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Abstract: The object of the present paper is to derive new coefficient inequalities for certain subclasses of 
  
p !  valent 

analytic functions defined in the open unit disk  U . Our results are generalized of the previous theorems given by J. 
Clunie and F.R. Keogh [1], by H. Silverman [3] and by M. Nunokawa et al. [2]. 
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1. INTRODUCTION 
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which are analytic and 
  
p !  valent in the open disk 

     
U = z ! C : z < 1{ }.  We note that 
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= A.   

A function 
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p
 is said to be 

  
p !  valently starlike 
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The class of all such functions are denote by 
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!(!) . 
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classes of starlike function of order 
   
! 0 ! ! < 1( )  and 

starlike function, respectively. On the other hand, a 
function 
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p
 is said to be 

  
p !  valently convex of 
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Let 
    
C

p
!( )  denote the class of all those functions. 

Also 
    
C
1
!( ) = C !( )  and 

   
C 0( ) = C  are the classes of 
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convex function of order 
   
! 0 ! ! < 1( )  and convex 

function, respectively. 

Clunie and Keogh [1] (also Silverman [3]) have 
proved the following results: If     f (z) ! A  satisfies 

   n=2

!

"n a
n
# 1,  

then   f (z)  is univalent and starlike in 
  U.  If     f (z) ! A  

satisfies 

   n=2

!

"n
2

a
n
# 1,  

then   f (z)  is univalent and convex in 
  U.   

Nunokawa et al. [2] have proved the following 
results: Let   f (z)  be of the class  A  and 

   

max
n!1

a
n

= t a
t

.  If     f (z) ! A  satisfies 

   n=1, n!t

"

# n $ t + t( ) a
n
% t a

t
,  

then 
  
f (z)  is univalent and starlike in 

  U.  Let 
  
f (z)  be of 

the class  A  and 
   

max
n!1

n
2

a
n

= t
2

a
t

.  If 
    
f (z) ! A  

satisfies 

   n=1, n!t

"

# n n $ t + t( ) a
n
% t

2
a

t
,  

then   f (z)  is univalent and convex in 
  U.   

In the present investigation, we consider new 
coefficient inequalities for functions 

  
f (z)  to be 

  
p !  
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valently starlike of order  !  and 
  
p !  valently convex of 

order  !  in 
  U.   

2. COEFFICIENT INEQUALITIES 

Our first result for functions 
  f (z)

 to be 
  
p !  valently 

starlike of order  !  in  U  is contained in the following 
Theorem 2.1. 

Theorem 2.1. Let   f (z)  be in the class 
  
A

p
 and 
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n!p

n a
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= t + p " 1( ) a
t+p"1

.  

If 
    
f (z) ! A

p
 satisfies the following inequality 
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,

    (2.1) 

then   f (z)  is 
  
p !  valently starlike of order  !  in 

  U.   

Proof: Applying the maximum principle of analytic 
functions, the following inequality is hold on    | z |= 1   
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=
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n
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Therefore, it follows that the following inequality 

    

z !f (z)

f (z)
" t " p " 1( ) # t + p " 1( )" !  

holds for all 
    z ! U.  This shows that   f (z)  is 

  
p !  

valently starlike of order  !  in 
  U.   

If we take    ! = 0  in the Theorem 2.1., we get the 
following corollary. 

Corollary 2.2. Let   f (z)  be in the class 
  
A

p
 and 

   
max
n!p

n a
n

= t + p " 1( ) a
t+p"1

.  

If 
    
f (z) ! A

p
 satisfies the following inequality 

   
n=p,  
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#
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n
% t " p + 1( ) a

t+p"1
,  

then 
  f (z)

 is 
  
p !  valently starlike in 

  U.   

For 
   
p = 1  in the Theorem 2.1., we have the 

following corollary. 

Corollary 2.3. Let   f (z)  be in the class  A  and 
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n!1

n a
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= t a
t

.  

If     f (z) ! A  satisfies the following inequality 

    n=1,n!t  
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t
,  

then   f (z)  is starlike of order  !  in 
  U.   

Next, we derive the coefficient condition for 
functions   f (z)  to be 

  
p !  valently convex of order  !  in 

 U  is contained in the Theorem 2.4 as given below. 

Theorem 2.4. Let   f (z)  be in the class 
  
A

p
 and 
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2

a
t+p"1

.  

If 
    
f (z) ! A

p
 satisfies the following inequality 
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,

    (2.2) 

then   f (z)  is 
  
p !  valently convex of order  !  in 

  U.   

Proof: Applying the maximum principle of analytic 
functions, the following inequality is hold on 

   
| z |= 1   

    
zf
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Therefore, it follows that the follwing inequality 
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holds for all 
    z ! U.  This shows that   f (z)  is 

  
p !  

valently convex of order  !  in 
  U.   

By taking    ! = 0  in the Theorem 2.4, we get the 
following corollary. 

Corollary 2.5. Let 
  
f (z)  be in the class 

  
A

p
 and 

   
max
n!p

n2 a
n

= t + p " 1( )
2

a
t+p"1

.  
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If 
    
f (z) ! A

p
 satisfies the following inequality 

   
n=p,  
n!t+p"1

#

$ n n " t " p + 1 + t + p " 1( ) a
n
% t + p " 1( )

2
a

t+p"1
,  

then   f (z)  is 
  
p !  valently convex in 

  U.   

By taking 
   
p = 1  in the Theorem 2.4, we get the 

following corollary. 

Corollary 2.6. Let   f (z)  be in the class  A  and 

   

max
n!1

n
2

a
n

= t
2

a
t

.  

If     f (z) ! A  satisfies the following inequality 

    n=1,n!t  

"

# n n $ t + t + !( ) a
n
% t t $ !( ) a

t
,  

then   f (z)  is convex of order  !  in 
  U.   

Remark 2.7. By considering some special values 
for the parameters 

  
!,  

 
p  and 

  
t,  we can deduce the 

following results. 

In the Theorem 2.1. and  Theorem 2.4., for 
   
p = 1  

and    ! = 0,  we get the result given by Nunokawa et al. 
[2]. 

In the Theorem 2.1. and  Theorem 2.4., for    p = 1,  
   ! = 0  and    t = 1,  we obtain the result given by Clunie 
and Keogh [1] (also Silverman [3]). 
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