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ABSTRACT  

This research paper aims to establish the uniqueness of the solution to 

fourth-order nonlinear differential equations 

𝑣(4)(𝑥) + 𝑓(𝑥, 𝑣(𝑥)) = 0,  𝑥 ∈ [a, b], 

with non-homogeneous boundary conditions  

𝑣(a) = 0,  𝑣 ′(a) = 0,  𝑣 ′′(a) = 0,  𝑣 ′′(b)  − 𝛼𝑣 ′′(𝜁) = 𝜇, 

where 0 ≤ a < 𝜁 < b, the constants 𝛼, 𝜇 are real numbers and 𝑓: [a, b] ×  𝑅 →

 𝑅 is a continuous function with 𝑓(𝑥, 0) ≠ 0. Using the sharper bounds on the 

integral of the kernel, the uniqueness of the solution to the problem is 

established based on Banach and Rus fixed point theorems on metric 

spaces. 

AMS Subject Classification: 34B15, 34B10.  
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1. Introduction 

The theory of differential equations has emerged as a valuable instrument for understanding and interpreting 

problems in various scientific fields. The laws concerning these situations can be expressed as differential equations 

of various orders satisfying certain conditions. In particular, the fourth-order differential equations arise in the 

modeling of the concepts in the inelastic flows, viscoelastic, electric circuits, theory of plate deflection, bending of 

beams, and various areas of applied mathematics, as well as the concepts in engineering [1-5]. Due to their immense 

importance in theory and applications, researchers have shown an interest in studying the existence of solutions to 

differential equations of different orders under certain conditions. 

In 1988, Gupta [6] established the existing results for the bending of an elastic beam with entirely supported 

edges and given by  

𝑑4𝑢

𝑑𝑥4
− 𝜋4𝑢 + 𝑔(𝑥, 𝑢) = 𝑒(𝑥),  0 < 𝑥 < 1, 

𝑢(0) = 0,  𝑢(1) = 0,  𝑢′′(0) = 0,  𝑢′′(1) = 0. 

In 2003, Ma [7] considered the nonlinear fourth-order problem  

𝑢(4)(𝑥) = 𝜆𝑓(𝑥, 𝑢(𝑥), 𝑢′(𝑥)) 0 < 𝑥 < 1, 

𝑢(0) = 0,  𝑢′(0) = 0, 𝑢′′(1) = 0,  𝑢′′′(1) = 0,  

which describes the deformations of an elastic beam whose one end is fixed and the other free and studies the 

existence of multiple positive solutions using a fixed point theorem in cones. Following that, the researchers studied 

the existence and uniqueness of solutions to the boundary value problems of the third order [8-11] and fourth order 

[12-15]. In light of these works, we consider the fourth-order differential equations  

𝑣(4)(𝑥) + 𝑓(𝑥, 𝑣(𝑥)) = 0,  𝑥 ∈ [a, b], (1) 

with the boundary conditions involving a non-homogeneous term  

𝑣(a) = 0,  𝑣′(a) = 0,  𝑣′′(a) = 0,  𝑣′′(b)  − 𝛼𝑣′′(𝜁) = 𝜇, (2) 

where 0 ≤ 𝑎 < 𝜁 < 𝑏, the constants 𝛼, 𝜇 are real numbers, 𝑓: [𝑎, 𝑏] ×  𝑅 →  𝑅 is a continuous function with 𝑓(𝑥, 0) ≠ 0, 

and the existence results are established using fixed point theorems on metrics. By taking 𝑎 = 0, 𝑏 = 1 in (1) and (2), 

Sun and Zhu [16] established the existence of positive solutions by using Krasnosel’skii fixed point theorem. In the 

same way, Lakoud and Zenkoufi [17] studied the existence, uniqueness, and positivity of solutions through various 

fixed-point theorems for 𝜇 = 0. 

In real-world applications, the problem must be well-posed with certain constraints. If a problem has only one 

solution and certain ideal conditions, we can validate the problem's "well-posedness" using various methods. If the 

problem has two or more solutions or no solution, it needs to be better posed from a modeling standpoint and 

must be modified and created a new model [18]. 

For the sake of simplicity, the following notations are used.  

(C1) Γ = 𝜇 + ∫ (𝑏 − ϒ)Φ(ϒ)𝑑ϒ − 𝛼
𝑏

𝑎
∫ (𝜁 − ϒ)Φ(ϒ)𝑑ϒ,
𝜁

𝑎
 and  

(C2) Δ = 3! [(𝑏 − 𝑎) − 𝛼(𝜁 − 𝑎)].  

The summary of the remaining portion of the study is provided below. Section 2 describes the solution to 

problem (1)-(2) as the solution of the corresponding integral equation that includes the kernel; after that, the sharper 
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estimates of the integral of the kernel are computed. The fixed point theorems on metrics are used to demonstrate 

the results for the existence and uniqueness of (1)-(2) using estimations on the integral of the kernel. Examples are 

constructed to support the conclusions in Section 3. 

2. Results of Preparation 

We first derive the solution of problem (1)-(2) by expressing it into an equivalent integral equation involving 

kernel. After that, the sharper estimates of the integral of the kernel are computed. This help demonstrates our 

major findings. 

For this, let 𝛷(𝑥) ∈ 𝐶([𝑎, 𝑏],  𝑅) then the unique solution to the problem  

𝑣(4)(𝑥) + Φ(𝑥) = 0,  𝑥 ∈ [a, b], (3) 

satisfying the conditions specified in (2) is obtained.  

Theorem 2.1 Let Δ ≠ 0. Then the unique solution to problem (3) with (2) is given by  

𝑣(𝑥) =
𝜇(𝑥 − a)3

Δ
+ ∫ H(𝑥, ϒ)Φ(ϒ)𝑑ϒ,

b

a

 

where  

H(𝑥, ϒ) = M(𝑥, ϒ) +
𝛼(𝑥 − a)3

Δ
N(𝜁, ϒ), (4) 

M(𝑥, ϒ) =

{
 
 

 
 (𝑥 − a)

3(b − ϒ)

3! (b − a)
−
(𝑥 − ϒ)3

3!
,         a ≤ ϒ ≤ 𝑥 ≤ b,

(𝑥 − a)3(b − ϒ)

3! (𝑏 − 𝑎)
,                               a ≤ 𝑥 ≤ ϒ ≤ b,

 (5) 

and  

N(𝜁, ϒ) =

{
 
 

 
 (ϒ − a)(b − 𝜁)

(b − a)
,          a ≤ ϒ ≤ 𝜁 ≤ b,

(𝜁 − a)(b − ϒ)

(b − a)
,          a ≤ 𝜁 ≤ ϒ ≤ b.

 (6) 

Proof: The corresponding integral equation of (3) is  

𝑣(𝑥) = 𝐴0 + 𝐴1𝑥 + 𝐴2𝑥
2 + 𝐴3𝑥

3 −
1

3!
∫ (𝑥 − ϒ)3Φ(ϒ)𝑑ϒ,
𝑥

𝑎

 (7) 

where   𝐴0, 𝐴1, 𝐴2, and 𝐴3 are constants. Using the conditions (2), we have the following set of equations  

𝐴0 + 𝐴1a + 𝐴2a
2 + 𝐴3a

3 = 0,

𝐴1 + 2𝐴2a + 3𝐴3a
2 = 0,

𝐴2 + 3𝐴3a = 0,

2𝐴2(1 − 𝛼) + 6𝐴3(𝑏 − 𝛼𝜁) = Γ,

 

where 𝛤 is given in (C1). On solving the above four equations, we get  

𝐴0 = −
a3Γ

Δ
,  𝐴1 =

3a2Γ

Δ
,  𝐴2 = −

3aΓ

Δ
 and 𝐴3 =

Γ

Δ
, 
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where 𝛥 is given in (C2). Substituting these values in (7), we have  

𝑣(𝑥)  = [−a3 + 3a2𝑥 − 3a𝑥2 + 𝑥3]
Γ

Δ
−

1

3!
∫ (𝑥 − ϒ)3Φ(ϒ)𝑑ϒ
𝑥

a
  

=
(𝑥−a)3

Δ
[𝜇 + ∫ (b − ϒ)Φ(ϒ)𝑑ϒ

b

a
− 𝛼 ∫ (𝜁 − ϒ)Φ(ϒ)𝑑ϒ

𝜁

a
] −

1

3!
∫ (𝑥 − ϒ)3Φ(ϒ)𝑑ϒ
𝑥

a
  

=
𝜇(𝑥−a)3

Δ
+

(𝑥−a)3[(b−a)−𝛼(𝜁−a)+𝛼(𝜁−a)]

3![(b−a)−𝛼(𝜁−a)](b−a)
∫ (b − ϒ)Φ(ϒ)𝑑ϒ
b

a
 −

𝛼(𝑥−a)3

Δ
∫ (𝜁 − ϒ)Φ(ϒ)𝑑ϒ
𝜁

a
−

1

3!
∫ (𝑥 − ϒ)3Φ(ϒ)𝑑ϒ
𝑥

a
  

=
𝜇(𝑥−a)3

Δ
+

(𝑥−a)3

3!(b−a)
∫ (b − ϒ)Φ(ϒ)𝑑ϒ
b

a
+

𝛼(𝑥−a)3(𝜁−a)

(b−a)Δ
  

∫ (b − ϒ)Φ(ϒ)𝑑ϒ
b

a
−

𝛼(𝑥−a)3

Δ
∫ (𝜁 − ϒ)Φ(ϒ)𝑑ϒ
𝜁

a
−

1

3!
∫ (𝑥 − ϒ)3Φ(ϒ)𝑑ϒ
𝑥

a
  

=
𝜇(𝑥−a)3

Δ
+ ∫ [

(𝑥−a)3(b−ϒ)

3!(b−a)
−

(𝑥−ϒ)3

3!
]Φ(ϒ)𝑑ϒ

𝑥

a
  

+∫ [
(𝑥−a)3(b−ϒ)

3!(b−a)
]

b

𝑥
Φ(ϒ)𝑑ϒ +

𝛼(𝑥−a)3

Δ
 {∫ [

(ϒ−a)(b−𝜁)

(b−a)
]

𝜁

a
Φ(ϒ)𝑑ϒ + ∫ [

(𝜁−a)(b−ϒ)

(b−a)
]

b

𝜁
Φ(ϒ)𝑑ϒ} 

=
𝜇(𝑥−a)3

Δ
+ ∫ M(𝑥, ϒ)Φ(ϒ)𝑑ϒ

b

a
+

𝛼(𝑥−a)3

Δ
∫ N(𝜁, ϒ)Φ(ϒ)𝑑ϒ
b

a
  

=
𝜇(𝑥−a)3

Δ
+ ∫ H(𝑥, ϒ)Φ(ϒ)𝑑ϒ.

b

a
  

Let 𝑢(𝑥) be another solution of (3) and (2) to establish the uniqueness of the solution. Take 𝑤(𝑥) = 𝑣(𝑥) − 𝑢(𝑥). 

Then  

𝑤(4)(𝑥) = 0,  𝑥 ∈ [a, b], (8) 

𝑤(a) = 0,  𝑤′(a) = 0,  𝑤′′(a) = 0,  𝑤′′(b)  −  𝛼𝑤′′(𝜁) = 0. (9) 

Therefore, the solution of (8) is  

𝑤(𝑥) = 𝐷0 + 𝐷1𝑥 + 𝐷2𝑥
2 + 𝐷3𝑥

3, 

where 𝐷0, 𝐷1, 𝐷2 and 𝐷3 are the arbitrary constants. By applying the conditions in (9), it can be written as a matrix 

form 𝑨𝑫 = 𝑶, where  

𝐀 =

[
 
 
 
 
1 a a2 a3

0 1 2a 3a2

0 0 1 3a
0 0 2(1 − 𝛼) 6(b − 𝛼𝜁)

]
 
 
 
 

, 

𝐃 = [𝐷0 𝐷1 𝐷2 𝐷3]
𝑇 

and  

𝐎 = [0 0 0 0]𝑇 

with |𝐴| = 3! [(𝑏 − 𝑎) − 𝛼(𝜁 − 𝑎)] and is non-zero. So, the matrix system 𝑨𝑫 = 𝑶 has only a trivial solution. As a result, 

𝑤(𝑥) ≡ 0 for all 𝑥 ∈ [𝑎, 𝑏]. Thus, the uniqueness of the solution is proved.  
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Lemma 2.2 The kernel M(𝑥, ϒ) given in (5) is non-negative for all 𝑥, ϒ ∈ [a, b].  

Proof: Simple algebraic computations can be used to determine the positivity of 𝑀(𝑥, ϒ).  

Lemma 2.3 The kernel M(𝑥, ϒ) in (5) satisfies the following integral inequality.  

∫ M(𝑥, ϒ)𝑑ϒ
b

a

≤
9

128
(b − a)4,  for all 𝑥 ∈ [a, b]. (10) 

Proof: For all 𝑥 ∈ [𝑎, 𝑏], consider  

∫ M(𝑥, ϒ)𝑑ϒ
b

a

= ∫ [
(𝑥 − a)3(b − ϒ)

3! (b − a)
−
(𝑥 − ϒ)3

3!
]

𝑥

a

𝑑ϒ + ∫
(𝑥 − a)3(b − ϒ)

3! (b − a)
𝑑ϒ

b

𝑥

 

= [−
(𝑥 − a)3(b − ϒ)2

12(b − a)
+
(𝑥 − ϒ)4

24
]
a

𝑥

+ [−
(𝑥 − a)3(b − ϒ)2

12(b − a)
]
𝑥

b

 

=
(𝑥 − a)3(b − a)

12
−
(𝑥 − a)4

24
. 

Let 𝛹(𝑥) =
(𝑥−𝑎)3(𝑏−𝑎)

12
−

(𝑥−𝑎)4

24
. Then, by the application of results in basic calculus, the maximum value 𝛹(𝑥) is 

attained at 𝑥 =
3𝑏−𝑎

2
 and is given by  

.)(
128

9
=

24

)(

12

)()(
max=)(max

4
43

],[],[

ab
aaba

baba

−






 −
−

−−




xx
x

xx
  

Hence, the inequality (10).  

Lemma 2.4 The kernel N(𝜁, ϒ) in (6) satisfies the following integral inequality.  

∫ N(𝜁, ϒ)𝑑ϒ ≤
1

2
(b − a)2

b

a

. 

Proof: For all 𝑥 ∈ [𝑎, 𝑏], consider  

∫ N(𝜁, ϒ)𝑑ϒ
b

a

= ∫
(ϒ − a)(b − 𝜁)

(b − a)
𝑑ϒ

𝜁

a

+∫
(𝜁 − a)(b − ϒ)

(b − a)
𝑑ϒ

b

𝜁

 

= [
(ϒ − a)2(b − 𝜁)

2(b − a)
]
a

𝜁

+ [−
(𝜁 − a)(b − ϒ)2

2(b − a)
]
𝜁

b

 

=
1

2
(𝜁 − a)(b − 𝜁) 

≤
1

2
(b − a)2. 

Lemma 2.5 The kernel H(𝑥, ϒ) in (4) satisfies the following integral inequality.  

∫ |H(𝑥, ϒ)|
b

a

𝑑ϒ ≤ (b − a)4 [
9

128
+

|𝛼|(b − a)

12|(b − a) − 𝛼(𝜁 − a)|
]. 

Proof: For all 𝑥 ∈ [𝑎, 𝑏], consider  
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∫ |H(𝑥, ϒ)|𝑑ϒ
b

a

= ∫ |M(𝑥, ϒ) +
𝛼(𝑥 − a)3

Δ
N(𝜁, ϒ)|

b

a

𝑑ϒ 

≤ ∫ |M(𝑥, ϒ)|
b

a

𝑑ϒ + |
𝛼(𝑥 − a)3

Δ
|∫ |N(𝜁, ϒ)|

b

a

𝑑ϒ 

≤
9

128
(b − a)4 +

|𝛼|(b − a)3

|Δ|
×
(b − a)2

2
 

= (b − a)4 [
9

128
+

|𝛼|(b − a)

12|(b − a) − 𝛼(𝜁 − a)|
]. 

The Banach and Rus fixed point theorems stated below are the primary tools for establishing our results. 

Theorem 2.6 [19] Let 𝐝 be a metric on a nonempty set D, and the pair (D, 𝐝) form a complete metric space. If the 

function F:D → D satisfies the following inequality for 𝑣, 𝑤 ∈ D,  

𝐝(F𝑣, F𝑤) ≤ 𝛽𝐝(𝑣, 𝑤), where 0 < 𝛽 < 1, 

then there is a unique point 𝜗∗ ∈ 𝐷 𝑤𝑖𝑡ℎ 𝐹𝜗∗ = 𝜗∗.  

Theorem 2.7 [20] Let 𝐝 and 𝜌 be two metrics on a nonempty set D, and the pair (D, 𝐝) form a complete metric 

space. If the function F: D → D is continuous concerning the metric 𝐝 on D and satisfies the following inequalities 

𝑣, 𝑤 ∈ D,  

𝐝(F𝑣, F𝑤) ≤ 𝜃𝜌(𝑣, 𝑤), where 𝜃 > 0, (11) 

and  

𝜌(F𝑣, F𝑤) ≤ 𝜅𝜌(𝑣, 𝑤), where 0 < 𝜅 < 1, (12) 

then there is a unique point 𝜗∗ ∈ 𝐷 𝑤𝑖𝑡ℎ 𝐹𝜗∗ = 𝜗∗.  

3. Main Results Based on Metrics 

This section establishes the uniqueness of the solution to the problem (1)-(2) based on metrics. Let 𝐷 be the set 

of real-valued continuous functions on [𝑎, 𝑏]. 𝐹𝑜𝑟 𝑣(𝑥), 𝑤(𝑥) ∈ 𝐷, define the metrics on 𝐷 as follows:  

|,)()(|max=),(
],[

xwxvwv
x

−
 ba

d
 

(13) 

and  

𝜌(𝑣, 𝑤) = (∫ |𝑣(𝑥) − 𝑤(𝑥)|𝑝𝑑𝑥
b

a

)

1

𝑝

, 𝑝 > 1. (14) 

Here the ordered pair (𝐷, 𝒅) forms a complete metric space, whereas (𝐷, 𝜌) is metric space. The following helpful 

relation [9] between the two metrics 𝒅 and 𝜌 on 𝐷 is given by  

𝜌(𝑣, 𝑤) ≤ (b − a)
1

𝑝𝐝(𝑣, 𝑤), for all 𝑣, 𝑤 ∈ D. (15) 

Let us consider the operator 𝐹: 𝐷 → 𝐷 as  

F𝑣(𝑥) =
𝜇(𝑥 − a)3

Δ
+∫ H(𝑥, ϒ)

b

a

𝑓(ϒ, 𝑣(ϒ))𝑑ϒ, for all 𝑥 ∈ [a, b], 
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where the kernel 𝐻(𝑥, ϒ) is mentioned in (4). 

It is evident that 𝑣(𝑥) a solution of (1)-(2) if and only if 𝑣(𝑥) satisfies the following 

𝑣(𝑥) =
𝜇(𝑥 − a)3

Δ
+ ∫ H(𝑥, ϒ)

b

a

𝑓(ϒ, 𝑣(ϒ))𝑑ϒ, for all 𝑥 ∈ [a, b]. (16) 

Assume that the following condition is true.  

(E1) |𝑓(𝑥, 𝑣) − 𝑓(𝑥, 𝑤)| ≤ 𝜆|𝑣 − 𝑤|, for all (𝑥, 𝑣), (𝑥, 𝑤) ∈ [a, b] ×  𝑅, where 𝜆 is a Lipschitz constant.  

Theorem 3.1 Suppose the condition (E1) is fulfilled. Let the function 𝑓: [a, b] ×  𝑅 →  𝑅 be continuous with 

𝑓(𝑥, 0) ≠ 0, for all 𝑥 ∈ [a, b]. If a, b satisfies the following inequality  

(b − a)4 [
9

128
+

|𝛼|(b − a)

12|(b − a) − 𝛼(𝜁 − a)|
] <

1

𝜆
 (17) 

then there is a unique solution to the problem (1)-(2).  

Proof: We to prove that problem (1)-(2) has a unique solution. It is enough to prove that the operator𝐹 has a 

unique fixed point 𝜗∗ ∈ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹𝜗∗ = 𝜗∗. Every such fixed point will also lie in 𝐶(4)([𝑎, 𝑏]), as can be directly shown 

by differentiating (16). 

Consider, for any 𝑣, 𝑤 ∈ 𝐷 and for 𝑥 ∈ [𝑎, 𝑏], we obtain  

|F𝑣(𝑥) − F𝑤(𝑥)|   = |
𝜇(𝑥−a)3

Δ
+ ∫ H(𝑥, ϒ)𝑓(ϒ, 𝑣(ϒ))𝑑ϒ

b

a
  −

𝜇(𝑥−a)3

Δ
+ ∫ H(𝑥, ϒ)𝑓(ϒ, 𝑤(ϒ))𝑑ϒ|

b

a
 

≤ ∫ |H(𝑥, ϒ)|
b

a
|𝑓(ϒ, 𝑣(ϒ)) − 𝑓(ϒ, 𝑤(ϒ))|𝑑ϒ  

≤ 𝜆∫ |H(𝑥, ϒ)|
b

a
|𝑣(ϒ) − 𝑤(ϒ)|𝑑ϒ  

≤ 𝜆∫ |H(𝑥, ϒ)|
b

a
𝐝(𝑣, 𝑤)𝑑ϒ  

≤ 𝜆(b − a)4 [
9

128
+

|𝛼|(b−a)

12|(b−a)−𝛼(𝜁−a)|
] 𝐝(𝑣, 𝑤),  

Using (𝐸1). It is evident from the fact that  

𝐝(F𝑣, F𝑤) ≤ 𝛽𝐝(𝑣, 𝑤), 

where  

𝛽 = 𝜆(b − a)4 [
9

128
+

|𝛼|(b − a)

12|(b − a) − 𝛼(𝜁 − a)|
]. 

Using (17), we have 𝛽 < 1 and hence, the operator 𝐹 has fulfilled the condition of Theorem 2.6. This implies that 

the operator𝐹 has a unique fixed point and is the solution of (1)-(2).  

We use two metrics by Rus theorem to establish the uniqueness of solutions of (1)-(2). 

Theorem 3.2 Suppose the condition (E1) is fulfilled. Let the function𝑓: [a, b] ×  𝑅 →  𝑅 be continuous with 

𝑓(𝑥, 0) ≠ 0, for every 𝑥 ∈ [a, b]. If there are two positive numbers 𝑝 > 1, 𝑞 > 1 such that 
1

𝑝
+

1

𝑞
= 1 with the inequality  
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𝜆 (∫ (∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

𝑝

𝑞

𝑑𝑥
b

a

)

1

𝑝

 < 1, (18) 

then there is a unique solution to the problem (1)-(2).  

Proof: We to prove that problem (1)-(2) has a unique solution. It is enough to prove that the operator 𝐹 has a 

unique fixed point 𝜗∗ ∈ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐹𝜗∗ = 𝜗∗. Every such fixed point will also lie in 𝐶(4)([𝑎, 𝑏]), as can be directly shown 

by differentiating (16). We first show that the inequality (11) of Theorem 2.7 is fulfilled. Consider, for any 𝑣, 𝑤 ∈ 𝐷 

and for 𝑥 ∈ [𝑎, 𝑏], we obtain  

|F𝑣(𝑥) − F𝑤(𝑥)| ≤   ∫ |H(𝑥, ϒ)||𝑓(ϒ, 𝑣(ϒ))  −  𝑓(ϒ, 𝑤(ϒ))| 𝑑ϒ
b

a

 

≤  ∫ |H(𝑥, ϒ)| 𝜆 |𝑣(ϒ)  −  𝑤(ϒ)| 𝑑ϒ
b

a

 

≤  (∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

1

𝑞

 𝜆 (∫ |𝑣(ϒ)  −  𝑤(ϒ)|𝑃
b

a

𝑑ϒ)

1

𝑃

  

≤ 𝜆  max
        𝑥∈[𝑎,𝑏]

(∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

1

𝑞

 𝜌(𝑣, 𝑤) 

Using (𝐸1) and Holder's inequality [21]. Now, we define  

𝜃 = 𝜆  max
        𝑥∈[𝑎,𝑏]

(∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

1

𝑃

 

We conclude that  

𝒅(𝐹𝑣, 𝐹𝑤) ≤ 𝜃𝜌(𝑣, 𝑤), for some 𝜃 > 0 and for all 𝑣, 𝑤 ∈  D. (19) 

Thus, the inequality (11) of Theorem 2.7 is fulfilled. Now, we apply (15) to (19), we get  

𝐝(F𝑣, F𝑤) ≤ 𝜃𝜌(𝑣, 𝑤) ≤ 𝜃(b − a)
1

𝑝𝐝(𝑣, 𝑤), for all 𝑣, 𝑤 ∈ D. 

Thus, for any given 𝜀 > 0, we can take 𝛿 =
𝜀

𝜃(𝑏−𝑎)
1
𝑝

 such that 𝒅(𝐹𝑣, 𝐹𝑤) < 𝜀 whenever 𝒅(𝑣, 𝑤) < 𝛿. Hence the 

operator 𝐹 is continuous on 𝐷 concerning the metric 𝒅 given in (13). 

Further, we show that the inequality (12) of Theorem 2.7 is fulfilled. Consider for any 𝑣, 𝑤 ∈ 𝐷 and for 𝑥 ∈ [𝑎, 𝑏], 

we obtain 

(∫ |F𝑣(𝑥) − F𝑤(𝑥)|𝑝
b

a

𝑑𝑥)

1

𝑝

 ≤ (∫ [(∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

1

𝑞

𝜆 (∫ |𝑣(ϒ) − 𝑤(ϒ)|𝑝
b

a

𝑑ϒ)

1

𝑝

]

𝑝
b

a

𝑑𝑥)

1

𝑝

 

≤ 𝜆(∫ (∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

𝑝

𝑞b

a

𝑑𝑥)

1

𝑝

𝜌(𝑣, 𝑤). 
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Therefore  

𝜌(F𝑣, F𝑤) ≤ 𝜆(∫ (∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

𝑝

𝑞b

a

𝑑𝑥)

1

𝑝

𝜌(𝑣, 𝑤) 

= 𝜅𝜌(𝑣, 𝑤), 

where  

𝜅 = 𝜆(∫ (∫ |H(𝑥, ϒ)|𝑞
b

a

𝑑ϒ)

𝑝

𝑞b

a

𝑑𝑥)

1

𝑝

. 

Using (18), we have 𝜅 < 1 and hence, the operator 𝐹 satisfies all the conditions of Theorem 2.7. This implies that 

the operator 𝐹 has a unique fixed point and is the solution of (1)-(2).  

As an application, the above conclusions are supported with examples. 

Example 3.1 Consider  

𝑣(4)(𝑥) + 3 + 2𝑥 + 𝑐𝑜𝑠 𝑣 = 0, 𝑥 ∈ [
1

4
, 1] , (20) 

with  

𝑣 (
1

4
) = 0,  𝑣′ (

1

4
) = 0,  𝑣′′ (

1

4
) = 0,  𝑣′′(1) − 

1

4
 𝑣′′ (

3

4
) = 𝜇. (21) 

Clearly, 𝑓(𝑥, 0) ≠ 0 and 𝛥 =
15

4
≠ 0. Then  

|
∂𝑓(𝑥, 𝑣)

∂𝑣
| = 𝑠𝑖𝑛 𝑣 ≤ 1 

and  

(b − a)4 [
9

128
+

|𝛼|(b − a)

12|(b − a) − 𝛼(𝜁 − a)|
] =

4941

163840
= 0.03015747 <

1

𝜆
. 

So, all the assumptions of the Theorem 3.1 are satisfied, and thus the problem (20)-(21) has a unique solution.  

Example 3.2 Consider  

𝑣(4) + 3 + 2𝑥 + 𝑐𝑜𝑠 𝑣 = 0, 𝑥 ∈ [0,1], (22) 

with  

𝑣(0) = 0,  𝑣′(0) = 0,  𝑣′′(0) = 0,  𝑣′′(1) − 𝑣′′ (
1

2
)  = 𝜇. (23) 

Clearly, 𝑓(𝑥, 0) ≠ 0 and 𝛥 = 3 ≠ 0. Then  

|
∂𝑓(𝑥, 𝑣)

∂𝑣
| = 𝑠𝑖𝑛 𝑣 ≤ 1. 

For simplicity, we take 𝑝 = 2 and 𝑞 = 2 then, by algebraic computation, one can obtain 
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∫ |H(𝑥, ϒ)|2
1

0

𝑑ϒ =
1

56
𝑥7 +

1

27
𝑥6(1 − 𝑥)3, 

(∫ (∫ |H(𝑥, ϒ)|2
1

0

𝑑ϒ)
1

0

𝑑𝑥)  =
59

25920
= 0.0022762 

and so  

(∫ (∫ |H(𝑥, ϒ)|2
1

0

𝑑ϒ)
1

0

𝑑𝑥)

1

2

= 0.0477095 <
1

𝜆
. 

So, all the assumptions of Theorem 3.2 are satisfied, and thus the problem (22)-(23) has a unique solution.  

Remark 3.1 Rus theorem involves two metrics that may not be necessarily equivalent. In particular, the space in 

Rus theorem is assumed to be complete concerning the first metric but not necessarily complete for the second 

metric. Also, the operator is assumed to be contractive concerning the second metric. Hence, the Rus theorem 

applies to a larger class of problems than the Banach theorem.  

4. Conclusion 

We established the existence of a unique solution to the fourth-order nonlinear differential equations with non-

homogeneous three-point boundary conditions by employing Banach fixed point theorem on a metric space and 

also established the unique solution to the problem in the larger intervals with different assumptions by applying 

Rus fixed point theorem on metric spaces. 

Acknowledgements 

The authors are delighted to express their thankfulness for the insightful recommendations and remarks of the 

reviewers. 

References 

[1] Agarwal RP, Akrivis G. Boundary value problems occurring in plate deflection theory. J Comput Appl Math. 1982; 8: 145-54. 

https://doi.org/10.1016/0771-050X(82)90035-3 

[2] Choobbasti A J, Barari A, Farrokhzad F, Ganji DD. Analytical investigation of a fourth-order boundary value problem in deformation of 

beams and plate deflection theory. J Appl Sci. 2008; 8: 2148-52. https://doi.org/10.3923/jas.2008.2148.2152 

[3] Elcrat AR. On the radial flow of a viscous fluid between porous disks. Arch Ration Mech Anal. 1976; 61: 91-6. 

https://doi.org/10.1007/BF00251865 

[4] Ma TF, Silva JD. Iterative solutions for a beam equation with nonlinear boundary conditions of third order. Appl Math Comput. 2004; 159: 

11-8. https://doi.org/10.1016/j.amc.2003.08.088 

[5] Momani S. Some problems in non-newtonian fluid mechanics. Ph.D. Thesis. Wales University, 1991. 

[6] Gupta CP. Existence and uniqueness results for the bending of an elastic beam equation at resonance. J Math Anal Appl. 1988; 135: 208-

25. https://doi.org/10.1016/0022-247X(88)90149-7 

[7] Ma R. Multiple positive solutions for a semipositone fourth-order boundary value problem. Hiroshima Math J. 2003; 33: 217-227. 

[8] Smirnov S. Green’s function and existence of a unique solution for a third order three-point boundary value problem. Math Model Anal. 

2019; 24: 171-8. https://doi.org/10.3846/mma.2019.012 

[9] Almuthaybiri SS, Tisdell CC. Sharper existence and uniqueness results for solution to third order boundary value problems. Math Model 

Anal. 2020; 25: 409-20. https://doi.org/10.3846/mma.2020.11043 

[10] Almuthaybiri SS, Tisdell CC. Existence and uniqueness of solutions to third-order boundary value problems: analysis in closed and 

bounded sets. Diff Equ Appl. 2020; 12: 291-312. https://doi.org/10.7153/dea-2020-12-19 

[11] Almuthaybiri SS, Jonnalagadda JM, Tisdell CC. Existence and uniqueness of solutions to third-order boundary value problems. Trends 

Comput Appl Math. 2021; 22: 221-40. https://doi.org/10.5540/tcam.2021.022.02.00221 

 



The Unique Solution to the Differential Equations of the Fourth Order Madhubabu et al. 

 

203 

[12] Almuthaybiri SS, Tisdell CC. Sharper existence and uniqueness results for solutions to fourth-order boundary value problems and elastic 

beam analysis. Open Mathematics 2020; 18: 1006-24. https://doi.org/10.1515/math-2020-0056 

[13] Erturk VS. A unique solution to a fourth-order three-point boundary value problem. Turkish J Math. 2020; 44: 1941-9. 

https://doi.org/10.3906/mat-2007-79 

[14] Sankar RR, Sreedhar N, Prasad KR. Existence results for fourth order non-homogeneous three-point boundary value problems. Contemp 

Math. 2021; 2: 162-72. https://doi.org/10.37256/cm.222021780. 

[15] Li Y, Ma W. Existence of positive solutions for a fully fourth-order boundary value problem. Mathematics. 2022; 10: 1-9. 

https://doi.org/10.3390/math10173063 

[16] Sun Y, Zhu C. Existence of positive solutions for singular fourth-order three-point boundary value problems. Adv Differ Equ. 2013; 2013: 

1-13. https://doi.org/10.1186/1687-1847-2013-51 

[17] Guezane-Lakoud A, Zenkoufi L. Existence of positive solutions for a fourth-order three-point boundary value problem. J Appl Math 

Comput. 2016; 50: 139-55. https://doi.org/10.1007/s12190-014-0863-5 

[18] Tisdell CC. Rethinking pedagogy for second-order differential equations: a simplified approach to understanding well-posed problems. 

Int J Math Educ Sci Technol. 2017; 48: 794-801. https://doi.org/10.1080/0020739X.2017.1285062 

[19] Banach S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam Math. 1922; 3: 133-81. 

https://doi.org/10.4064/fm-3-1-133-181 

[20] Rus IA. On a fixed point theorem of maia. Studia Univ Babes -Bolyai Math. 1977; 22: 40-2. 

[21] Hoelder O. Uber einen Mittelwertsatz. Goett Nachr. 1889: 38-47. 

 


