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ABSTRACT 

Non-stationary time series prediction is challenging due to its dynamic and complex 

nature. Fuzzy time series models offer a promising solution for forecasting such data, 

but a key challenge lies in partitioning the universe of discourse, which significantly 

impacts forecasting accuracy. Traditional fuzzy time series models often use equal-

length interval partitioning, which is more suited for stationary data and limits their 

adaptability to non-stationary time series.  This paper introduces a novel variable-length 

interval partitioning method designed specifically for non-stationary time series. The 

developed method combines a Long Short-Term Memory (LSTM) Autoencoder with K-

means clustering, enabling dynamic, data-driven partitioning that adapts to the 

changing characteristics of the data. The LSTM Autoencoder encodes the time series, 

which is clustered using K-means, and intervals are defined based on cluster centers. 

Furthermore, the Variable Length Interval Partitioning-based Fuzzy Time Series model 

(VLIFTS) is developed by incorporating this partitioning method and the concepts of 

Markov chain and transition probability matrix. In this model, fuzzy sets are viewed as 

states of a Markov chain, and transition probabilities are used in the forecasting phase. 

The model is validated on stock market indices Nifty 50, NASDAQ, S&P 500, and Dow 

Jones. Stationarity and heteroscedasticity are tested using Augmented Dickey-Fuller 

(ADF) and Levene's tests respectively. Statistical forecast accuracy metrics Root Mean 

Squared Error (RMSE) and Mean Absolute Percent Error (MAPE) show that VLIFTS 

significantly improves forecasting accuracy over traditional models. This hybrid 

approach enhances fuzzy time series modelling and can be applied to various non-

stationary time series forecasting problems. 
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1. Introduction 

Non-stationary time series are common in a wide range of real-world systems. For non-stationary time series, 

statistical properties like mean, variance, and higher-order moments vary over time. Non-stationarity is frequently 

caused by trends, seasonality, heteroscedasticity, and other irregular patterns over time. Therefore, utmost care 

should be taken when choosing a forecasting model based on the assumption of stationarity. Non-stationary time 

series forecasting plays a prominent role in analysing the performance time series of many real-world systems. 

Recently, fuzzy time series models have been used to predict non-stationary time series. The use of fuzzy logic [1] 

to analyse imprecise time series is called fuzzy time series. 

In traditional fuzzy time series modelling, the Universe of Discourse (UoD) is partitioned into equal-length 

intervals. The length of intervals influences forecasting accuracy in fuzzy time series models. Huarng [2] extended 

Chen’s [3] model by introducing distribution and average-based length. Yu [4] addressed two issues in fuzzy time 

series modelling: repeating and weighting of fuzzy logical relationships. Huarng [5] introduced a variable-length 

interval partitioning method for time series forecasting in which lengths of intervals are according to ratio-based 

lengths. Cheng et al. [6] used an adaptive expectation model in fuzzy time series modelling and applied it to predict 

stock prices. To evaluate the length of intervals, Yolcu et al. [7] applied a constrained optimization technique. Tsaur 

[8] introduced the Markov chain and transition probability matrix into fuzzy relations. Guney et al. [9] extended 

Tsaur [8] to a seasonal time series. 

Seasonal time series occur frequently in a variety of real-world systems. In the literature, seldom work is done 

based on seasonal time series under fuzzy forecasting. Song [10] pioneered the use of a fuzzy time series model for 

seasonal time series. Egrioglu et al. [11] proposed Seasonal Autoregressive Integrated Moving Average (SARIMA) 

models with a partial high-order bivariate fuzzy model and neural networks. Suhartono and Lee [12] incorporated 

Winter’s model with a weighted fuzzy time series model. Tseng and Tzeng [13] combined the potentialities of 

SARIMA [14] model and the fuzzy regression model. An improved FTS model [15] is introduced to tackle the 

seasonality aspect of time series. 

Certain non-stationary time series occur as a result of unpredictable changes [16]. Choosing a suitable forecasting 

model is difficult in this situation. These implicit kinds of changes are called concept drifts [17]. In non-stationary 

time series analysis, transformation techniques were used initially, for example, the Autoregressive Integrated 

Moving Average (ARIMA) model [14]. Later, time-variant forecasting models like time-variant fuzzy time series 

models were introduced. A Time-Variant FTS model (TVFTS) was proposed [18] initially in the canon of literature in 

which training occurs in a moving window methodology. That is, the rule base of the model was built for 

every window of length w of the time series with the same UoD and fuzzy sets/knowledge base. Several time- variant 

models after [18] include hybrid approaches [19], transformation [20], seasonal techniques [13] and weighing 

techniques [15]. Non-stationary time series like stock prices and their forecasting is discussed in [21, 22]. 

The concept of neutrosophic sets [23], granular computing, and bio-inspired techniques [24] are utilized in FTS 

modeling. A review of FTS modeling is briefly discussed in [25, 26]. Variations in time series can be utilized and 

interpolated [27] in the future for forecasting non-stationary time series. In [28], non-stationary fuzzy sets are 

used to handle heteroscedastic time series having predictable variance over time. Recently, a Non-stationary Fuzzy 

Time Series (NSFTS) model [29] is introduced in which membership function parameters are updated according to 

the variations in a given time series. In [29], UoD is time-variant and the rule-base is time-invariant. The 

utility of Adaptive Auto-regressive (AR) modeling combined with Kalman filtering for managing non-stationary time 

series, particularly within biomedical applications, has been well established in [30]. This approach allows for real-

time adjustment of model parameters, improving forecasting accuracy in environments where the underlying 

dynamics are constantly evolving. This work builds upon the smoothness priors approach for modeling non-

stationary covariance in time series, ensuring a smooth evolution of AR coefficients [31]. A high dimensional time 

series is discussed and its forecasting technique which is based on fuzzy time series and embeddings is 

developed in [32] and [33]. The concept of intuitionistic fuzzy sets is utilized and discussed in [34-37] for 

forecasting non-stationary time series. The concept of hesitant fuzzy sets is used in time series forecasting [38] 

and [39]. Fixed points provide a mathematical framework for understanding how and why time series models 
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stabilize, cycle, or diverge, which is crucial for making accurate predictions, especially in complex or nonlinear 

systems. Farid [40] developed an iterative procedure for solving fixed point problem in a Hilbert space. Some 

of the solutions to a fixed point problem include [41-43]. 

The fuzzy time series model is an effective tool for forecasting non-stationary time series. However, a critical 

challenge lies in the partitioning of the universe of discourse, which has a significant impact on forecasting accuracy. 

In this paper, a novel variable-length interval partitioning method is developed for partitioning the universe of dis- 

course of a non-stationary time series into different intervals of varying length. This partitioning method progresses 

through the stages of encoding, clustering, and construction of intervals. Unlike other works in the literature, the 

developed hybrid method extracts the unique features of the time series using the LSTM Autoencoder. After that, 

the K-means clustering algorithm is performed to cluster this featured data. The intervals are therefore constructed 

based on the cluster centers obtained from the K-means clustering algorithm. Also, a fuzzy time series model is 

developed by incorporating the developed partitioning method, the notion of the Markov chain, and the transition 

probability matrix. 

The remaining sections of this paper are structured in the following way: basic definitions related to fuzzy sets 

and fuzzy time series are discussed in Section 2. The developed partitioning method and fuzzy time series model 

are detailed in Sections 3 and 4 respectively. The application of the developed model to the stock markets and its 

comparison with existing models are discussed in section 5. Conclusions and future works are given in Section 

6. 

2. Preliminaries 

2.1. Fuzzy Time Series 

In light of works by Zadeh [44, 45], Song and Chissom [46, 47] introduced the idea of fuzzy time series. Fuzzy 

time series is an exceptionally powerful process with semantic qualities as its perceptions. The universe of discourse 

in Fuzzy Time Series (FTS) is subdivided and each division is linked to a fuzzy set. To represent the underlying nature 

of the time series, IF-THEN time patterns are identified from the training part of the fuzzy time series, and the rule 

base is built as fuzzy logical relationships. A first-order time-invariant fuzzy time series forecasting model was 

proposed by Song and Chissom [47] in which the max-min composition operation is utilized in FTS modelling. In 

Chen [3], fuzzy logical relationship groups are formed from fuzzy logical relationships, and the simple arithmetic 

mean is utilized for forecasting fuzzy time series. 

Definition 1 [46] Let U be a universal set. A fuzzy set A in U is characterized by its membership function µA :  

U → [0, 1] and µA(x) is interpreted as the degree of membership of element x in fuzzy set A for each x ∈ U. 

Definition 2 [46] Let Y (t), t = 0, 1, ..., a subset of R, be the universe of discourse on which fuzzy sets fi(t), i = 1, 2, ... 

are defined and F (t) is the collection of fi(t), i = 1, 2, .... Then F (t) is called a fuzzy time series on Y (t), t = 0, 1, ... 

Here F (t) can be considered as a linguistic variable and fi(t), i = 1, 2, ... as the possible linguistic values of F (t). Fuzzy 

sets are the observations of a fuzzy time series. Fuzzy time series models are classified into first-order and higher-

order fuzzy time series models depending on the number of previous observations considered in modelling. 

The first-order FTS model considers relationships among fuzzy sets with only immediate previous time points. Fuzzy 

time series models are further classified based on their dependency on time. In time-invariant FTS models, the 

knowledge base (fuzzy sets) and rule base remain stable over time, but in time-variant FTS models, either the 

knowledge base, the rule base, or both change over time. 

2.2. Long Short-Term Memory Autoencoder 

An LSTM autoencoder design uses Long Short-Term Memory (LSTM) [48] layers, a kind of recurrent neural 

network, to encode and decode sequential input. An LSTM autoencoder has the following parts: 
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1. LSTM encoder: LSTM encoders capture temporal dependencies and extract meaningful features from input 

sequences. The LSTM encoder generates a compressed representation known as the latent space. 

2. Repeat Vector Layer: The repeat vector layer replicates the encoded representation over multiple time steps 

to prepare it for decoding by the LSTM. 

3. LSTM Decoder: An LSTM decoder reconstructs a sequence closely matching the input sequence from 

the repeated encoded representation. 

2.3. K-means Clustering Algorithm 

K-means clustering [49] is a popular unsupervised learning algorithm used to partition a dataset into k distinct, 

non-overlapping clusters based on the features of the data points. The goal is to minimize the within-cluster 

variance, which is the sum of squared distances between each data point and the centroid of its assigned cluster. 

Objective Function 

The objective of K-means is to minimize the within-cluster sum of squares (WCSS), also known as the inertia:  

𝑊𝐶𝑆𝑆 = ∑ ∑ ||

𝑥𝑖∈𝐶𝑗

𝐾

𝐽=1

𝑥𝑖 − 𝜇𝑗||
2 

This function measures the compactness of the clusters. The algorithm iteratively reduces the WCSS until 

it reaches a local minimum. The main steps of K-means clustering algorithm are: 

• Initialization 

Choose the number of clusters k. 

Randomly select k data points from the dataset as the initial cluster centroids µ1, µ2,. . . ,µk. 

• Assignment Step 

For each data point xi in the dataset, assign it to the nearest cluster centroid based on the Euclidean distance: 

𝑐𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑗

||𝑥𝑖 − 𝜇𝑗||
2 

where ci is the index of the cluster assigned to data point xi, and µj is the j-th cluster centroid. 

• Update Step 

Recalculate the centroids of the clusters by taking the mean of all data points assigned to each cluster: 

𝜇𝑗 =
1

|𝐶𝑗|
∑ 𝑥𝑖

𝑥𝑖∈𝐶𝑗

 

where Cj is the set of data points assigned to cluster j, and |Cj| is the number of points in cluster j. 

• Convergence Check 

Repeat the assignment and update steps until the centroids no longer change or the changes are smaller than 

a predefined threshold, indicating that the algorithm has converged. 

3. The Variable-length Interval Partitioning Method 

In this section, the method developed for variable-length interval partitioning of UoD is presented. The 

devel- oped method comprises the following three stages: 
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1. Encoding: In the stage of encoding, the temporal dependencies of the given time series are captured 

and extract mean- ingful features from it. The encoder generates a compressed representation of the 

given data. In this stage, LSTM Autoencoder is utilized to encode the given time series. 

2. Clustering: The encoded time series is clustered in this stage of clustering. In this stage, the entire time 

series is clustered into different groups, and cluster centers are generated. In this stage, K-means clustering 

algorithm is utilized to cluster the encoded version of a given time series. 

3. Construction of Intervals: In this stage, intervals are constructed [50] using cluster centers obtained 

in the clustering stage. Let LBi and UBi denote the lower bound and upper bound of ith interval respectively. 

Let LB1 = Dmin − σ, UBm = Dmax + σ and Ci be the ith cluster center. Then, 

Ci + Ci+1 

        UBi= 

2 

(1) 

LBi+1 = UBi, i = 1, 2, ..., k (2) 

3.1. Algorithm of the Developed Partitioning Method 

The steps involved in the developed variable-length interval partitioning method are given below: 

Step 1: Input a non-stationary time series and the number of intervals, m. 

Step 2: Input the non-stationary time series into the LSTM Autoencoder network. 

Step 3: Extract the encoder part of LSTM Autoencoder such that the reconstruction error is minimum. 

Step 4: Input this encoder to the K-means clustering algorithm and extract k cluster centers. 

Step 5: Intervals u1, u2, .., um are constructed based on cluster clusters and are given by 

u1 = [LB1, UB1], u2 = [LB2, UB2], ..., um = [LBm, UBm] (3) 

The flowchart for the developed algorithm is given in Fig. (1). 

4. The Developed VLIFTS Model 

A fuzzy time series model called VLIFTS model is developed by incorporating the developed partitioning method 

discussed above, the notion of the Markov chain, and the transition probability matrix. The developed model 

progresses through the following stages: 

1. Partitioning: In this stage, the universe of discourse is partitioned into intervals of varying length. The hybrid 

method developed based on the LSTM Autoencoder and K-means clustering algorithm discussed in Section 

3 is utilized to achieve this. 

2. Fuzzification: In the fuzzification stage, fuzzy sets are defined over the intervals of the universe of 

discourse. Each data point is fuzzified based on the degree of membership of that data point in a fuzzy 

set. As a result, we obtain a fuzzy time series corresponding to the given crisp time series. 

3. Rule-base building: In this stage, first-order IF-THEN temporal relationships are built among fuzzy sets and 

grouped into classes according to the same base fuzzy set. 

4. Defuzzification: Different fuzzy sets are considered as different states of a Markov Chain. A transition 

probability matrix is therefore formed to model both the occurrence and recurrent occurrence of fuzzy sets. 

The forecast is computed as the weighted average of midpoints of leading fuzzy sets with weights as 

transition probabilities. 
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Figure 1: Flowchart of developed variable-length interval partitioning method. 

4.1. Algorithm of the Developed VLIFTS Model 

The algorithm of the developed VLIFTS model is given below: 

Step 1: Input a given time series {Yt|t ∈ T }. 

Step 2: Check for stationarity of a given time series. If it is non-stationary, go to step 3. 

Step 3: Define the universe of discourse as U = [Dmin − σ, Dmax + σ]. 

Step 4: Construct the intervals u1, u2, ..., um using the hybrid method discussed in Section 3. 

Step 5: Define fuzzy sets Aj, j = 1, 2, ..., k over U as 

µ𝐴𝑗
(𝑦) = {

1, 𝑦 ∈ 𝑢𝑗                                  

0.5, 𝑦 ∈  𝑢𝑗−1 𝑜𝑟 𝑦 ∈  𝑢𝑗+1  

0, elsewhere                         

 (4) 

 

, 𝑖 = 1,2, … , 𝑘 

𝑢𝑗 = [𝐿𝐵𝑗, 𝑈𝐵𝑗], j=1, 2…, 

m 

𝐿𝐵𝑖+1 = 𝑈𝐵𝑖, 𝑖 = 1,2, … ,  

k Cluster  

Centers 𝐶𝑖, 

Required m (=k+1) 
Intervals: End 

Start 

 
 

Compute 

LSTM Encoder 

K-means Clustering Algorithm 

Encoder 

Input a given time 
series, number of 

intervals is m 
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Here µAj (y) is the membership degree of a data point y in a fuzzy set Aj, j = 1, 2, ..., k. 

Step 6: Fuzzification: If a data point’s maximum membership falls under the fuzzy set Ak, then its fuzzified 

value is considered Ak. 

Step 7: Set up IF-THEN Rules: First-order fuzzy sets’ temporal relationships are obtained by the rule AL → AR, 

where AL and AR are given as: 

AL = arg max{µAj (yt−1)} 

Aj 
(5) 

AR = arg max{µAj (yt)} 

Aj 
(6) 

Step 8:  Rule-base building: Collect all temporal relationships with the base AL at time t − 1 into one class, AL 

→ Ai, Aj, Here, the set of all possible outcomes at time t leading from the same AL are arranged and 

in this way, we have got several classes varying subject to the base AL. 

Step 9: Construction of transition probability matrix: In this step, fuzzy sets are viewed as states of the Markov 

process. The transition probability matrix (TPM) P = (pij) is formed asbased on the first-order temporal 

relationships and the rule-base classes. Here pij, i, j = 1, 2, ...k, is the transition probability of the system 

from state Ai to state Aj and are computed by pij = nij on the basis of nij as the number of times the 

system visited the state Aj from state Ai and ni, the total number of times the system visited the state 

Ai. 

P = 

[
 
 
 
 
 
𝑝11 𝑝12 . . . 𝑝1𝑘

𝑝21 𝑝22 . . . 𝑝2𝑘

. . . . . .

. . . . . .

. . . . . .
𝑝𝑘1 𝑝𝑘2 . . . 𝑝𝑘𝑘]

 
 
 
 
 

 (7) 

Step 10:  Defuzzification: The forecast at (t + 1)th time point, yˆt+1 is computed based on the TPM from the 

rule-base classes. It is the weighted average of mid-points of the leading fuzzy sets with weights as 

pij’s. If the base fuzzy set Aj leads to the same fuzzy set Aj, in rule-base class, mid-point of fuzzy set Aj 

is replaced by just the previous observation, that is yt. 

Therefore, 

yˆt+1 = pj1.m1 + ... + pjj.yt + ... + pkk.mk (8) 

The flowchart of the algorithm of the developed VLIFTS model is given in Fig. (2). 

5. Results and Discussion 

In this section, the developed VL IFTS model is applied to stock markets and results are consolidated in the 

following subsections. 

5.1. Data Description 

In this section, the developed VLIFTS model presented in this paper is applied to four stock market in- dices, 

that is NSE-Nifty 50, NASDAQ, S&P 500, and Dow Jones. The data is available on www.nesindia.com, 

https://finance.yahoo.com/quote/%5EIXIC/, https://finance.yahoo.com/quote/%5EGSPC/, https://finance.yahoo. 

com/qu Time plots of the daily closing prices from NSE-Nifty 50, NASDAQ, S&P 500, and Dow Jones are given 

in Fig. (3-6) respectively. The number of fuzzy sets k chosen is 10. 

http://www.nesindia.com/
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Figure 2: Flowchart of developed VLIFTS model. 
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Figure 3: Daily closing price of Nifty-50 stock market index for the year 2018. 

 

Figure 4: Daily closing price of NASDAQ stock market index for the year 2022. 

 

Figure 5: Daily closing price of S&P 500 stock market index for the year 2022. 
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Figure 6: Daily closing price of Dow Jones stock market index for the year 2022. 

5.2. Checking Stationarity and Heteroscedasticity 

The test for stationarity of the daily closing price data is performed using the Augmented Dickey-Fuller (ADF) 

test. Under the ADF test, the null and alternative hypotheses are: 

H0 : The given time series is non-stationary 

H1 : The given time series is stationary 

The test results are given in Table 1. From the test results, it is concluded that all the time series considered 

are non-stationary. 

Table 1: Testing of stationarity. 

ADF Test 

Time Series Statistic p-value H0 

NSE-Nifty 50 -2.3384 0.1598 Accept 

NASDAQ -2.4448 0.1295 Accept 

S&P 500 -2.4359 0.1318 Accept 

Dow Jones -2.4883 0.1183 Accept 

 

Levene’s test tests the heteroscedasticity of considered time series of stock market indices. Under Levene’s test, 

the null and alternative hypotheses are: 

H0 : The given time series is homoscedastic 

H1 : The given time series is heteroscedastic. 

The test results are given in Table 2. From the test results, it is concluded that all the time series except 

Dow Jones are heteroscedastic. 
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Table 2: Testing of heteroscedasticity. 

Levene’s Test 

Time Series Statistic p-value H0 

NSE-Nifty 50 44.0866 2.0648e−10 Reject 

NASDAQ 36.6391 5.1975e−09 Reject 

S&P 500 26.8525 4.5393e−07 Reject 

Dow Jones 0.3839 0.5360 Accept 

 

5.3. Illustration of the Developed Partitioning Method 

In this section, an illustration of the developed partitioning method is discussed using the daily closing price of the 

Indian stock market index Nifty 50 of NSE. The daily closing price data is split into train set (earliest 70 % ), validation 

set (next 15 %) and test set (last 15 %). 

The training and validation loss while training the LSTM Autoencoder is given in Fig. (7). The training loss reflects 

how well the model fits the training data, whereas the validation loss reveals how well the model fits the new data. 

To check the model performance, it is usually plotted training loss and validation loss together in one figure. From 

this plot, the model performance to the data such as underfitting, overfitting, and good fit can be identified. Here, 

from Fig. (7), both the training loss and the validation loss start to decline and stabilize at a specific point. Therefore 

it indicates the good performance of the model. 

 

Figure 7: Nifty 50-train vs validation loss. 

Once this LSTM Autoencoder model is fitted to the data, the encoder part alone is used for clustering along 

with the K-means clustering algorithm. 

Interval Partitioning of UoD of Nifty 50 

In this case, UoD is given by U = [9546.66, 12189.89]. The cluster centers are obtained from the K-means 

clustering algorithm by choosing the number of clusters 10. The cluster centers are given by: 9999.64, 10129.06, 

10235.19, 10343.68, 10496.19, 10656.61, 10804.32, 10966.96, 11243.22, and 11515.45. 

Therefore, the intervals are obtained from the equations 1, 2, and 3 as: 
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u1 = [9546.66, 10064.35], u2 = [10064.35, 10182.12] 

u3 = [10182.12, 10289.43], u4 = [10289.43, 10419.935] 

u5 = [10419.935, 10576.4], u6 = [10576.4, 10730.46] 

u7 = [10730.46, 10885.64], u8 = [10885.64, 11105.09] 

u9 = [11105.09, 11379.33], u10 = [11379.33, 12189.89] 

Defuzzification Process 

This section details the determination of forecasts based on the defuzzification process (8) for Nifty 50. 

The universe of discourse is given by U = {u1, u2,..., u10}. 

Here we choose the number of fuzzy sets as 10. Therefore the fuzzy sets are defined by 

Ai = {... + 0.5/ui−1 + 1/ui + 0.5/ui+1 + ...} 

i = 1, 2, ..., 10. The rule base classes for the train set are given by 

A1 → A2 

A2 → A1, A2, A3, A4  

A3 → A2, A3, A5 

A4 → A3, A4, A5  

A5 → A4, A5, A6  

A6 → A5, A6, A7  

A7 → A6, A7, A8  

A8 → A7, A8, A9  

A9 → A8, A9, A10  

A10 → A9, A10 

The transition probability matrix P for the train set is given by 

P= 

[
 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0
0.125 0.375 0.375 0.125 0 0 0 0 0 0

0 0.5714 0.2857 0 0.1486 0 0 0 0 0
0 0 0.1667 0.6667 0.1667 0 0 0 0 0
0 0 0 0.1 0.7 0.2 0 0 0 0
0 0 0 0 0.1428 0.6 0.2571 0 0 0
0 0 0 0 0 0.2857 0.6428 0.0714 0 0
0 0 0 0 0 0 0.0555 0.8333 0.111 0
0 0 0 0 0 0 0 0.0909 0.7272 0.1818
0 0 0 0 0 0 0 0 0.05 0.95 ]

 
 
 
 
 
 
 
 
 

 

The first observation of the train set of the Nifty 50 dataset is 10435.55. The fuzzy set corresponding to this 

observation is A5. The rule base class for this fuzzy set A5 is A5 → A4, A5, A6. The fitted value for the second observation 

of the train set is determined as: 

Yˆ2 = p54 × m4 + p55 × prvalue + p56 × m6 (9) 

Yˆ2 = 0.1 × 10354.685 + 0.7 × 10435.55 + 0.2 × 10653.4325 (10) 

That is, Yˆ2 = 10471.04. Here m4, m6 are midpoints of intervals u4 and u6 respectively. Also, prvalue is the previous 

observation, the first observation of the train set. Similarly, the first observation of the test set (172th observation) of 

the Nifty 50 is 11589.1. The fuzzy set corresponding to this observation is A10. The rule base class for this fuzzy set is 

A10 → A9, A10. The forecast value for the second observation (173th observation) of the test set is determined as: 
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Yˆ173 = p10,9 × m10 + p10,10 × prvalue (11) 

Yˆ173 = 0.05 × 11242.2125 + 0.95 × 11589.1 (12) 

That is, Yˆ173 = 11571.755. The forecast of the test data and its original for the stock market index Nifty 50 is 

given in Fig. (8). 

 

Figure 8: Comparison of forecasts of test data with original data for the stock market index Nifty 50. 

5.4. Forecast of the Test Data for Other Selected Stock Market Indices 

Forecasts of other selected stock market indices NASDAQ, S&P 500, and Dow Jones are discussed in this 

section. Similarly, as in the case of Nifty 50, other stock market indices are analysed. Training loss vs validation 

loss while training LSTM Autoencoder for stock market indices NASDAQ, S&P 500, and Dow Jones are given in 

Fig. (9, 11, and 13) respectively. Also, forecast of the test data for the stock market indices NASDAQ, S&P 500, 

and Dow Jones are given in Fig. (10, 12, and 14) respectively. 

 

Figure 9: NASDAQ-train vs validation loss. 
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Figure 10: Comparison of forecasts of test data with original data for the stock market index NASDAQ. 

 

Figure 11: S&P 500-train vs validation loss. 

 

Figure 12: Comparison of forecasts of test data with original data for the stock market index S&P 500. 
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Figure 13: Dow Jones-train vs validation loss. 

 

Figure 14: Comparison of forecasts of test data with original data for the stock market index Dow Jones. 

5.5. Comparison of the developed VLIFTS Model for the Selected Stock Market Indices with Existing 

Benchmark FTS Models 

The developed VLIFTS model is compared with the benchmark FTS model developed by Chen [3] and the FTS 

model based on the concepts of Markov chain and transition probability matrix developed by Tsaur [8]. 

The Root Mean Squared Error (RMSE) and the Mean Absolute Percent Error (MAPE) are the forecast accuracy 

metrics used in this paper to evaluate the forecast accuracy of the model. The RMSE and MAPE are defined in 

the following equations: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡 − �̂�𝑡)2𝑛

𝑡=1

𝑛
 

(13) 

where n is the number of observations in the given data, yt is the observation at tth time point of a given study 

variable, and yˆt is the corresponding forecast at tth time point. A lower RMSE is an indication of a better 
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predictability of a forecasting model. Since RMSE is sensitive to outliers, other forecast accuracy metrics such as mean 

absolute percentage error is also considered in this thesis to evaluate the predictability of a model. 

𝑀𝐴𝑃𝐸 =
∑ |

𝑦𝑡−�̂�𝑡

𝑦𝑡
|𝑛

𝑡=1

𝑛
 

(14) 

where n is the number of observations in the given data, yt is the observation at tth time point of a given study 

variable, and yˆt is the corresponding forecast at tth time point. A lower MAPE is an indication of a better predictive 

performance of a forecasting model. 

Table 3: Estimate of the forecast accuracy metrics RMSE and MAPE for stock market indices Nifty 50, NASDAQ, S&P 

500, and Dow Jones. 

Time Series Model RMSE MAPE 

NSE-Nifty 50 

Chen [3] 160.54 1.2507 

Tsaur [8] 125.03 0.9456 

VLIFTS 120.35 0.9117 

NASDAQ 

Chen [3] 402.98 3.3400 

Tsaur [8] 242.89 1.8721 

VLIFTS 220.74 1.6831 

S&P 500 

Chen [3] 106.90 2.2302 

Tsaur [8] 58.5987 1.2067 

VLIFTS 57.2725 1.1257 

Dow Jones 

Chen [3] 551.69 1.2613 

Tsaur [8] 443.41 1.0656 

VLIFTS 420.56 0.9865 

 

The estimate of the forecast accuracy metrics shows that the forecasts due to the developed model called VLIFTS 

are more accurate in forecasting the time series of the closing price of considered stock market indices Nifty 

50, NASADAQ, S & P 500, and Dow Jones. The results are given in Table 3. Hence the developed VLIFTS model 

is more efficient than benchmark FTS models. 

6. Conclusions 

In this paper, the variable-length interval partitioning method is developed to solve the problem of partitioning 

the universe of discourse of a non-stationary time series into different intervals of varying lengths. This method 

is based on the LSTM Autoencoder and K-means clustering. LSTM Autoencoder compresses the given data and 

extracts essential information. The K-means clustering algorithm is applied to this compressed representation and 

k cluster centers are obtained. The intervals are formed using these k cluster centers. This hybrid methodology 

utilizes the unique features of the LSTM network, Autoencoder, and K-means clustering for partitioning UoD into 

intervals of variable length. 

A fuzzy time series model called VLIFTS is developed for modelling and forecasting a non-stationary time series 

by incorporating this partitioning method for variable-length interval partitioning of the UoD. The developed model 

incorporates the concepts of the Markov chain and the transition probability matrix in the forecasting stage. The 

developed model is validated by applying it to the stock market indices NSE-Nifty 50, NASDAQ, S&P 500, and 

Dow Jones. The estimate of the forecast accuracy metrics shows that the forecasts due to the developed VLIFTS 

model are more accurate in forecasting the time series of the closing price of stock market indices NSE-Nifty 50, 
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NASDAQ, S&P 500, and Dow Jones. Hence the developed VLFTS model is more efficient than benchmark FTS models. 

Also, figures of the test data along with its forecast are given for each stock market index. 

In the future, it may be focused on extending the architecture of the VLIFTS model to high-order forecasting. 

The application of this model can also be extended to other real-world non-stationary time series. 
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