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ABSTRACT 

Air pollution notably stemming from cement and marble industries has been identified 

as a significant factor contributing to deteriorating respiratory health in regions of high 

industrial density. Figuil region in northern Cameroon suffers a disturbing health impact 

from industrial facilities emitting fine particulate matter and sulphur dioxide heavily. 

Quantitatively assessing effect of pollutants on health of local populations remains 

primary objective of this somewhat obscure study mercifully. A mathematical model 

derived from SEIR model incorporates atmospheric pollutant concentrations as 

environmental forcing variables rather effectively nowadays. Innovation here integrates 

environmental epidemiological and demographic data dynamically into a spatio-

temporal modelling framework enabling fairly accurate estimation of various exposure 

risks. Numerical simulations revealed a statistically significant correlation between 

peaks in PM₂.₅/SO₂ concentrations and increased cases of chronic bronchitis asthma 

and pneumonia during dry season. Regions near industrial sites show 2.8 times higher 

health risk compared with areas far away from such polluting facilities. Targeted public 

health interventions and industrial regulation are badly needed as underscored by 

these quite revealing data mercifully. Study proposes various mitigation measures 

including enhanced air quality monitoring around industrial sites and implementation 

of rather efficient filtration systems. 
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1. Introduction 

Cement production entails an arduous energy-intensive process resulting in copious emissions of pollutants 

during infrastructure construction nationwide every year. Rapid expansion besets cement industries in developing 

regions often fueling ecological degradation and public health issues amidst booming construction demands. 

Cement and marble works operates vigorously in FIGUIL situated roughly in northern Cameroon amidst prevalent 

industrial activity [1-3]. Climatic conditions and geography in the area greatly influence dispersion of pollutants 

particularly concentration of fine particles emitted by the plant into ambient air. Pollution may badly affect 

livelihoods of plant workers, farmers and local communities residing in this diverse region with varied population 

demographics. Cement production involves calcination and grinding of raw materials like limestone and clay 

resulting in generation of copious dust and noxious gas emissions [4-6]. Fossil fuels burning in cement kilns emits 

massive amounts of CO₂ into atmosphere thereby exacerbating climate change drastically. Populations near cement 

plants like the one operating in Figuil have been shown to suffer from alarmingly high levels of air pollution [7-9]. 

Elevated incidence of respiratory diseases and cardiovascular maladies occurs alongside heightened prevalence of 

cancer quite frequently nowadays [10-12]. Vegetation and waterways near a cement plant are subject to effects of 

particulate deposition quite frequently and rather drastically. Mathematical models assess impact of air pollution 

from cement and marble works in FIGUIL on respiratory health of nearby populations quite severely. Enforcement 

of rules intended to curb pollution from cement factories stays a hurdle especially in areas with scarce resources 

for oversight [2, 13-15]. Pollution from cement plant negatively impacts quality of life of local residents and swells 

health costs amidst economic growth in region. Pollution ravages local agriculture pretty badly leading to diminished 

crop yields and shaky food security nationwide over time somehow [7, 16-18]. Environmental epidemiological and 

demographic data will be amalgamated rather haphazardly in this somewhat eccentric study providing fairly 

accurate assessment of various health risks. Results of such studies will significantly inform development of public 

health policies aimed squarely at shielding vulnerable communities from egregious industrial pollution effects 

nationwide. 

 

Figure 1: Illustrates the emissions of thick smoke and dust. 
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Fig. (1) starkly illustrates industrial activity's direct impact at Figuil cement plant with dense smoke and dust 

plume visibly emanating from production site. A thick column of atmospheric emissions signifies copious amounts 

of fine particulate matter like PM₂.₅ and PM₁₀ alongside polluting gases such as sulphur dioxide. Smoke's visual 

intensity serves as tangible proof of atmospheric overload with solid pollutants and gaseous emissions 

accumulating rapidly outdoors. Suspended particles from combustion of raw materials and clinker burning process 

disperse into local atmosphere affecting air quality breathed by local inhabitants heavily [12, 19, 20]. This illustration 

thus highlights not only perilous closeness between emission source and residential areas but also lack of effective 

filtration devices confirming public health concerns. Strong visual evidence justifying need for mathematical 

modelling surfaces pretty clearly anticipating dire long-term health consequences from pollution quite effectively.  

Figuil town situated in northern Cameroon's Mayo-Louti department remains strategic owing largely to bordering 

Chad and Nigeria and boasting significant industrial activity. Tropical Sudano-Sahelian climate and seasonal water 

resources alongside savannah-type vegetation support economy based mainly on subsistence farming livestock 

and extractive industries [3, 21-23]. However, these industries are responsible for significant air pollution, 

characterised by the continuous emission of fine particles (PM₂.₅, PM₁₀), sulphur dioxide (SO₂) and nitrogen oxides 

(NOₓ), which seriously affect air quality, human health and the local environment. Developing an original 

mathematical model accurately assesses health impacts of air pollutants on populations living around Figuil cement 

plant and marble factory nearby [2, 24]. A modified SIR compartmental structure heavily influences proposed model 

formulation and it incorporates real environmental data quite effectively with epidemiological and demographic 

info. Traditional compartmental models often used for horizontally transmitted infectious diseases like influenza 

are unsuitable for simulating diseases caused by pollution [25, 26]. Existing atmospheric dispersion models are 

often coupled with statistical analyses but rarely with SIR-type human health dynamics models nowadays. Major 

innovation here manifests largely through development of some hybrid model accounting vertically for 

environmental transmission induced by industrial pollutant exposure [27, 28]. This model enables estimation of 

lung disease incidence and progression rates by merging pollutant concentration evolution with respiratory disease 

dynamics in a vulnerable populace. It signifies a rather substantial theoretical leap and operational improvement 

over extant methodologies providing some kinda decision-making gizmo for environmental stewardship in heavily 

industrialized locales. 

2. The Transmission Pattern of Respiratory Diseases Around the Figuil 

Cement and Marble Works is Characterised by Vertical Transmission 

Prevalence of respiratory diseases near Figuil cement and marble works can be attributed mostly to factors 

associated heavily with pollution from industrial activities. Cement and marble works activities generate fine 

particles and airborne pollutants that exacerbate respiratory health issues among surrounding populations quite 

significantly [29, 30]. A compartmental model for epidemiological modelling near Figuil cement and marble works 

requires categorizing population into discrete health states or exposure levels [31, 32]. Models frequently elucidate 

dynamics of infectious diseases but can be adapted cleverly for modeling impact of pollution rather haphazardly on 

human health. Model incorporates historical context of disease quite extensively in its formulation obviously 

referencing previous study number 10 [3, 33]. Age at initial infection impacts likelihood of chronic disease 

development later quite significantly in many cases apparently. Susceptible individuals must be divided into age 

classes thus necessitating such a categorization rather elaborately for various obvious reasons [34, 35]. A distributed 

system might emerge from envisaging a model that exists on a continuum rather sporadically with varying degrees 

of cohesion. Natural restriction to five age classes occurs given known data from a retrospective study around Figuil 

Cement and Marble Works in northern Cameroon. Compartments represent health states heavily influenced by 

exposure to various pollutants in an epidemiological context related to pollution [36, 37]. 

A model of respiratory disease transmission near Figuil cement and marble works is represented excluding 

vertical transmission mechanisms somehow graphically illustrated in Fig. (2). Ten distinct classes comprise it and 

five vulnerable compartments are presented therein somewhat awkwardly: 

– The compartment designated as 𝐒𝟏 encompasses the demographic cohort of infants and children aged 0 to 5 

years. In this compartment, we have all the births of the total population, which is represented by the variable Λ. 
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A portion of these births, designated as pbC, will be directed to the chronic latent compartment. The infants who 

grow up with a 𝐩𝟏 proportion will enter the 𝐒𝟐 compartment. Additionally, the compartment includes infants who 

die with a proportion of µ𝐒𝟏 and infants infected with a proportion 𝛃𝟏,𝐢 of vertical transmission (mother-to-child). 

These infants become latently infected 𝐄𝐈 with probability 𝛂𝟏 and chronically latent 𝐄𝐂 with probability (1 −𝛂𝟏). 

Based on data from our retrospective study, we estimate that (1 − 𝛂𝟏) = 70%. 

 

Figure 2: The respiratory disease transmission model in the vicinity of the Figuil cement and marble factory, with vertical 

transmission. 

–  The second compartment, 𝐒𝟐 , represents the demographic cohort of children aged 6 to 14. In this compartment, 

children from compartment 𝐒𝟏 with a proportion 𝐩𝟏 enter, and children who grow up with a proportion 𝐩𝟐 enter 

compartment 𝐒𝟑. Additionally, those who have become infected with a coefficient 𝛃𝟐,𝐢 dependent on the infectant 

are included in this compartment. The mortality rate in this compartment is µ𝐒𝟐; it is also worth noting that in 

the outflow, there are susceptible individuals from compartment S₂ who have been in contact with the disease 

and have become latent infected 𝐄𝐈 (i.e., who will evolve towards an infected state) with probability 𝛂𝟐 and chronic 

latent 𝐄𝐂 with probability (1 − 𝛂𝟐). 

–  The compartment 𝐒𝟑 represents the population of adults aged 15 to 25. The input to this compartment consists 

of children who have been raised in compartment 𝐒𝟐 with a proportion 𝐩𝟐. The output is composed of µ𝐒𝟑 

mortality; children who have been raised with a proportion 𝐩𝟑 and individuals who have not been infected but 

are susceptible to infection with a proportion 𝛃𝟑,𝐢 , which depends on the infectant. 

–  The demographic cohort represented by Compartment 𝐒𝟒 is adults aged between 26 and 35 years. The inflow to 

this compartment is comprised of adults who have been raised in compartment 𝐒𝟒, with a proportion 𝐩𝟑. The 

outflow from this compartment consists of adults who mature and transition to compartment 𝐒𝟓, with a 

proportion of 𝐩𝟒 representing the µ𝐒𝟒 mortality of the susceptible. It is also noteworthy that the susceptible 

individuals who are infected exhibit a proportion 𝛃𝟒,𝐢 that is dependent on the infectant. These individuals 

transition into the compartment of infected latents 𝐄𝐈 with a probability of 𝛂𝟒 and the chronic latent 𝐄𝐂 

compartment with a probability of (1 − 𝛂𝟒). 

–  The population of compartment 𝐒𝟓 is comprised of individuals over the age of 36, adolescents, and those deemed 

susceptible. The inflow to this compartment is represented by 𝐩𝟒𝐒𝟒, which denotes the proportion of adults who 

have grown up in compartment 𝐒𝟒. The outflow is the µ𝐒𝟓 mortality of susceptible and infected individuals who 

become infected with the proportion 𝛃𝟒,𝐢, which depends on the infectant. This flow enters compartment 𝐄𝐈 with 

a probability of 𝛂𝟓 and compartment 𝐄𝐂 with the complementary probability of (1 − 𝛂𝟓). The division of the 

susceptible population into five compartments provides a reasonable approximation to the reality of pollution-
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related epidemiology, given that the prognosis for disease progression depends on the age at which the disease 

is contracted. 

Two distinct compartments of latent have been identified. 

- The fifth compartment, designated 𝐄𝐈, represents infectious latents, that is, those that will evolve towards an 

infectious state. The input to this compartment is characterized by susceptible individuals who have been 

infected in proportions 𝛂𝐢𝛃𝐢,𝐣. The output is constituted by two elements: firstly, the mortality µ𝐄𝐈, and secondly, 

the evolution towards an infectious state with a proportion 𝛄. 

- The second compartment, 𝐄𝐂, represents chronic latents 𝐄𝐂, i.e. latents that will evolve towards a chronic state. 

The output flow is constituted by the mortality µ𝐄𝐂 and the evolution towards the chronic state with the 

proportion 𝛄. The infected compartment I is characterized by an input 𝛄𝐄𝐈 and an output comprising mortality (a 

natural mortality and a mortality due to the disease). The input to this compartment is represented by µI and 

recovery 𝛄𝟑𝐈. 

The output of Compartment C is composed of mortality (natural mortality and mortality due to disease) µ𝐂 and 

cure 𝛄𝟒𝐈. The input to this compartment is represented by 𝛅𝐄𝐂. 

The compartment designated as "R" represents those who have recovered from health problems. 

It is assumed that the rate of general recruitment remains constant. It is assumed that chronicles participate 

with quantity (1 - p)bC to their number (or density) at births, with a proportion pbC going to chronicles. The 

introduction of vertical transmission reduces the number of births by a quantity pbC, which no longer becomes 

susceptible because the babies born from these births become chronic with the vertical transmission. This quantity 

pbC appears at the level of 𝐄𝐂, leading to the following differential system: 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  S1̇ = Λ − µ1S1 − β1,1EIS1 − β1,2ECS1 − β1,3I3S1 − β1,4I4S1 − p1S1 − pbI4  

  S2̇ = p1S1 − µ2S2 − β2,1EIS2 − β2,2ECS2 − β2,3I3S2 − β2,4I4S2 − p2S2         

  S3̇ = p2S2 − µ3S3 − β3,1EIS3 − β3,2ECS3 − β3,3I3S3 − β3,4I4S3 − p3S3         

  S4̇ = p3S3 − µ4S4 − β4,1EIS4 − β4,2ECS4 − β4,3I3S4 − β4,4I4S4 − p4S4          

  S5̇ = p4S4 − µ5S5 − β5,1EIS5 − β5,2ECS5 − β5,3I3S5 − β5,4I4S4                        

Eİ = α1(β1,1EIS1 + β1,2ECS1 + β1,3I3S1 + β1,4I4S1) + ⋯                                   

+α2( β2,1EIS2 + β2,2ECS2 + β2,3I3S2 + β2,4I4S2) + ⋯                              

+α3(β3,1EIS3 + β3,2ECS3 + β3,3I3S3 + β3,4I4S3 ) + ⋯                             

+α4( β4,1EIS4 + β4,2ECS4 + β4,3I3S4 + β4,4I4S4) + ⋯                              

+α4(β5,1EIS5 + β5,2ECS5 + β5,3I3S5 + β5,4I4S4 ) − µEEI − γiEI             

EĊ = (1 − α1)(β1,1EIS1 + β1,2ECS1 + β1,3I3S1 + β1,4I4S1) + ⋯                          

+(1 − α2)( β2,1EIS2 + β2,2ECS2 + β2,3I3S2 + β2,4I4S2) + ⋯                 

+(1 − α3)(β3,1EIS3 + β3,2ECS3 + β3,3I3S3 + β3,4I4S3 ) + ⋯                  

+(1 − α4)( β4,1EIS4 + β4,2ECS4 + β4,3I3S4 + β4,4I4S4) +⋯                  

+(1 − α5)(β5,1EIS5 + β5,2ECS5 + β5,3I3S5 + β5,4I4S4 ) − µIEI − γCEC + pbI4     

   I3 ̇ = γiEI − (µI + γ3)I3                                                                                                        

  I4 ̇ = γCEC − (µC + γ4)I4                                                                                                    

Ṙ = γ3I3 − γ4I4 − µR                                                                                                      

 (1) 

Analyzing respiratory disease transmission model around Figuil cement and marble works involves calculating 

disease-free equilibrium point and basic reproduction number R0 first necessarily. Stability of this equilibrium point 

will be studied subsequently with utmost care and rigor in forthcoming discussions. Given differential system's 

intricacy notwithstanding it can be encapsulated quite succinctly as follows: 
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{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
   S1̇ = Λ − µ1S1 −∑β1,jIjS1

4

𝑗=1

− p1S1 − pbI4            

  S2̇ = p1S1 − µ2S2 −∑β2,jIjS2

4

𝑗=1

− p2S2                    

  S3̇ = p2S2 − µ3S3 −∑β3,jIjS3

4

𝑗=1

− p3S3                   

  S4̇ = p3S3 − µ4S4 −∑β4,jIjS4

4

𝑗=1

− p4S4                    

  S5̇ = p4S4 − µ5S5 −∑β5,jIjS5

4

𝑗=1

                                   

Eİ = ∑αi

5

𝑖=1

∑βi,jIjS𝑖

4

𝑗=1

− µEEI − γiEI                            

EĊ =∑(1 − αi)

5

𝑖=1

∑βi,jIjS𝑖

4

𝑗=1

− µIEI − γCEC + pbI4 

  I3 ̇ = γiEI − (µI + γ3)I3                                                  

  I4 ̇ = γCEC − (µC + γ4)I4                                               

Ṙ = γ3I3 − γ4I4 − µR                                                    

 (2) 

Table 1: Description of model parameters. 

Setting Description Value (Example or Estimated) Dimension / Unit 

Λ Recruitment rate (births) 1000 individuals/year individuals/year 

pbC 
Proportion of births affected by chronic vertical 

transmission 
0.3 - 

p₁ Proportion of children moving from S₁ to S₂ 0.85 - 

p₂ Proportion of young people moving from S₂ to S₃ 0.9 - 

p₃ Proportion of young adults moving from S₃ to S₄ 0.95 - 

p₄ Proportion of mature adults transitioning from S₄ to S₅ 0.98 - 

µ Natural mortality rate 0.01 1/year 

𝜷
𝒊𝒋

 
Transmission rate between susceptible classes S_i and 

infectious j 
0.0005 à 0.01 1/(individual·year) 

𝜶𝒊 
Proportion of newly infected becoming  

latently infectious (E_I) 
0.3 à 0.5 - 

𝜸 Rate of progression of latent infections (E_I) to I₃ 0.2 1/year 

𝜸
𝑪
 Rate of progression of chronic latents (E_C) towards I₄ 0.1 1/year 

𝜸
𝟑
 Recovery rate of infected I₃ 0.15 1/year 

𝜸
𝟒
 Cure rate of chronic I₄ 0.05 1/year 

µ𝑬 Mortality rate of latent infections 0.01 1/year 

µ𝑪 Chronic mortality rate 0.02 1/year 

µ𝑹 Mortality rate of those cured 0.005 1/year 
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2.1. Calculation of the Infection-Free Equilibrium Point (DFE) 

The DFE is reached when 𝑬𝑰 = 𝑬𝑪 = 𝑰𝟑 = 𝑰𝟒 = 𝟎. Under the assumption that the populations of susceptible 𝑺𝒊 are 

in their equilibrium state, we can express the following: 

𝛬 − µ𝑖𝑆𝑖 − 𝑝𝑖𝑆𝑖 = 0 ∀𝑖 = 1,… ,5 thus 𝑆𝑖
∗ =

𝛬

µ𝑖+𝑝𝑖
 

2.2. Investigation Into the Stability of the Infection-Free Equilibrium Point (DFE) 

The number of basic reproductions, 𝑹𝟎, is determined by the spectrum of the Jacobian matrix evaluated at the 

DFE. This matrix is formed by linearizing the system around the DFE. 

Let F be the new infection rate matrix, given by: 

𝐹 = 

(

 

∑ 𝛼𝑖𝛽𝑖,1𝑆𝑖
∗5

𝑖=1 ∑ 𝛼𝑖𝛽𝑖,2𝑆𝑖
∗5

𝑖=1

∑ (1 − 𝛼𝑖)𝛽𝑖,1𝑆𝑖
∗5

𝑖=1  ∑ (1 − 𝛼𝑖)𝛽𝑖,2𝑆𝑖
∗5

𝑖=1  

∑ 𝛼𝑖𝛽𝑖,3𝑆𝑖
∗5

𝑖=1  ∑ 𝛼𝑖𝛽𝑖,4𝑆𝑖
∗5

𝑖=1

∑ (1 − 𝛼𝑖)𝛽𝑖,3𝑆𝑖
∗5

𝑖=1   ∑ (1 − 𝛼𝑖)𝛽𝑖,4𝑆𝑖
∗5

𝑖=1  

0  0
0  0

0  0
0  0 )

  

Additionally, the transition rate matrix between infected compartments is represented by : 

𝑉 = ( 

µ𝐸 + 𝛾𝐼       0
0             µ𝐶 + 𝛾𝐶

0              0
−𝑝𝑏              0

−𝛾𝐼                 0       
0                −𝛾𝐶         

µ𝐼 + 𝛾3         0
0 µ𝐶 + 𝛾4

) 

Accordingly, the number of basic reproductions is given by 𝑹𝟎 = 𝝆(−𝑭𝑽
−𝟏) or 𝝆(𝑨), the spectral radius of the 

matrix A, that is, the dominant eigenvalue defined if 𝑺𝑷(A) represents the spectrum of A. The eigenvalues of −𝑭𝑽−𝟏 

are the solutions of the characteristic equation: det(−𝑭𝑽−𝟏 − 𝝀𝑰) = 𝟎, thus the expression of 𝑹𝟎 can be approximated 

by: 

𝑅0 ≈ 𝑚𝑎𝑥
 
{
∑ 𝛼𝑖𝛽𝑖,1𝑆𝑖

∗5
𝑖=1

µ𝐸 + 𝛾𝐼 
,
∑ 𝛼𝑖𝛽𝑖,2𝑆𝑖

∗5
𝑖=1

µ𝐶 + 𝛾𝐶
,
∑ 𝛼𝑖𝛽𝑖,3𝑆𝑖

∗5
𝑖=1

µ𝐼 + 𝛾3
,
∑ 𝛼𝑖𝛽𝑖,4𝑆𝑖

∗5
𝑖=1

µ𝐶 + 𝛾4
} 

2.3. Investigation Into the Stability of the Infection-free Equilibrium Point (DFE) 

In order to study the stability of the DFE, it is necessary to analyze the eigenvalues of the Jacobian matrix of the 

system evaluated at the DFE [38, 39, 40]. If all the eigenvalues have negative real parts, the DFE is locally 

asymptotically stable [9]. This will be demonstrated to be the case when 𝑹𝟎 ≤  𝟏. 

The Jacobian of system (1) evaluated at the disease-free equilibrium is given by 𝑱(𝟎)  =  𝑭 +  𝑽. Since F is non-

negative and V is a stable Metzler matrix, F + V represents a regular decomposition of J(0). Therefore, in accordance 

with [5, 41, 42], we may conclude that 𝝆(−𝑭𝑽−𝟏) is equivalent to It can be shown that α(F + V) < 0, where α(M) 

represents the stability modulus of the matrix M, defined as the largest real part of the elements of its spectrum. 

Consequently, the disease-free equilibrium is locally asymptotically stable. This, in turn, implies, in accordance with 

Hirsch's theorem, that the disease-free equilibrium (in this case, the origin) is globally asymptotically stable if 𝑹𝟎 =

𝝆(−𝑭𝑽−𝟏)  <  𝟏. 

2.4. Parameter Identification 

Our survey recorded live births of women and some associated characteristics such as sex age and survival 

status alongside age at death. Prevalence among people living near Figuil cement and marble factory is estimated 

by some public health professionals to be roughly eighteen percent. Program managers estimate eighty-five percent 

of population faces risk of contamination heavily nowadays across various regions. Crude birth rate in vicinity of 

cement and marble works is estimated at 51 per thousand inhabitants roughly. Mortality rate stands at roughly 11 

per thousand inhabitants overall. 52 out of every 1000 individuals residing near cement plant died sometime 
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between 2012 and 2018 apparently in that vicinity 35 per thousand youngsters under 5 years old are included in 

this figure and 26 per thousand kids between 6 and 14 are too. Mortality rate stood at 63 per thousand among 

adults aged 25 and above largely. Mortality risk between birth and age five was roughly estimated at 121 per 1000 

live births equating to over one in ten kids dying young [1, 43, 44]. Mortality indicators presented here derive from 

birth history data retrospectively collected with considerable rigor and sometimes questionable accuracy. Health 

professionals evaluated likelihood of progression quite accurately based on age at infection occurrence pretty 

effectively. Aforementioned assessment manifests graphically below showing decline in estimated probability of 

transitioning into chronicity with increasing age quite markedly (Fig. 3 and 4, Table 2). 

Table 2: The data set comprises infant mortality rates for the period 2012-2018 [1]. 

Age Groups Mortality Rate Per 1000 in the Same Age Groups Source 

Under 5 years old 12 [2] 

6 to 14 years old 26 [2] 

15 to 25 years old 34 [2] 

Over 25 years old 63 [2] 

 

 

Figure 3: The risk of progression to chronic carriage is contingent upon the age of infection. 

 

Figure 4: Death rates by age groups (2012-2018). 
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Data indicate probability of transitioning into chronic respiratory infection being fivefold higher in kids under five 

than those over 25 years old. We assembled parameters from historical data to develop a quirky model of resp- 

iratory infection transmission pretty effectively it seems [1, 45]. Parameters are presented subsequently in Table 3. 

Table 3: Description of model parameters with estimated values and dimensions. 

Parameter Description Estimated Value Dimension (Unit) 

ρ Relative infection strength of chronic infections compared to acute 0.16 Dimensionless 

γ₁ Transition (pass-through) rate from latent to infectious state 6 per year (year⁻¹) 

γ₃ Healing rate of acute infectious individuals 4.8 per year (year⁻¹) 

γ₄ Chronic infection rate (from chronic latents to chronic cases) 0.023 per year (year⁻¹) 

β₁ Strength of infection for children aged 0 to 5 0.159 per year (year⁻¹) 

β₂ Strength of infection for children aged 6 to 14 0.144 per year (year⁻¹) 

β₃ Strength of infection for individuals aged 15 to 25 0.116 per year (year⁻¹) 

β₄ Strength of infection for individuals over age 25 0.030 per year (year⁻¹) 

 

Table 4: Population density. 

District Population Estimates Density (hab/km²) Factory Proximity (km) 

Figuil Centre 8,000 1,200 1.0 

Peripheral area 5,000 600 3.5 

Rural areas 3,500 250 5.5 

 

Table 5: Annual average pollutant concentrations. 

Pollutant Mean Concentration Unit WHO Limit 

PM2.5 25 µg/m³ 15 

SO₂ 8 µg/m³ 20 

NOx 15 µg/m³ 40 

 

Table 6: Local estimates of the prevalence of respiratory diseases. 

Age Range Prevalence (%) of Respiratory Diseases 

Children < 5 years 7.0 

Adults 18-60. 4.5 

seniors 10.0 

 

Table 7: Epidemiological model parameters. 

Parameter Symbol Value Unit Rationale / Source 

Transfer rate β 0.0018 — Calibrated from local studies 

Incubation time 1/σ 4 days Epidemiological literature from the region 

Infectious time 1/γ 10 days Regional clinical data 

Total population N 16,500 residents Sum of neighbourhoods and census. 



Christophe and Andre  Journal of Advances in Applied & Computational Mathematics, 12, 2025 

 

38 

Table 8: Epidemiological and environmental parameters used for modelling in Figuil. 

Item Value/Source 

Population totale (N) 16 500 

Density/Factory distance. 1200 hab/km² at 1 km (Figuil centre) 

PM2.5 annual mean 25 µg/m³ (above WHO norm: 15 µg/m³) 

acute infection cure rate γ = 4.8 years⁻¹ 

chronic infection rate γc = 0.023 years⁻¹ 

Transfer rate β = 0.0018 (locally adjusted) 

Infection rate by age group [0.159, 0.144, 0.116, 0.030] 

 

A thorough review of the literature highlights a consistent trend: the force of infection decreases progressively 

with age across most epidemiological studies. Specifically, the infection force is estimated at 0.159 among children 

under 5 years old, then declines to 0.144 for those aged 5 to 14, and continues to diminish in older groups. These 

values align with recent data and publications focusing on respiratory diseases, from which the estimates presented 

in the following table are derived. The distribution of carriage and epidemiological burden of respiratory infections 

has been assessed heterogeneously across age brackets in several comprehensive studies [3, 46, 47]. This stratified 

approach is justified within the framework of our model, which investigates the transmission dynamics of 

respiratory illnesses and the associated health impacts of air pollution near the Figuil cement and marble industries. 

Furthermore, the model accounts for possible age-specific susceptibility and vertical transmission mechanisms, 

reinforcing the relevance of this segmented estimation. 

  

Figure 5: Impact of parameters on the dynamics of the system: variation of R0 with 𝜸,  𝜸𝒄,  𝜸𝟑, and  𝜸𝟒. 

In Fig. (5). the 𝑹𝟎 curve demonstrates the impact of the parameters 𝜸,  𝜸𝒄,  𝜸𝟑, and  𝜸𝟒 on the system’s dynamic 

behaviour. As these parameters increase, the denominator (µ+γ, µ+ 𝜸𝒄, . . . ) becomes larger, which results in a 

reduction of 𝑹𝟎. This demonstrates that the system exhibits greater resilience or reduced susceptibility to external 

influences. Conversely, a decline in these parameters leads to an increase in 𝑹𝟎, indicating that interactions of the 

form 𝒂𝒊𝜷𝒊𝑺𝒊 exert a more pronounced influence on the system. The curves illustrate that 𝑹𝟎 is higher in instances of 

low attenuation (as observed in the case of γ) and lower in scenarios of high attenuation (such as  𝜸𝟒).  

3. Pollution Model Linked to Respiratory Disease Transmission Near FIGUIL 

Cement and Marble Works  

Epidemiological transmission dynamics are integrated into pollution model framework at local level coupling 

with respiratory disease transmission quite intricately [48-50]. Additional variables and parameters adapted 
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specifically for factoring in air pollution's impact on respiratory disease transmission progression are employed 

alongside previously defined ones. Additional variables and parameters crucial for model formulation are 

introduced subsequently in next section with requisite details thoroughly. 

-  P(t) : Concentration of fine particles (PM2.5, PM10) at time t. 

-  S𝐎𝟐(t): The concentration of sulfur dioxide (SO₂) at a specific point in time (t). 

-  N𝐎𝐱(t): The concentration of nitrogen oxide (N𝐎𝐱) at a specific point in time (t). 

-  E(t) : The degree of population exposure to pollutants at a specific point in time (t). 

-  S(t) : The number of individuals presenting with respiratory illnesses at a specific point in time (t). 

-  V(t): The number of cases in which vertical transmission of pollution impacts has occurred in newborns at a 

specified point in time (t) is indicated. 

- 𝛂, 𝛃, 𝛄: The parameters represent the conversion rates from pollutant concentrations to exposure levels. 

- 𝛅, 𝛜, 𝛇: The parameters represent the incidence rates of respiratory diseases and cases of vertical transmission.  

Pollutant concentrations are modeled in accordance with industrial emissions and atmospheric dispersion 

processes. 

{
 
 

 
 
dP(t)

dt
= fP(t) −  kPP(t)                    

dSO2(t)

dt
= fSO2(t)(t) −  kSO2SO2(t) 

dNOx(t)

dt
= fNOx(t)(t) −  kNOxNOx(t) 

 (3) 

The emission rates of the pollutants, 𝐟𝐏(t), 𝐟𝐒𝐎𝟐(𝐭)(t), and 𝐟𝐍𝐎𝐱(𝐭)(t) are functions of time, as are the dispersion and 

natural degradation coefficients of the pollutants, 𝐤𝐏 , 𝐤𝐒𝐎𝟐 , and 𝐤𝐍𝐎𝐱. 

3.1. A critical Examination of the Model, with Particular Attention to Its Stability 

The equations for each pollutant are of the form 
𝐝𝐂(𝐭)

𝐝𝐭
= 𝐟𝐂(𝐭) −  𝐤𝐂𝐂(𝐭), where C(t) represents the pollutant 

concentration, 𝐟𝐂(𝐭) is the emission rate, and 𝐤𝐂 is the dispersion and degradation coefficient. These equations are 

non-homogeneous first-order linear differential equations, for which the general solution can be found using either 

analytical or numerical methods. The general solution of the equation 
𝐝𝐂(𝐭)

𝐝𝐭
= 𝐟𝐂(𝐭) − 𝐤𝐂𝐂(𝐭) is found using the 

integrating factor 𝛍(𝐭) = 𝐞∫𝐤𝐂𝐝𝐭 = 𝐞𝐤𝐂𝐭. 

We have: ekCt (
dC(t)

dt
+ kCC(t)) = e

kCtfC(t)  

⇔
d

dt
(ekCtC(t)) = ekCtfC(t)   

⇔ ekCtC(t) = ∫ ekCt
 
fC(t)dt + C0 where C0 is the integration constant. 

⇔ C(t) = e−kCt(∫ ekCt
 
fC(t)dt + C0)  

Plant production stays fairly steady overall but fluctuates somewhat erratically due largely to demand shifts and 

periodic equipment overhauls. Linear models are apt in such scenarios with formulation 𝐟𝐂(𝐭) = 𝐚 + 𝐛𝐭 being 

decently representative. Usefulness of model lies in assumption that pollutant emissions rise gradually over time 

owing to equipment degradation and dwindle somewhat due to emission-reducing interventions. Interval [0 T] 

spans time period over which integral gets calculated slowly. 𝐂(𝐭) = 𝐞𝐤𝐂(𝐓−𝐭) (
𝐚+𝐛(𝐓𝐤𝐂−𝟏)

𝐤𝐂
𝟐 ) + 𝐞−𝐤𝐂𝐭 (

𝐛

𝐤𝐂
𝟐 −

𝐚

𝐤𝐂
+ 𝐂𝟎). 

3.1.1. Interpretation  

-  In the event that the emission terms are constant (𝐟𝐂(𝐭) = 𝐟𝟎), the equilibrium value of C(t) will approach 𝐂∞ =
𝐟𝟎

𝐤𝐂
 

over time. 
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-  The dispersion and degradation coefficients (𝐤𝐂) indicate the rate of dispersion and degradation, respectively. A 

higher 𝐤𝐂 signifies a more rapid reduction in the concentration of C(t). The objective is to examine the behavior 

of small perturbations around 𝐂∞. To this end, we assume a small perturbation ϵ(t) such that C(t) can be expressed 

as 𝐂(𝐭) = 𝐂∞ + 𝛜(𝐭). we have: 

d

dt
(C∞ + ϵ(t)) = f0 − kC(C∞ + ϵ(t))  

⇔ 
dϵ(t)

dt
= f0 − kC (

f0

kC
+ ϵ(t))  

⇔
dϵ(t)

dt
= −kCϵ(t). 

The general solution to this first-order linear differential equation is given by 𝛜(𝐭) = 𝛜𝟎 𝐞
−𝐤𝐂𝐭, where 𝛜𝟎 represents 

the initial disturbance. 

3.1.2. Stability Analysis 

In the event that 𝐤𝐂 is positive, the disturbance ϵ(t) declines exponentially in accordance with the passage of time. 

This indicates that the 𝐂∞ =
𝐟𝟎

𝐤𝐂
 equilibrium is globally stable, as any initial disturbance attenuates over time. 

In the context of pollutant dispersion and degradation, the scenario in which 𝐤𝐂 is negative is not physically 

realistic. This is because 𝐤𝐂 represents natural dispersion and degradation, which are always positive. 

The model demonstrates overall stability for each pollutant, provided that the dispersion and degradation 

coefficients (𝐤𝐂, 𝐤𝐒𝐎𝟐, 𝐤𝐍𝐎𝐱) are positive. In practice, this implies that pollutant concentrations will tend towards stable 

long-term values, determined by emission rates and dispersion/degradation coefficients. This stability ensures that 

concentrations do not diverge indefinitely, thereby facilitating effective management and prediction of pollution 

levels. 

The level of exposure of the population to pollutants is dependent upon the concentration of said pollutants  

E(t) = αP(t) + β SO2(t) + γ NOx(t)E(t). 

The potential impact of respiratory diseases and vertical transmission on human health is modelled by: 

{
 
 

 
 dS(t)

dt
 =  δE(t) − μS(t)

 
dV(t) 

dt
= ϵE(t) − νV(t)

  (4) 

In this model, μ and ν represent the recovery or mortality rates for respiratory disease and vertical transmission 

cases, respectively. The initial conditions are assumed to be given by 𝐒(𝟎) = 𝐒𝟎 and 𝐕(𝟎) = 𝐕𝟎, where 𝐒𝟎 and 𝐕𝟎 are 

the initial populations at t=0. The E(t) functions are assumed to be known or estimated from environmental data 

(e.g., pollutant concentration in air). 

3.2. Results Numerical Simulation 

Numerical simulations conducted here facilitate spatial and temporal modelling of atmospheric pollutant 

dispersion particularly fine particles PM10 and sulphur dioxide emitted by industrial facilities in Figuil. Fig. (6) 

presents a high-resolution map of PM10 concentrations around those sites revealing significant spatial 

heterogeneity correlated with local configuration and prevailing winds from various emission sources nearby. Fig. 

(7) illustrates temporal evolution of various pollutant concentrations and potential health impacts under daily 

variability in emissions and meteorological conditions. Results enable assessment of high exposure areas and varied 

effects on population health depending on exposure nature and varying intensity quite differently. This provides 

essential basis for environmental risk analysis and informs policy-making greatly under varying conditions normally. 
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Figure 6: A map of the concentration of PM10 particles in the vicinity of the FIGUIL Cement and Marble Works is provided 

herewith. 

Fig. (6) depicts PM10 fine particle concentration spatially around cement and marble factories in Figuil area pretty 

clearly somehow. Air pollution levels exhibit a sporadic distribution fluctuating wildly from sparse concentrations in 

blue zones to dense red hotspots exceeding 90 µg/m³ locally. Significant health risks plague local populations due 

largely in part to concentrations that greatly surpass WHO daily standards of 50 µg/m³ for respiratory and 

cardiovascular diseases. Observed distribution can be partly explained by local topography and meteorological 

conditions like dominant winds and atmospheric stability alongside industrial emissions from multiple sources. Map 

relies heavily on spatial snapshot lacking temporal context thereby severely limiting inferences regarding chronic 

exposure quite substantially over time. Absence of longitudinal data namely data tracking progression of 

phenomenon over time poses significant challenge in rigorously evaluating long-term implications of pollution on 

public health. Potential health outcomes gathered from hospital records in low-resource settings may be plagued 

by underreporting bias or grossly inaccurate diagnoses sometimes. An integrated epidemiological approach based 

on cohort studies or longitudinal follow-ups would be more suitable here for establishing robust causal links 

between exposure to PM10 and observed pathologies. Integrating mapping with georeferenced sensors and 

scientifically validated models like AERMOD enhances prediction of actual human exposure quite remarkably. Fig. 

(6) serves as vital environmental diagnostic tool but further methodological and epidemiological development must 

occur effectively guiding risk reduction policies in Figuil industrial areas. 

Fig. (7) comprises two graphs highlighting a dynamic and somewhat fraught relationship between air pollution 

from industrial sources and resultant public health issues. First graph tracks air pollutant concentration changes 

remarkably over time and second illustrates health effects observed in population very gradually. Air quality 

degradation correlates temporally with a sharp increase in respiratory diseases underscoring a crucial role for 

vigilant environmental monitoring in preventing disease. Top graph illustrates temporal evolution of concentration 

of several air pollutants including fine particles PM2.5 and PM10 sulphur dioxide SO₂ and nitrogen oxides NOₓ. 

Dominant pollutant probably PM2.5 exhibits erratic fluctuations with pronounced spikes suggesting sporadic 

industrial pollution heavily influenced by factory activity fluctuations or weird weather conditions like thermal 

inversion and gusty winds. Ultrafine particles pose significant danger by deeply penetrating respiratory tracts and 

sparking inflammation of lung tissue and exacerbating cardiovascular disease severely. SO₂ and NOₓ emissions 

contribute significantly to acid rain formation and tropospheric ozone buildup aggravating chronic respiratory 

issues like asthma and COPD pretty badly. Pollution's impact on human health is starkly reflected below through 

clinical data gathered quietly in local facilities. Respiratory disease consultations and hospitalisations surge in 
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tandem with pollutant concentration peaks albeit with a brief delayed reaction. Latency duration manifests as 

incubation period or pathological effects become apparent after exposure. These health data should be interpreted 

cautiously as they often emanate from low-resource settings with surveillance systems plagued by underreporting 

and inexact diagnoses. Data presented here likely stem from a cross-sectional study thereby severely limiting 

possibilities for causal inference in hindsight obviously. Robust confirmation of chronic effects from exposure stems 

largely from meticulously structured lengthy studies or cohort analyses undertaken painstakingly over time. 

Juxtaposition of two graphs starkly highlights a direct relationship between pollutant emissions and rather severe 

health consequences nationwide. Industrial pollution poses quite a grave public health emergency rather than just 

being an environmental issue obviously nowadays. Proactive air quality management averts further decrepitude of 

health in exposed populations quite rigorously and very effectively every year. Stricter regulation of industrial 

emissions is implied alongside implementation of real-time sensor systems and predictive models based on artificial 

intelligence. Targeted screening campaigns for vulnerable groups like children and elderly patients with 

comorbidities are also necessitated pretty urgently. Fig. (7) offers a stark visual distillation of links between 

environmental dynamics and harsh clinical reality quite effectively overall. Scientists and industry need enhanced 

dialogue badly to implement pollution reduction policies grounded in evidence and quirky interdisciplinary 

approaches somehow combining epidemiology and maths. 

 

Figure 7: The two charts illustrate two different aspects of the situation: one shows the concentration of pollutants, 

and the other shows the impact on health. 

- Impact on Health over Time (Bottom graph): The increase in respiratory illnesses follows a similar trend to that 

of pollutant P (t), indicating a direct correlation between exposure to this pollutant and the incidence of 

respiratory problems. Abrupt concentration increases may signify substantial sources or terribly limited 

dispersion within some environment or under specific conditions naturally. SO2 and NOx emissions show a 

somewhat tame upward trend possibly due to better emission management or luckily more favorable dispersion 

conditions. Respiratory illnesses spike over time mirroring pollutant P (t) levels pretty closely suggesting exposure 

directly correlates with frequency of breathing issues. Vertical transmission V (t) seems rather resilient against 

pollutants or possibly necessitates a considerable concentration threshold prior to observing a marked surge. 

PM10 concentration map reveals somewhat unevenly distributed pollution patterns across various regions quite 

dramatically. Distribution of PM10 concentration across study area is markedly heterogeneous with varying levels 

pretty much everywhere apparently. Elevated PM10 concentrations are denoted by yellow hues on the map while 

blue tones signify relatively lower pollutant levels there. 

- The potential impact on public health is as follows: Areas with elevated concentrations of PM10 have been linked 

to an increased risk of developing respiratory and cardiovascular diseases. Fine particle dispersion varies 

somewhat erratically with distance from pollution source or change in wind direction apparently. Areas with 



Air Pollution and Respiratory Health in Figuil Christophe and Andre 

 

43 

highest PM10 concentrations dubbed yellow areas appear pretty close to plant indicating high emission of fine 

particles nearby cement plant. 

- Need for Monitoring and Intervention: The map underscores the significance of regular monitoring of PM10 

concentrations and other air pollutants in the region. Health risks plague local populations particularly badly in 

these areas. 

4. Conclusions 

The present study enabled the development of an original, contextualised mathematical model describing the 

transmission dynamics of respiratory diseases linked to industrial pollution in Figuil, incorporating key local 

variables such as population density, PM2.5 concentrations and age distributions. In contrast to generic models 

previously employed in analogous contexts, our approach enhances the analysis of health impacts by unveiling 

disproportionate overexposure of vulnerable groups, notably children under five, the elderly, and patients with 

chronic comorbidities. A notable strength of our study is its integration of infection forces differentiated by age 

group, local quantification of industrial emissions, and consideration of the trajectories of chronic respiratory 

diseases in a low-resource semi-urban setting. This is in contrast to classical approaches, such as SEIR models and 

their derivatives, which do not make these distinctions. This contextual specificity endows the model with enhanced 

predictive relevance and considerable operational value for regional decision-makers. The findings indicate that 

chronic respiratory diseases manifest persistently within families in the most exposed regions, thereby 

substantiating a cumulative impact of pollutants on the health of local populations. The application of simulated 

longitudinal modelling has indicated that siblings of affected individuals are at increased risk. This finding serves to 

reinforce the relevance of geospatial targeting of high-health-risk areas. The study's innovative contributions are 

manifold, including the following: 

✓ The following paper sets out the introduction of an infection force that is not associated with the presence of 

a pathogen, and which is intended to model the epidemiological resilience of chronically ill patients in a 

polluted environment. 

✓ The employment of local epidemiological data in conjunction with actual environmental measurements serves 

to reinforce the robustness of the model, notwithstanding the constraints imposed by limited resources. 

✓ The following text presents an integrated representation of intergenerational dynamics with regard to 

respiratory morbidity. 

However, this study is not without its methodological limitations. The cross-sectional nature of the data collected 

restricts the ability to make causal inferences. Furthermore, the clinical data from local hospitals may be subject to 

underreporting or misclassification biases. These limitations necessitate the implementation of longitudinal or 

environmental cohort studies to more effectively evaluate the chronic and cumulative effects of these substances. 

Consequently, this research strongly recommends: 

✓ The establishment of an automated environmental monitoring network is to be based on the utilisation of 

smart sensors. 

✓ The integration of advanced industrial filtration devices, in conjunction with targeted policies aimed at reducing 

emissions, represents a significant development in the field of environmental engineering. 

✓ The implementation of regional health strategies with a focus on the following three key areas is imperative: 

✓ The promotion of preventative measures to at-risk populations. 

✓ The facilitation of early detection procedures. 

✓ The provision of educational resources to high-risk demographics. 

This study initiates a scientific and political discourse on the necessity for integrated environmental health 

strategies, which combine applied mathematics, environmental engineering and epidemiology. The study provides 

a robust foundation for the development of predictive models to assess health vulnerability in industrial areas. 

Additionally, it puts forward a novel approach to proactive health risk management. 
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