ 𝑙𝑛
2(𝑑)}

Ɗ

𝑑=1

𝑁

𝑛=1

= ∑ 𝐸{[1 − 𝑙𝑛(𝛿)]2 + ∑ 𝑙𝑛
2(𝑑)}.

Ɗ

𝑑=1;𝑑≠𝛿

𝑁

𝑛=1

 

Note, next, that the right-hand side in the formula above is upper-bounded by 𝑁𝐸{[1 − 𝑙𝑛(𝛿)]2 +

∑ 𝑙𝑛
2(𝑑)} ⩽ 𝑁𝐸{1 + ∑ 1} ⩽ 𝑁Ɗ.Ɗ

𝑑=1;𝑑≠𝛿
Ɗ
𝑑=1;𝑑≠𝛿  Finally, we see from the above, (17) and (12) that  

𝑅𝑁 ⩽ 𝜂−1 𝑙𝑛 Ɗ + 𝜂𝑁Ɗ. (19) 

Step 4) The value of 𝜂 for which the upper bound in (19) is minimized is equal to √𝑙𝑛 Ɗ /(𝑁Ɗ), which leads to the 

final result 𝑅𝑁 ⩽ 2√𝑁Ɗ 𝑙𝑛 Ɗ. 

8. Additional Lemmas 

Lemma 1 𝜌𝑛(𝑑) is an unbiased estimate of the normalized reward 𝑟𝑛(𝑑), i.e. , 𝐸{𝜌𝑛(𝑑)} = 𝑟𝑛(𝑑) for all 𝑑.  

Proof. We have that 

𝐸{𝜌𝑛(𝑑)} = 1 − (𝐸{𝕀{𝑑 = 𝛿}𝑙𝑛(𝛿)})/(𝐶𝑙𝑃𝑛(𝑑)) 

and 𝐸{𝕀{𝑑 = 𝛿}𝑙𝑛(𝛿)} = 𝑃𝑛(𝑑)𝑙𝑛(𝑑). Therefore, 

𝐸{𝜌𝑛(𝑑)} = 1 −
𝑃𝑛(𝑑)𝑙𝑛(𝑑)

𝐶𝑙𝑃𝑛(𝑑)
= 1 −

𝑙𝑛(𝑑)

𝐶𝑙

. 
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Lemma 2 It holds that ∑ 𝑟𝑛(𝑑) = 𝐸{𝑆𝑁(𝑑)}.𝑁
𝑛=1   

Proof. The result follows from Lemma 1, since 𝐸{𝑆𝑁(𝑑)} = ∑ 𝐸{𝜌𝑛(𝑑)} = ∑ 𝑟𝑛(𝑑).𝑁
𝑛=1

𝑁
𝑛=1  

Lemma 3 It holds that 

𝐸{∑ 𝑟𝑛(𝛿)} = 𝐸{∑ ∑ 𝑃𝑛(𝑑)𝜌𝑛(𝑑)}.

Ɗ

  𝑑=1

𝑁

𝑛=1

𝑁

𝑛=1

 

Proof. Observe that 𝐸𝑛{𝑟𝑛(𝑑)} = ∑ 𝑃𝑛(𝑑)𝑟𝑛(𝑑),Ɗ
𝑑=1  where 𝐸𝑛 is the expectation conditioned by prior decisions and 

rewards. Based on Lemma 1, 𝐸{𝜌𝑛(𝑑)} = 𝑟𝑛(𝑑). Therefore, 𝐸𝑛{𝑟𝑛(𝛿)} = ∑ 𝑃𝑛(𝑑)𝐸{𝜌𝑛(𝑑)}Ɗ
𝑑=1  and 𝐸{∑ 𝑟𝑛(𝛿)} =𝑁

𝑛=1

𝐸{∑ 𝐸𝑛{𝑟𝑛(𝛿)}},𝑁
𝑛=1  which is equal to 𝐸{∑ ∑ 𝑃𝑛(𝑑)𝜌𝑛(𝑑)}.Ɗ

𝑑=1
𝑁
𝑛=1  
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