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Periodic Solutions for Damped Vibration Problems 
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Abstract: In this paper we are concerned with the following damped vibration problem 

     

!!u(t) + g(t) !u(t) = !V(t,u(t)), a.e. t ! [0,T ]

u(0) = u(T), !u(0) = !u(T),

"
#
$$

%
$
$

 

where 
   
T > 0 , 

    g ! L
!(0,T;R)  with 

   
G(t) =

0

t

! g(s)ds  and 
   G(T) = 0 , 

   
V(t,u) =

1
2
(L(t)u,u)!W(t,u)  is  T -periodic in  t  

such that 
   
L !C(R, Rn

2

)  is a  T -periodic, positive definite symmetric matrix and  W  satisfies the global Ambrosetti-
Rabinowitz condition or is subquadratic at infinity. By use of the Mountain Pass Theorem or the genus properties in the 
critical theory, we establish some new criteria to guarantee the existence and multiplicity of periodic solutions. Recent 
results in the literature are generalized and significantly improved. 
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1. INTRODUCTION 

The purpose of this paper is to deal with the 
following damped vibration problem  

     

!!u(t) + g(t) !u(t) = !V(t,u(t)), a.e. t ! [0,T ]

u(0) = u(T), !u(0) = !u(T),

"
#
$$

%
$
$

    (1.1) 

where    T > 0 , 
   g ! L

1(0,T;R)  with 
   
G(t) =

0

t

! g(s)ds  and 

   G(T) = 0 , 
   
V(t,u) =

1

2
(L(t)u,u)!W(t,u)  is  T -periodic 

in  t  such that 
   L !C(R,Rn

2

)  is a  T -periodic, positive 
definite symmetric matrix and  W  satisfies the following 
assumption: 

(A)   W(t,u)  is measurable in  t  for every 
  u ! R  and 

continuously differentiable in  u  for a.e.    t ! [0,T ]  and 

there exist 
    a !C(R+,R+) , 

    b ! L
1(0,T;R+)  such that  

   
|W(t,u) |! a(| u |)b(t), |W

u
(t,u) |! a(| u |)b(t)  

for 
  u ! R

n  and a.e.    t ! [0,T ] . 

When    g(t) ! 0 , (1.1) is the second order Hamiltonian 
systems. The existence of periodic solutions is one of 
the most important problems in the history of 
Hamiltonian systems. For the case that  

   
V(t,u) =

1

2
(L(t)u,u)!W(t,u),  

it has been intensively studied by many 
mathematicians via critical point theory, for example [1, 
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2, 6, 7, 14, 23, 24] and the references therein. For the 
case that    V(t,!)  is convex for a.e.    t ! [0,T ]  (not 

necessarily of the kind 
   
V(t,u) =

1

2
(L(t)u,u)!W(t,u) ), 

Mawhin-Willem [9] studied the existence of solutions 
for the problem (1.1); for non-convex potential case, 
the existence and multiplicity of solutions has been also 
considered by many mathematicians, for instance, see 
[2, 15-19] and their references. Particularly, Antonacci 
[2] studied potential changing sign case, Tang-Wu [15-
18] studied 

 
!  -quasisubadditive, subadditive, coercive 

potential cases and the cases that the nonlinearity 
grow sub linearly and subquadratically; in [19], the 
author studied the case that the nonlinearity grows 
linearly. Moreover, solutions for damped vibration 
problems with impulsive effects have also been 
extensively investigated by many authors, see for 
instance [4] and the references listed therein. 

When    g(t) /! 0 , as far as the authors know, only the 
recent paper [20] dealt with the problem (1.1). In [20], 
for the first time the authors established the variational 
frame of (1.1) and then three existence theorems for 
periodic solutions are obtained. Motivated by [20], in 
the present paper, we consider the existence and 
multiplicity of solutions of (1.1) under two classes of 
assumptions on   V(t,u)  which are not contained in [20] 
(see Remark 1 below). 

For the statement of our first main result,   V(t,u)  is 
supposed to satisfy the following conditions: 

(H1) 
   
V(t,u) =

1

2
(L(t)u,u)!W(t,u) , where

   L !C(R,Rn
2

) 

   L !C(R,Rn
2

)  is a  T -periodic, positive definite symmetric 
matrix; 

(H2) there is a constant 
   
µ > 2  such that  

    
0 < µW(t,u) ! (u,W

u
(t,u))  



Periodic Solutions for Damped Vibration Problems Journal of Advances in Applied & Computational Mathematics, 2014, Vol. 1, No. 2      55 

for a.e. 
   t ! [0,T ]  and 

     
u ! R

n \ 0{ } . 

Theorem 1.1. If (A), (H1) and (H2) are satisfied, then 
(1.1) possesses at least one nontrivial solution. 
Moreover, if we suppose that   W(t,u)  is even in  u , i.e., 

(H3) 
   W(t,!u) = W(t,u)  for a.e 

   t ! [0,T ]  and 

  u ! R
n , 

then (1.1) has infinitely many distinct solutions. 

Remark 1. (H2) is the so-called global Ambrosetti-
Rabinowitz condition due to Ambrosetti and 
Rabinowitz, see [3].  

In [20], under some reasonable assumptions on 

  V(t,u) , the authors obtained three existence theorems 
for solutions of (1.1). Explicitly, they assumed that  

    

lim inf
|u|!"

V(t,u)

| u |2
> 0 uniformly for a.e. t ! [0,T ]  

or 

    

!" < lim inf
|u|#"

(V
u
(t,u),u)

| u |
uniformly for a.e. t ! [0,T ].  

However, in view of (H2), we obtain that there exists a 
constant 

   
!

1
> 0  such that (see Lemma 2.1 below)  

     
W(t,u) ! !1 | u |µ a.e. t ! [0,T ] and | u |! 1,  

which yields that  

    

V(t,u)

| u |2
! "# as | u |! #

uniformly with respect to a.e. t, sinceµ > 2;and

 

   

(V
u
(t,u),u)

| u |
! "# as | u |! #

uniformly with respect to a.e. t.

 

So Theorem 1.1 extends the conclusions in [20], in the 
sense that we deal with (1.1) under a class of 
assumptions on   V(t,u)  where are not considered in 
[20].  

In what follows, we consider the case that   W(t,u)  is 
subquadratic at infinity. For the statement of our 
second result,   W(t,u)  is supposed to satisfy the 
following conditions: 

(H4)    W(t,0) = 0  for    t ! [0,T ] , there exist 
   
t0 ! [0,T ]  

and    ! ! (1,2)  such that  

    

lim
(t,u)!(t0 ,0)

W(t,u)

| u |!
> 0;  

(H5) 
    | !W(t,u) |" b(t) | u |!#1  for all 

   t ! [0,T ]  and 

  u ! R
n , where 

    b : [0,T ]! R
+  is function such that 

    b ! L
!(0,T;R+) . 

Theorem 1.2. Under the assumptions of (H4) and (H5), 
(1.1) has at least one nontrivial solution. Moreover, if 
 W  has an even symmetric in  u , i.e., (H3), then (1.1) 
has infinitely many nontrivial solutions. 

This paper is organized as following. Section 2 is 
devoted to presenting some preliminary results. In 
section 3, we establish the proofs of Theorems 1.1 and 
1.2. 

2. PRELIMINARY RESULTS 

In order to establish the variational structure which 
enables us to reduce the solutions of (1.1) to find 
critical points of corresponding functional, we first 
introduce some notations to be used in the following. 
Let 

    (!,!) : R
n

"R
n  denote the standard inner product in 

  R
n  and   | ! |  is the induced norm.  E  denotes the 

Hilbert space of  T -periodic functions on   [0,T ]  with 

values in   Rn  under the norm 

    
! u !

E
:=(

0

T

! (| "u(t) |2 +(L(t)u(t),u(t))dt)1

2.  

Let 
   L

p(0,T;Rn ) (
   
1 ! p < +" ) denote the Banach 

spaces of the  T -periodic functions on   [0,T ]  with 

values in   Rn  under the norm  

    
! u !

p
=(

0

T

! | u(t) |p dt)1

p .  

In addition, 
    L
!(0,T;Rn )  denotes the space of  T -

periodic essentially bounded functions from 
  
[0,T ]  to 

  R
n  equipped with the norm  

     
! u !

!
:= esssup | u(t) |: t ! [0,T ]{ }.  

Due to the fact that 
    g ! L

!(0,T;R) , then the norm 
of  E  is equivalent to the following norm defined by 

    
! u !:=(

0

T

! e
G(t)(| "u(t) |2 +(L(t)u(t),u(t))dt)1

2  
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Note that the embedding of  E  into 
   L

p(0,T;Rn )  is 
compact( 

   
1 ! p ! +"  ). That is, for any 

    p ! [1,+!] , 

there is a positive constant 
 
C

p
 such that  

     
! u !

p
!C

p
! u !, "u ! E.       (2.1) 

In order to give the proof of Theorem 1.1, we need the 
following preliminary results. We firstly recall some 
properties of the function 

  W(t,u)  from [8]. 

Lemma 2.1. Assume that (H2) holds. Then, for a.e. 

   t ! [0,T ] , the following inequalities hold:  

    

W(t,u) !W(t,
u

| u |
)| u |µ, if 0 <| u |! 1,

W(t,u) "W(t,
u

| u |
)| u |µ, if | u |" 1.

    (2.2) 

Remark 2. Form the first inequality of (2.2), it is 
obvious that  

   |W(t,u) |= o(| u |2) as | u |! 0  

uniformly with respect to a.e.    t ! [0,T ]  . That is, for any 

   ! > 0 , there is    ! > 0  such that  

      |W(t,u) |! ! | u |2, a.e. t ! [0,T ] and | u |! !.     (2.3) 

Lemma 2.2. Set 
    
m := inf W(t,u) : t ! [0,T ],| u |= 1{ } . 

Then, for every 
     
! ! R \ 0{ }  and 

     
u ! E \ 0{ } , we 

have  

    0

T

! W(t,!u(t))dt " m | ! |µ
0

T

! | u(t) |µ dt #Tm.     (2.4) 

Next we introduce more notations and some necessary 
definitions. Let  B  be a real Hilbert space, 

    I !C
1(B,R)  

means that  I  is a continuously Frechet-differentiable 
functional defined on  B .  I  is said to satisfy the Palais-
Smale condition (henceforth denoted by the (PS)-
condition) if any sequence 

   
u

j{ } ! B  for which 

   
I(u

j
){ }  is bounded and 

   
!I (u

j
)" 0  as   j ! +"  

possesses a convergent subsequence in  B . Let 
 
B

r
 be 

the open ball in  B  with the radius  r  and centered at  0  
and 

  
!B

r
 denotes its boundary. 

To obtain Theorem 1.1, we make use of the 
following well-known Mountain Pass Theorem and its 

  
Z

2
 version. 

Lemma 2.3. ([12, Theorem 2.2]) Let  B  be a real 
Banach space and 

    I !C
1(B,R)  satisfying (PS)-

condition. Suppose    I(0) = 0  and 

(A1) there exist constants 
 
! ,    ! > 0  such that 

    
I |
!B
!

" " , and 

(A2) there is an 
    
e ! B \ B

!
, such that    I(e) ! 0 . 

Then  I  possesses a critical value 
   
c ! ! . Moreover 

 c  can be characterized as  

    
c = inf

g!!
max
s![0,1]

I(g(s)),  

where  

     
! = g !C([0,1],B) : g(0) = 0,g(1) = e{ }.  

Lemma 2.4. ([12, Theorem 9.12]) Let  B  be an infinite 
dimensional real Banach space and 

    I !C
1(B,R)  be 

even, satisfy (PS)-condition and    I(0) = 0 . If 

   B = Y ! X , where  Y  is finite dimensional, and  I  
satisfies 

(A3) there exist constants 
 
! ,    ! > 0  such that 

    
I |
!B
!
"X
# "  and 

(A4) for each finite dimensional subspace 
  B ! B , 

there is an     R = R(B)  such that 
   
I ! 0  on 

    
B \ B

R( !B) , 

then  I  has an unbounded sequence of critical values. 

To deal with the existence of solutions of (1.1) 
under the assumptions of Theorem 1.2, we appeal to 
the following well-known result, see for example [12]. 

Lemma 2.5. Let  B  be a real Banach space and 

    I !C
1(B,R)  satisfying the (PS)-condition. If I is 

bounded from below, then 
    
c = inf

B
I(u)  is a critical 

value of  I . 

To obtain the existence of infinitely many solutions 
of (1.1) under the assumptions of Theorem 1.2, we 
shall use the ``genus" properties. Therefore, we recall 
the following definitions and results, see [12, 13]. 

Let  B  be a Banach space, 
    I !C

1(B,R)  and 
  c ! R . 

We set  

     

! = {A " B # {0} : A is closed in B and symmetric with respect to 0},

K
c

= {u ! B : I(u) = c, $I (u) = 0},Ic
= {u ! B : I(u) % c}.
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Definition 2.6. For    A ! ! , we say genus of  A  is  j  
(denoted by     !(A) = j ) if there is an odd map 

     ! !C(A,R j \ {0})  and  j  is the smallest integer with 
this property. 

Lemma 2.7. Let  I  be an even   C1  functional on  B  and 
satisfy the (PS)-condition. For any   j ! N , set  

     

!
j

= {A ! ! : !(A) " j}, c
j

= inf
A!!

j

sup
u!A

I(u).  

I. If 
   
!

j
" !  and 

  
c

j
! R , then 

 
c

j
 is a critical value 

of  I ; 

II. if there exists 
  r ! N  such that  

     
c

j
= c

j +1
=! = c

j +r
= c ! R,  

and    c ! I(0) , then 
    
!(K

c
) ! r + 1 . 

Remark 3. From Remark 7.3 in [12], we know that if 

  
K

c
! "  and 

    
!(K

c
) > 1 , then 

 
K

c
 contains infinitely 

many distinct points, i.e.,  I  has infinitely many distinct 
critical points in  B .  

3. PROOFS OF THE MAIN RESULTS 

Firstly, we are going to establish the corresponding 
variational framework associated to the problem (1.1). 
To this end, define the functional 

     
I : B = E ! R  by  

    

I(u) =
0

T

! eQ(t)[
1

2
| !u(t) |2 +V(t,u(t))]dt

=
1

2
" u "2 "

0

T

! eQ(t)W(t,u(t))dt.

     (3.1) 

Under the assumptions of Theorems 1.1 and 1.2, from 
Theorems 2.1 and 2.2 in [20], we have the following 
lemma. 

Lemma 3.1. 
   I !C

1(E,R)  and the critical point of  I  in 
 E  is a solution of (1.1). Moreover, one has  

    
!I (u)v = eQ(t)

0

T

" [( !u(t), !v(t)) + (#V(t,u(t)),v(t))]dt,  

which yields that  

   
!I (u)v = u

2
"

0

T

# eQ(t)($W(t,u(t)),u(t))dt.     (3.2) 

Lemma 3.2. Under the conditions of (H1) and (H2),  I  
satisfies the (PS)-condition. 

Proof. Assume that 
   

u
j{ }

j!N
! E  is a sequence such 

that 
    

I(u
j
){ }

j!N
 is bounded and 

   
!I (u

j
)" 0  as 

  j ! +" . Then there exists a constant    C > 0  such 
that  

    
| I(u

j
) |!C and ! "I (u

j
) !

E#
!C      (3.3) 

for every   j ! N . We firstly prove that 
   

u
j{ }

j!N
 is 

bounded. By (3.1) and (H2), we have  

     

! u
j
!2! 2I(u

j
) +

2

µ 0

T

" eQ(t)(#W(t,u
j
(t)),u

j
(t))dt.     (3.4) 

Combining (3.4) with (3.2), we obtain  

     
(1!

2

µ
)! u

j
!2" 2I(u

j
)!

2

µ
#I (u

j
)u

j
.      (3.5) 

From (3.5), it follows that  

     
(1!

2

µ
)! u

j
!2" 2I(u

j
) +

2

µ
! #I (u

j
) !

E$
! u

j
! .     (3.6) 

Combining (3.6) with (3.3), we get  

     
(1!

2

µ
)! u

j
!2 !

2

µ
C ! u

j
! !2C " 0.      (3.7) 

Since 
   
µ > 2 , (3.7) shows that 

   
u

j{ }
j!N

 is bounded. By 

the compactness of the embedding 
    E !C([0,T ],Rn ) , 

the sequence 
   

u
j{ }

j!N
 has a subsequence, again 

denoted by 
   

u
j{ }

j!N
, and there exists   u ! E  such that  

     

u
j
! u, weakly in E,

u
j
! u, strongly in C([0,T ],Rn ).

     (3.8) 

Hence  

   
( !I (u

j
)" !I (u))(u

j
" u)# 0,  

and  

   0

T

! eG(t)("W(t,u
j
(t))#"W(t,u(t)),u

j
(t)# u(t))dt $ 0  

as   j ! +" . 

On the other hand, an easy computation shows that 

    

( !I (u
j
)" !I (u),u

j
"u) =

0

T

# eQ(t)[| !u
j
(t)" !u(t) |2

+(L(t)(u
j
(t)"u(t)),u

j
(t)"u(t)]dt +

0

T

# eQ(t)($W(t,u
j
(t))

"$W(t,u(t)),u
j
(t)"u(t))dt,

 

and so one deduces that  
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0

T

! eQ(t)[| !u
j
(t)" !u(t) |2 +(L(t)(u

j
(t)" u(t)),

u
j
(t)" u(t))]dt # 0,

 

which yields that 
    
! u

j
! u !" 0  and the (PS)-condition 

holds.  

Lemma 3.3. If (H4) and (H5) hold, then  I  satisfies the 
(PS)-condition. 

Proof. Assume that 
   

u
j{ }

j!N
! E  is a sequence such 

that 
    

I(u
j
){ }

j!N
 is bounded and 

   
!I (u

j
)" 0  as 

  j ! +" . Then there exists a constant    C > 0  such 
that  

   
| I(u

j
) |!C,         (3.9) 

for every   j ! N . We firstly prove that 
   

u
j{ }

j!N
 is 

bounded in  E . From (3.1), (H5) and (3.9), it is easy to 
deduce that  

     

! u
j
!2= 2I(u

j
) + 2

0

T

! W(t,u
j
(t))dt

" 2C +
2

!
C
!

! ! b !#! u !! .

   (3.10) 

Since    1 < ! < 2 , the inequality (3.10) shows that 

   
u

j{ }
j!N

 is bounded in  E . Then the sequence 

   
u

j{ }
j!N

 has a subsequence, again denoted by 

   
u

j{ }
j!N

, and there exists   u ! E  such that  

   
u

j
! u weakly in E,  

which yields that  

   
( !I (u

j
)" !I (u))(u

j
" u)# 0 as j # +$.   (3.11) 

On account of the continuity of 
   
!W(t,u)  and 

  
u

j
! u  

in 
    L
!(0,T;Rn ) , it follows that  

   0

T

! eG(t)("W(t,u
j
(t))#"W(t,u(t)),u

j
(t)# u(t))dt $ 0 (3.12) 

as   j ! +" . Consequently, in view of (3.11), (3.12) 
and the following equality  

   

( !I (u
j
)" !I (u),u

j
"u) = u

j
"u

2
"

0

T

# eG(t)

($W(t,u
j
(t))"$W(t,u(t)),u

j
(t)"u(t))dt,

 

it concludes that 
    
! u

j
! u !" 0  as   j ! +" .  

Proof of Theorem 1.1 We divide the proof of Theorem 
1.1 into two steps. 

Step 1 We give the proof of the first part of Theorem 
1.1. Firstly, we show that there exist constants 

   
! > 0  

and    ! > 0  such that (A1) holds in Lemma 2.3. By 
(2.3), for any    ! > 0  there exists    ! > 0  such that 

    |W(t,u) |! ! | u |2  for a.e. 
   t ! [0,T ]  and 

    | u |! !  . 

Assume that   u ! E  such that 
     
0 <! u !

!
" ! , then we 

have  

     0

T

! W(t,u(t))dt " !
0

T

! | u(t) |2 dt " !C2 ! u !2,  

and in consequence, combining this with (3.1), we 
obtain  

     
I(u) !

1

2
! u !2 "!C2 ! u !2=(1

2
" !C2) ! u !2 . (3.13) 

Choose 
    

! =
1

4C
2

 and 
    

! u != ! =
"

C
!

, then (3.13) gives 

that  

    

I |
!B
!

" " =
#2

4C
#
2

> 0.  

It remains to prove that there exists   e ! E  such that 

    
! e !> !  and    I(e) ! 0 . By (2.4) and (3.1), we have, for 

every 
     
! ! R \ 0{ }  and 

     
u ! E \ 0{ } , the following 

inequality holds:  

     
I(!u) !

!
2

2
! u !2 "m | ! |µ

0

T

# | u(t) |µ dt +Tm.   (3.14) 

Take   Q ! E  such that 
    
!Q != 1 . Since 

   
µ > 2  and 

   m > 0 , (3.14) implies that there exists 
    
! = !

Q
> 0  

such that 
    
! !Q != ! > "  and     I(!Q) < 0 . By Lemma 

2.3,  I  possesses a critical value 
    
c ! ! > 0  given by  

    
c = inf

g!!
max
s![0,1]

I(g(s)),  

where  

    
! = g !C([0,1],E) : g(0) = 0, g(1) = e{ }.  

Hence, there is   u ! E  such that  

   I(u) = c and !I (u) = 0.  

Since    c > 0 ,  u  is one nontrivial solution of (1.1). 

Step 2 Now we give the proof of the second part of 
Theorem 1.1. Firstly, (H3) implies that that  I  is even 
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and by the above assumptions, we know that 

   I !C
1(E,R) , 

   I(0) = 0  and  I  satisfies the (PS)-
condition. 

To apply symmetric Mountain Pass Theorem (see 
Lemma 2.4), it suffices to prove that  I  satisfies (A3) 
and (A4). (A3) is identically the same as in Step 1, so it 
is already proved. Now we prove (A4). Let    !E ! E  be a 
finite dimensional subspace. From Step 1, for any 

   Q !
!E  such that 

    
!Q != 1 , there exists 

    
!
Q

> 0  such 
that  

    
I(!Q) < 0 for every | ! |! "

Q
> 0.  

Since   
!E  is a finite dimensional subspace, we can 

choose an 
    
R = R( !E) > 0  such that  

      
I(u) < 0, !u ! !E \ B

R
.  

So, according to Lemma 2.4,

I

 possesses infinitely 
many distinct critical points, i.e., (1.1) has infinitely 
many distinct solutions.  

Now we are in the position to complete the proof of 
Theorem 1.2. 

Proof of Theorem 1.2 It is clear that    I(0) = 0 , and by 

Lemma 3.3 we have known that  I  is a   C1  functional 
on  E  satisfying the (PS)-condition. On the other hand, 
in view of (H5), (2.1) and (3.1), we obtain that 

     
I(u) !

1

2
! u !2 "

C
!

!

!
! b !

#
! u !!,    (3.15) 

which implies that  I  is bounded below on  E . Hence 
by Lemma 2.5, 

   
c = inf

E
I(u)  is a critical value of  I , 

namely, there is a critical point    u
!
! E  such that 

   I(u
!) = c  and 

   I
!(u*) = 0 . Moreover, this critical value 

 c  is a negative real number as the following argument 
will show, and so   u!  is a nontrivial solution of (1.1) by 
Lemma 2.5. 

In what follows, we focus our attention to obtain the 
existence of infinitely many solutions of (1.1). Now, we 
additionally have from (H3) that  I  is even. In order to 
apply Lemma 2.7 lemma, we prove that  

     for any j ! N there exists ! > 0 such that "(I!!) " j. (3.16) 

By (H4), there exist an open set 
   
D ! [0,T ]  with 

   
t
0
! D ,    ! > 0  and 

   
! > 0  such that  

     W(t,u) ! ! | u |", "(t,u) ! D#R
n ,| u |$ #.   (3.17) 

For any   j ! N , we take  j  disjoint open sets 
 
D

i
 such 

that 
    i=1

j
! D

i
! D . For    i = 1,2,..., j , let 

     
u

i
! (W0

1,2(D
i
)! E) \ {0}  with 

    
! u

i
!= 1 , and  

     
E

j
= span{u1,u2,...,uj

}, S
j

= {u ! E
j

:! u != 1}.  

Then, for any 
  
u ! E

j
, there exist 

   
!

i
! R ,    i = 1,2,..., j  

such that  

     

u(t) =

i=1

j

!!iui
(t) for t ! [0,T ].     (3.18) 

From which it follows that  

     

! u !
!

=(
0

T

! | u(t) |!)1/!
=(

i=1

j

" | "
i
|!

D
i

! | u
i
(t) |! dt)1/! (3.19) 

and 

     

! u !2=
0

T

! [| "u(t) |2 +(L(t)u(t),u(t))]dt

=

i=1

j

"!i2 D
i

! [| "u
i
(t) |2 +(L(t)u

i
(t),u

i
(t))]dt

=

i=1

j

"!i2 0

T

! [| "u
i
(t) |2 +(L(t)u

i
(t),u

i
(t))]dt

=

i=1

j

"!i2 ! u
i
!2=

i=1

j

"!i2.

  (3.20) 

Since all norms of a finite dimensional norm space are 
equivalent, there is a constant    d = d(j) > 0  such that  

      
d ! u !!! u !

!
, "u ! E

j
.     (3.21) 

Note that    W(t,0) = 0 , and so according to (3.17)-
(3.21), we have  

     

I(su) =
s2

2
! u !2 !

0

T

" W(t,su(t))dt

=
s2

2
! u !2 !

i=1

j

# D
i

" W(t,s!
i
u

i
(t))dt

$
s2

2
! u !2 !"s#

i=1

j

# | !
i
|#

D
i

" | u
i
(t) |# dt

=
s2

2
! u !2 !"s# ! u !

#
#

$
s2

2
! u !2 !"(ds)# ! u !#

=
s2

2
! "(ds)#

  (3.22) 
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for all 
  
u ! S

j
 and sufficient small    s > 0 . In this case 

(3.17) is applicable, since  u  is continuous on  D  and 
so 

      
| s!

i
u

i
(t) |! ","t ! D,i = 1,2,!, j  can be true for 

sufficiently small  s . Therefore, it follows from (3.22) 
that there exist    ! > 0  and    ! > 0  such that  

     
I(!u) < !" for u ! S

j
.     (3.23) 

Let  

     

S
j
!

= {!u : u ! S
j
},! = {("1,"2,...,"j

) ",R j :

i=1

j

#"i
2

< !
2}. 

Then it follows from (3.23) that  

     
I(u) < !!, "u ! S

j
",  

which, together with the fact that  I  is an even   C
1  

functional on  E , yields that  

     
S

j
!
! I"" ! #,  

where    I!!  and  !  have been previously introduced in 
Section 2. On the other hand, it follows from (3.18) and 
(3.20) that there exists an odd homeomorphism 

     
! !C(S

j
",!") . By some properties of the genus (see 

  3
!  of Propositions 7.5 and 7.7 in [12]), we infer 

    
!(I!") " !(S

j
# ) = j,      (3.24) 

so (3.16) follows. Set  

    

c
j

= inf
A!!

j

sup
u!A

I(u),  

where 
  
!

j
 is defined in Lemma 2.7 lemma. It follows 

from (3.24) and the fact that  I  is bounded from below 
on  E  (see (3.15)), we have 

    
!" < c

j
# !! < 0 , which 

implies that, for any   j ! N , 
 
c

j
 is a real negative 

number. By lemma 2.7 lemma and Remark 3, I has 
infinitely many nontrivial critical points, and 
consequently, (1.1) possesses infinitely many 
solutions.  
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