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ABSTRACT 

In ecology, commensalism and amensalism models are two kinds of important and 

interesting models. They have attracted much attention of ecologists and 

mathematicians in recent years. In this paper, we consider a two-species 

commensalism system with a discrete delay and density dependent birth rates. 

First, we investigate the characteristic equation of the proposed system and study the 

distribution of its roots. We obtain that, when the delay 𝜏 is sufficiently small, the positive 

equilibrium is locally asymptotically stable, when 𝜏 increases to a critical value, the 

positive equilibrium loses its stability and a Hopf bifurcation occurs, as 𝜏 continues to 

increase, a family of periodic solutions bifurcate from the positive equilibrium. Then, by 

using the normal form theory and the center manifold theorem, we derive the precise 

formulae to determine the Hopf bifurcation direction and the stability of the bifurcating 

periodic solutions. 

Numerical simulation results are included to support our theoretical analysis. We plot 

the trajectory graphs on 𝑡 − 𝑥, 𝑡 − 𝑦 plane respectively. We also plot phase graphs to 

illustrate the change of stability of the positive equilibrium and arise of periodic solution. 

In order to fully validate the occurrence of Hopf bifurcation, we use the numerical 

continuation package DDE-Biftool to generate bifurcation diagrams and accurately 

track stability changes of the positive equilibrium and periodic solution with respect to 

the delay parameter 𝜏. 

The commensalism model we propose considers both density dependent birth rate 

and time delay, it is of great practical and theoretical significance. The theoretical and 

numerical analysis that we do on the proposed system can make a supplement to the 

literature on the dynamics of delay commensalism systems.  
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1. Introduction 

In ecology, commensalism and amensalism are both biological interactions between two different species. For 

convenience and without loss of generality, let us denote one species by 𝑥 and the other species by 𝑦. In a 

commensalism system, the density of 𝑦 has a positive influence on the growth of density of 𝑥, while 𝑥 has no 

influence on 𝑦. In a amensalism system, the density of 𝑦 has a negative influence on the growth of density of 𝑥, while 

𝑥 has no influence on 𝑦 [1-3]. In 2003, Sun and Wei [2, 3] first proposed a mathematical model to describe a 

commensalism or amensalism system  

(

 
 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑥

𝑘1
+
𝑇𝑦

𝑘1
) ,

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 (1 −

𝑦

𝑘2
) ,

 

where 𝑥 and 𝑦 refer to the populations of two species at time 𝑡, respectively; 𝑟1, 𝑟2, 𝑘1, 𝑘2 are positive constants. The 

model is said to be commensalism if 𝑇 is positive and is said to be amensalism if 𝑇 is negative. In [2, 3], the existence 

and stability (or instability) of all possible equilibria were studied. 

In recent years, many topics on commensalism and amensalism systems have been studied, such as existence 

of equilibria, local and global stabilities of equilibria [4-9], global dynamics and phase diagrams [10-12], existence of 

positive periodic solutions [13, 14], bifurcation analysis of commensalism and amensalism systems with delays [15-

19], dynamics of discrete amensalism and commensalism systems [20-22], dynamics of amensalism systems with 

fear effect [21-24], and with Allee effect [25-27], commensalism and amensalism systems with harvesting [28-32], 

seasonal commensalism system considering climate change [33], population density control for a commensal 

symbiosis model [34], commensalism system with distributed lags on time scales [35], 

In 2018, Chen et al. [5] proposed the following two-species commensal symbiosis model with density dependent 

birth rate  

 (

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑏11

𝑏12+𝑏13𝑥
− 𝑏14 − 𝑎11𝑥 + 𝑎12𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝑏21

𝑏22+𝑏23𝑦
− 𝑏24 − 𝑎22𝑦) ,

 (1.1) 

where 𝑥, 𝑦 are the densities of the two species, respectively; all the parameters are positive. By constructing some 

suitable Lyapunov functions, they showed that under some suitable assumptions, all of the four equilibria may be 

globally asymptotically stable. 

In fact, all of the above systems can be considered as extensions of the well-known logistic model, which was 

proposed in 1838 by Verhulst [36]:  

1

𝑁(𝑡)

𝑑𝑁(𝑡)

𝑑𝑡
= 𝑟 (1 −

𝑁(𝑡)

𝐾
), 

where 𝑟 is the intrinsic growth rate (birth rate minus death rate), 𝐾 is the carrying capacity. The term 
1

𝑁(𝑡)

𝑑𝑁(𝑡)

𝑑𝑡
 on the 

left side of the equation is per capita growth rate. 

The fundamental idea of the logistic model is that the density of species has negative influence on the per capita 

growth rate. However, in reality, such an influence usually does not take place instantly, but with a time lag. In order 

to reflect the existence of time lag, delay logistic model for ecological systems was proposed in the 1940s and 

studied from then on [37, 38]:  

 
𝑑𝑁(𝑡)

𝑁(𝑡)𝑑𝑡
= 𝑟(1 −

𝑁(𝑡−𝜏)

𝐾
). (1.2) 

 



Li and Wang  Journal of Advances in Applied & Computational Mathematics, 12, 2025 

 

58 

Equation (1.2) can be rewritten as:  

 
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑁(𝑡)(𝑎 − 𝑏𝑁(𝑡 − 𝜏)), (1.3) 

where 𝑎 = 𝑟, 𝑏 = 𝑟/𝐾, 𝑎 is the intrinsic growth rate (birth rate minus death rate), 𝑏 is called the density dependent 

coefficient.  

In our recent work [15] in 2021, we studied the existence and properties of Hopf bifurcations for the 

commensalism system with a discrete delay and Beddington-DeAngelis functional response  

(

 

𝑑𝑥

𝑑𝑡
= 𝑥(𝑎1 − 𝑏1𝑥(𝑡 − 𝜏)),

𝑑𝑦

𝑑𝑡
= 𝑦(𝑎2 − 𝑏2𝑦 +

𝑐𝑥

𝑚𝑥 + 𝑛𝑦 + 1
).

 

In our recent work [16] in 2022, we proposed and studied a two-species commensalism(amensalism) systems 

with distributed delays  

 

(

 

𝑑𝑥

𝑑𝑡
= 𝑥 (𝑎1 − 𝑏1 ∫

𝑡

−∞
𝐺1(𝑡 − 𝑠)𝑥(𝑠)𝑑𝑠) ,

𝑑𝑦

𝑑𝑡
= 𝑦 (𝑎2 − 𝑏2𝑦 +

𝑐(∫
𝑡
−∞ 𝐺2(𝑡−𝑠)𝑥(𝑠)𝑑𝑠)

𝑝

1+(∫
𝑡
−∞ 𝐺2(𝑡−𝑠)𝑥(𝑠)𝑑𝑠)

𝑝) ,
 (1.4) 

where 𝑡 ≥ 0, 𝑝 ≥ 1, 𝑐 ∈ 𝑅; 𝐺𝑖(𝑠): [0,∞) → [0,∞) (𝑖 = 1,2) are the delay kernels of a distributed delay and satisfy  

𝐺𝑖(𝑠) ≥ 0, ∀ 𝑠 ≥ 0    𝑎𝑛𝑑    ∫
∞

0

𝐺𝑖(𝑠)𝑑𝑠 = 1, 𝑓𝑜𝑟  𝑖 = 1,2. 

If 𝑐 > 0, then the first species has positive effect on the second species, system (1.4) is a commensalism system. 

If 𝑐 < 0, the first species has negative effect on the second species, system (1.4) is an amensalism system. The effect 

of the first species on the second one is described by the Holling type functional response. 

Motivated by the above works, we let the intrinsic growth rate be a function of population density 𝑁 in the delay 

logistic model (1.3) and divide it into two parts: 
𝑟

𝑎+𝑁
− 𝑑, where 

𝑟

𝑎+𝑁
 is the birth rate and 𝑑 > 0 is the death rate. We 

also consider a discrete time delay in order to reflect the fact that the dynamics at present may depend on the 

history of the system and propose the following model  

 (

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑟1

𝑎1+𝑥
− 𝑑1 − 𝑏1𝑥(𝑡 − 𝜏)) ,

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝑟2

𝑎2+𝑦
− 𝑑2 − 𝑏2𝑦 + 𝑐𝑥) ,

 (1.5) 

where, (i) 𝑡 ≥ 0, 𝑥(𝑡) and 𝑦(𝑡) are the densities of the two species at time 𝑡, respectively; (ii) parameters 

𝑟𝑖 ,  𝑎𝑖 ,  𝑏𝑖 ,  𝑑𝑖 (𝑖 = 1,2) and 𝑐 are all positive; (iii) 
𝑟1

𝑎1+𝑥
 and 

𝑟2

𝑎2+𝑦
 are birth rates of the first and the second species, 

respectively, the birth rates of the two species decrease as the densities of the two species increase; (iv) 𝑑1, 𝑑2 are 

the death rates of the first and the second species, respectively; (v) 𝑏1, 𝑏2 are the density dependent coefficients of 

the first and the second species, respectively. Parameter 𝑐 > 0 means that the first species has positive effect on the 

second species, then system (1.5) is a commensalism system. The commensalism model we propose considers both 

density dependent birth rate and time delay, it has great novelty and is of great practical and theoretical significance. 

The remainder of this paper is organized as follows. In Section 2, we study the distribution of roots of the 

characteristic equation, and study the existence of local Hopf bifurcation of system (1.5) based on the existence and 

stability results of equilibria obtained in [5]. In Section 3, we study the properties of Hopf bifurcation and derive the 

formulae determining the direction of Hopf bifurcation and stability of the bifurcating periodic solution. In Section 

4, numerical simulations are given to verify the theoretic analysis. The conclusion is made in Section 5. 
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2. Existence of Hopf Bifurcation 

In this section, we study the existence of local Hopf bifurcation of system (1.5) based on the existence and 

stability results of equilibria obtained in [5]. 

When 𝜏 = 0, delay system (1.5) reduces to the following ordinary differential system of the form (1.1):  

 (

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑟1

𝑎1+𝑥
− 𝑑1 − 𝑏1𝑥) ,

𝑑𝑦

𝑑𝑡
= 𝑦 (

𝑟2

𝑎2+𝑦
− 𝑑2 − 𝑏2𝑦 + 𝑐𝑥) .

 (2.1) 

The existence and stability of the equilibria of system (2.1) have been fully investigated in [5], we copy the results 

here (one can refer to Theorem 2.1 of [5]). 

Theorem 2.1.  

1. Assume that 𝑟1/𝑎1 > 𝑑1 and 𝑟2/𝑎2 > 𝑑2 − 𝑐𝑥
∗, then system (2.1) admits a unique positive equilibrium 𝐸4(𝑥

∗, 𝑦∗), 

which is globally asymptotically stable, where  

 
𝑥∗: =

√(𝑑1+𝑎1𝑏1)
2−4𝑏1(𝑎1𝑑1−𝑟1)−(𝑑1+𝑎1𝑏1)

2𝑏1
,

𝑦∗: =
√(𝑑2+𝑎2𝑏2−𝑐𝑥

∗)2−4𝑏2(𝑎2𝑑2−𝑟2−𝑐𝑎2𝑥
∗)−(𝑑2+𝑎2𝑏2−𝑐𝑥

∗)

2𝑏2
;
 (2.2) 

2. Assume that 𝑟1/𝑎1 > 𝑑1 and 𝑟2/𝑎2 < 𝑑2 − 𝑐𝑥
∗, then system (2.1) admits a nonnegative boundary equilibrium 

𝐸3(𝑥
∗, 0), which is globally asymptotically stable;  

3. Assume that 𝑟2/𝑎2 > 𝑑2 and 𝑟1/𝑎1 < 𝑑1, then system (2.1) admits a nonnegative boundary equilibrium 𝐸2(0, 𝑦̂), 

which is globally asymptotically stable, where  

𝑦̂: =
√(𝑑2 + 𝑎2𝑏2)

2 − 4𝑏2(𝑎2𝑑2 − 𝑟2) − (𝑑2 + 𝑎2𝑏2)

2𝑏2
; 

4. System (2.1) always admits a boundary equilibrium 𝐸1(0,0). Assume that 𝑟2/𝑎2 < 𝑑2 and 𝑟1/𝑎1 < 𝑑1, then 𝐸1(0,0) 

is globally asymptotically stable.  

In the rest of this paper, we always make the following assumption:  

(H1) 𝑟1/𝑎1 > 𝑑1 and 𝑟2/𝑎2 > 𝑑2 − 𝑐𝑥
∗, where 𝑥∗ is given in (2.2).  

We now study the dynamics around 𝐸4(𝑥
∗, 𝑦∗) under the case 𝜏 > 0. We move 𝐸4(𝑥

∗, 𝑦∗) of system (1.5) to the 

origin by letting 𝑥̄ = 𝑥 − 𝑥∗, 𝑦̄ = 𝑦 − 𝑦∗, and denoting 𝑥̄ and 𝑦̄ still by 𝑥 and 𝑦, respectively. Then system (1.5) is 

transformed into  

 (

𝑑𝑥

𝑑𝑡
= (

𝑟1𝑎1

(𝑎1+𝑥
∗)2
− 𝑑1 − 𝑏1𝑥

∗) 𝑥 − 𝑏1𝑥
∗𝑥(𝑡 − 𝜏) + 𝑓1(𝑥(𝑡), 𝑥(𝑡 − 𝜏)),

𝑑𝑦

𝑑𝑡
= 𝑐𝑦∗𝑥 + (

𝑟2𝑎2

(𝑎2+𝑦
∗)2
− 𝑑2 − 2𝑏2𝑦

∗ + 𝑐𝑥∗) 𝑦 + 𝑓2(𝑥(𝑡), 𝑦(𝑡)),
 (2.3) 

where 𝑓1 and 𝑓2 are high order terms,  

𝑓1 = (
𝑎1 + 𝑥

∗

𝑎1 + 𝑥
∗ + 𝑥

− 1)
𝑟1𝑥

𝑎1 + 𝑥
∗
+ (

𝑎1 + 𝑥
∗

𝑎1 + 𝑥
∗ + 𝑥

− 1 +
𝑥

𝑎1 + 𝑥
∗
)
𝑟1𝑥

∗

𝑎1 + 𝑥
∗
− 𝑏1𝑥𝑥(𝑡 − 𝜏),

𝑓2 = (
𝑎2 + 𝑦

∗

𝑎2 + 𝑦
∗ + 𝑦

− 1)
𝑟2𝑦

𝑎2 + 𝑦
∗
+ (

𝑎2 + 𝑦
∗

𝑎2 + 𝑦
∗ + 𝑦

− 1 +
𝑦

𝑎2 + 𝑦
∗
)
𝑟2𝑦

∗

𝑎2 + 𝑦
∗
− 𝑏2𝑦

2 + 𝑐𝑥𝑦.

 

The linearization of system (2.3) at (0,0) is given by  
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 (

𝑑𝑥

𝑑𝑡
= (

𝑟1𝑎1

(𝑎1+𝑥
∗)2
− 𝑑1 − 𝑏1𝑥

∗) 𝑥 − 𝑏1𝑥
∗𝑥(𝑡 − 𝜏),

𝑑𝑦

𝑑𝑡
= 𝑐𝑦∗𝑥 + (

𝑟2𝑎2

(𝑎2+𝑦
∗)2
− 𝑑2 − 2𝑏2𝑦

∗ + 𝑐𝑥∗) 𝑦.
 (2.4) 

From [39, 40] we know that the characteristic equation of system (2.4) at (0,0) is  

 |
𝜆 −

𝑟1𝑎1

(𝑎1+𝑥
∗)2
+ 𝑑1 + 𝑏1𝑥

∗ + 𝑏1𝑥
∗𝑒−𝜆𝜏 0

−𝑐𝑦∗ 𝜆 −
𝑟2𝑎2

(𝑎2+𝑦
∗)2
+ 𝑑2 + 2𝑏2𝑦

∗ − 𝑐𝑥∗
| = 0. (2.5) 

Suppose that 𝜆 = 𝑖𝜔 with 𝜔 > 0 is a root of (2.5), substituting 𝜆 = 𝑖𝜔 into (2.5), we can obtain  

(𝑖𝜔 −
𝑟1𝑎1

(𝑎1 + 𝑥
∗)2
+ 𝑑1 + 𝑏1𝑥

∗ + 𝑏1𝑥
∗𝑒−𝑖𝜔𝜏) (𝑖𝜔 −

𝑟2𝑎2
(𝑎2 + 𝑦

∗)2
+ 𝑑2 + 2𝑏2𝑦

∗ − 𝑐𝑥∗) = 0. 

Since (𝑖𝜔 −
𝑟2𝑎2

(𝑎2+𝑦
∗)2
+ 𝑑2 + 2𝑏2𝑦

∗ − 𝑐𝑥∗) ≠ 0, it can only be  

 𝑖𝜔 −
𝑟1𝑎1

(𝑎1+𝑥
∗)2
+ 𝑑1 + 𝑏1𝑥

∗ + 𝑏1𝑥
∗𝑒−𝑖𝜔𝜏 = 0. (2.6) 

Separating the real and imaginary parts, we obtain  

 (
−

𝑟1𝑎1

(𝑎1+𝑥
∗)2
+ 𝑑1 + 𝑏1𝑥

∗ + 𝑏1𝑥
∗ 𝑐𝑜𝑠 𝜔 𝜏 = 0,

𝜔 − 𝑏1𝑥
∗ 𝑠𝑖𝑛 𝜔 𝜏 = 0.

 (2.7) 

From the first equation of (2.7) we have 𝑐𝑜𝑠 𝜔 𝜏 = −
𝑑1+𝑏1𝑥

∗

𝑏1(𝑎1+𝑥
∗)
< 0. Then 𝜆 = 𝑖𝜔 is a root of (2.5) if and only if 

−
𝑑1+𝑏1𝑥

∗

𝑏1(𝑎1+𝑥
∗)
> −1, which is equivalent to  

(H2) 𝑑1 < 𝑎1𝑏1.  

If (H2) holds, the solution of (2.7) is given by  

 𝜔0: =
𝑥∗

𝑎1+𝑥
∗√(𝑎1𝑏1 + 𝑑1 + 2𝑏1𝑥

∗)(𝑎1𝑏1 − 𝑑1), (2.8) 

and the corresponding 𝜏 is given by  

 𝜏 = 𝜏𝑘: =
1

𝜔0
[𝑎𝑟𝑐𝑐𝑜𝑠 (−

𝑑1+𝑏1𝑥
∗

𝑏1(𝑎1+𝑥
∗)
) + 2𝑘𝜋] , 𝑘 = 0,1,2,⋯. (2.9) 

If (H2) is violated, then (2.5) has no purely imaginary root, by the conclusions in Sections 2.1 and 2.2 of [36] (see 

also [41]), we know that all the roots of (2.5) have negative real parts. 

Next, we suppose (H2) holds and verify the so-called transversality condition around 𝐸4 at 𝜏 = 𝜏𝑘, denote 𝐽1 =
𝑟1𝑎1

(𝑎1+𝑥
∗)2
− 𝑑1 − 𝑏1𝑥

∗. By differentiating two sides of (2.5) with respect to 𝜏, we can obtain  

(
𝑑𝜆

𝑑𝜏
)
−1

=
1 − 𝑏1𝑥

∗𝜏𝑒−𝜆𝜏

𝑏1𝑥
∗𝜆𝑒−𝜆𝜏

=
1

𝜆(𝐽1 − 𝜆)
−
𝜏

𝜆
. 

When 𝜏 = 𝜏𝑘 (i.e. 𝜆 = ±𝑖𝜔0), we have  

 𝑅𝑒 ((
𝑑𝜆

𝑑𝜏
)
−1

) = 𝑅𝑒 (
1

𝜆(𝐽1−𝜆)
) = 𝑅𝑒 (

𝐽1𝜆+𝜆
2

𝜆2(𝐽1
2−𝜆2)

) =
1

𝐽1
2+𝜔0

2 > 0. (2.10) 

This indicates that the transversality condition holds. 
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Then, by the Hopf bifurcation theorem for delay differential equations (see for example, Theorem 3.1.1 and 

Corollary 3.1.1 of [36]), Lemma 2.2 of [42] and summarizing the aforementioned arguments, we have the following 

results on the stability of 𝐸4 of system (1.5). 

Theorem 2.2. 

If (H2) is violated, then the positive equilibrium 𝐸4 = (𝑥
∗, 𝑦∗) of system (1.5) is asymptotically stable for all 𝜏 > 0. 

If (H2) holds, let 𝜏𝑘 be defined in (2.9), then the following conclusions hold true: 

(i) The positive equilibrium 𝐸4 = (𝑥
∗, 𝑦∗) of system (1.5) is asymptotically stable if 𝜏 ∈ [0, 𝜏0), while it is unstable if 

𝜏 > 𝜏0; 

(ii) System (1.5) undergoes a Hopf bifurcation at the positive equilibrium 𝐸4 = (𝑥
∗, 𝑦∗) when 𝜏 = 𝜏𝑘 (𝑘 = 0,1,2,⋯ ).  

3. Direction of Hopf Bifurcation and Stability of Bifurcating Periodic Solutions 

In this section, we shall study the direction of Hopf bifurcation and the stability of bifurcating periodic solutions 

by applying the normal form method and center manifold theorem for the general functional differential equations 

developed in [43]. We divide this section into 3 parts.  

3.1. Transformation of the Original Equation (1.5) 

Let 𝜏 = 𝜏𝑘 + 𝜇, where 𝜇 ∈ 𝑅. Recall that system (2.3) can be transformed from system (1.5) by letting 𝑥̄(𝑡) = 𝑥(𝑡) −

𝑥∗, 𝑦̄(𝑡) = 𝑦(𝑡) − 𝑦∗ and dropping the bars. In system (2.3), let 𝑢1(𝑡) = 𝑥(𝜏𝑡), 𝑢2(𝑡) = 𝑦(𝜏𝑡). Then, system (2.3) can be 

rewritten as a system of functional differential equations in 𝐶([−1,0], 𝑅2) of the form  

 (

𝑑𝑢1(𝑡)

𝑑𝑡
= (𝜏𝑘 + 𝜇) [(

𝑟1𝑎1

(𝑎1+𝑥
∗)2
− 𝑑1 − 𝑏1𝑥

∗) 𝑢1(𝑡) − 𝑏1𝑥
∗𝑢1(𝑡 − 1) + 𝑓1(𝑢1(𝑡), 𝑢1(𝑡 − 1))] ,

𝑑𝑢2(𝑡)

𝑑𝑡
= (𝜏𝑘 + 𝜇) [𝑐𝑦

∗𝑢1(𝑡) + (
𝑟2𝑎2

(𝑎2+𝑦
∗)2
− 𝑑2 − 2𝑏2𝑦

∗ + 𝑐𝑥∗) 𝑢2(𝑡) + 𝑓2(𝑢1(𝑡), 𝑢2(𝑡))] .
 (3.1) 

For convenience, we denote  

 𝐽1: =
𝑟1𝑎1

(𝑎1+𝑥
∗)2
− 𝑑1 − 𝑏1𝑥

∗,    𝐽2: =
𝑟2𝑎2

(𝑎2+𝑦
∗)2
− 𝑑2 − 2𝑏2𝑦

∗ + 𝑐𝑥∗. 

For 𝜑:= (𝜑1, 𝜑2)
𝑇 ∈ 𝐶([−1,0], R2), define  

 

𝐹(𝜇,𝜑): = (𝜏𝑘 + 𝜇) (
𝑓1(𝜑1(0), 𝜑1(−1))

𝑓2(𝜑1(0), 𝜑2(0))
) ,

𝐿𝜇(𝜑): = (𝜏𝑘 + 𝜇) (
𝐽1 0
𝑐𝑦∗ 𝐽2

) (
𝜑1(0)

𝜑2(0)
) + (𝜏𝑘 + 𝜇) (

−𝑏1𝑥
∗ 0

0 0
) (
𝜑1(−1)

𝜑2(−1)
) ,

 (3.2) 

then, system (3.1) can be further rewritten as  

 
𝑑𝑢

𝑑𝑡
= 𝐿𝜇(𝑢𝑡) + 𝐹(𝜇, 𝑢𝑡), (3.3) 

where, for 𝜃 ∈ [−1,0],  

 𝑢(𝑡): = (
𝑢1(𝑡)
𝑢2(𝑡)

),    𝑢𝑡(𝜃): = 𝑢(𝑡 + 𝜃) = (
𝑢1(𝑡 + 𝜃)
𝑢2(𝑡 + 𝜃)

). 

3.2. Center Manifold Equation and Its Poincaré Normal Form 

By the Riesz representation theorem, there exists a 2 × 2 matrix function 𝜂(𝜃, 𝜇) (𝜃 ∈ [−1,0]) whose elements are 

of bounded variation such that  
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 𝐿𝜇(𝜑) = ∫
0

−1
𝑑𝜂(𝜃, 𝜇)𝜑(𝜃),  𝜑 ∈ 𝐶([−1,0], R2). (3.4) 

In fact, we can choose  

 𝜂(𝜃, 𝜇) = (𝜏𝑘 + 𝜇) (
𝐽1 0
𝑐𝑦∗ 𝐽2

) 𝛿(𝜃) − (𝜏𝑘 + 𝜇) (
−𝑏1𝑥

∗ 0
0 0

) 𝛿(𝜃 + 1), 

where 𝛿(𝜃) is the Dirac function. Then (3.4) is satisfied. 

If 𝜑 is any given function in 𝐶([−1,0], 𝑅2) and 𝑢(𝜑) is the unique solution of the linearized equation 
𝑑𝑢

𝑑𝑡
= 𝐿𝜇(𝑢𝑡) of 

equation (3.3) with the initial function 𝜑 at zero, from Section 7.1 of [39] we know that the solution operator 

𝑇(𝑡): 𝐶([−1,0], 𝑅2) → 𝐶([−1,0], 𝑅2) with 𝑡 ≥ 0 is a strongly continuous semigroup of linear transformation on [0,∞) 

and the infinitesimal generator 𝐴(𝜇) is given by  

 𝐴(𝜇)𝜑(𝜃): = (

𝑑𝜑(𝜃)

𝑑𝜃
, 𝜃 ∈ [−1,0),

∫
0

−1
𝑑𝜂(𝑠, 𝜇)𝜑(𝑠), 𝜃 = 0.

 (3.5) 

For 𝜑 ∈ 𝐶([−1,0], R2), define  

 𝑅(𝜇)𝜑(𝜃): = (
0, 𝜃 ∈ [−1,0),

𝐹(𝜇, 𝜑), 𝜃 = 0.
 

Then, system (3.3) can be transformed into an operator differential equation of the form  

 
𝑑𝑢𝑡

𝑑𝑡
= 𝐴(𝜇)𝑢𝑡 + 𝑅(𝜇)𝑢𝑡 . (3.6) 

Let 𝑅2∗ be the 2-dimensional vector space of row vectors. For 𝜓 ∈ 𝐶([0,1], 𝑅2∗), define  

 𝐴∗𝜓(𝑠): = (
−
𝑑𝜓(𝑠)

𝑑𝑠
, 𝑠 ∈ (0,1],

∫
0

−1
𝜓(−𝑡)𝑑𝜂(𝑡, 0), 𝑠 = 0,

 

and a bilinear inner product  

 ⟨𝜓(𝑠), 𝜑(𝜃)⟩: = 𝜓(0)𝜑(0) − ∫
0

−1
∫
𝜃

𝜉=0
𝜓(𝜉 − 𝜃)𝑑𝜂(𝜃)𝜑(𝜉)𝑑𝜉, 

where 𝜂(𝜃) = 𝜂(𝜃, 0), then 𝐴(0) and 𝐴∗ are adjoint operators, 𝑖𝜔0𝜏𝑘 are eigenvalues of 𝐴(0), thus, they are also 

eigenvalues of 𝐴∗. 

Suppose that 𝑞 is the eigenvector of 𝐴(0) corresponding to the eigenvalue 𝑖𝜔0𝜏𝑘, 𝑞∗ is the eigenvector of 𝐴∗ 

corresponding to the eigenvalue −𝑖𝜔0𝜏𝑘. By direct computing, we can choose  

 𝑞(𝜃) = (1, 𝛼)𝑇𝑒𝑖𝜔0𝜏𝑘𝜃 ,    𝑞∗(𝑠) = 𝐷(1, 𝛼∗)𝑒𝑖𝜔0𝜏𝑘𝑠 (3.7) 

such that ⟨𝑞∗, 𝑞⟩ = 1, ⟨𝑞∗, 𝑞̄⟩ = 0, where  

 𝛼 =
𝑐𝑦∗

𝑖𝜔0−𝐽2
,    𝛼∗ = −

𝑖𝜔0+𝐽1−𝑏1𝑥
∗𝑒𝑖𝜔0𝜏𝑘

𝑐𝑦∗
,    𝐷 = (1 + 𝛼̄𝛼∗ − 𝑏1𝑥

∗𝜏𝑘𝑒
𝑖𝜔0𝜏𝑘)−1. 

From (2.6) we know that −𝑖𝜔0 − 𝐽1 + 𝑏1𝑥
∗𝑒𝑖𝜔0𝜏𝑘 = 0, hence 𝛼∗ = 0, 𝐷 can be simplified as 𝐷 = (1 − 𝑏1𝑥

∗𝜏𝑘𝑒
𝑖𝜔0𝜏𝑘)−1. 

In what follows, we shall use the method in [43] and [44] to compute the coordinates describing the center 

manifold 𝐶0 at 𝜇 = 0. Denote the solution of equation (3.3) when 𝜇 = 0 by 𝑢𝑡, 𝑢𝑡(𝜃): = 𝑢(𝑡 + 𝜃) = (𝑢1(𝑡 + 𝜃), 𝑢2(𝑡 +

𝜃))𝑇  and define  

 𝑧(𝑡) = ⟨𝑞∗, 𝑢𝑡⟩,   𝑊(𝑡, 𝜃) = 𝑢𝑡(𝜃) − 𝑧(𝑡)𝑞(𝜃) − 𝑧̄(𝑡)𝑞̄(𝜃) = 𝑢𝑡(𝜃) − 2𝑅𝑒(𝑧(𝑡)𝑞(𝜃)). (3.8) 
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On the center manifold 𝐶0, we have 𝑊(𝑡, 𝜃) = 𝑊(𝑧(𝑡), 𝑧̄(𝑡), 𝜃), where  

 𝑊(𝑧(𝑡), 𝑧̄(𝑡), 𝜃) = 𝑊20(𝜃)
𝑧2

2
+𝑊11(𝜃)𝑧𝑧̄ + 𝑊02(𝜃)

𝑧̄2

2
+𝑊30(𝜃)

𝑧3

6
+⋯. (3.9) 

In fact, 𝑧(𝑡) and 𝑧̄(𝑡) are local coordinates of center manifold 𝐶0 in the direction of 𝑞∗ and 𝑞̄∗. Recall that 𝐴(𝜇) with 

𝜇 = 0 and 𝐴∗ are adjoint operators, that is ⟨𝜓, 𝐴(0)𝜑⟩ = ⟨𝐴∗𝜓,𝜑⟩ for (𝜓, 𝜑) ∈ 𝐷(𝐴∗) × 𝐷(𝐴(0)), hence we have  

 

𝑑𝑧

𝑑𝑡
= ⟨𝑞∗,

𝑑𝑢

𝑑𝑡
⟩ = ⟨𝑞∗, 𝐴(0)𝑢𝑡 + 𝑅(0)𝑢𝑡⟩ = ⟨𝐴

∗𝑞∗, 𝑢𝑡⟩ + ⟨𝑞
∗, 𝑅(0)𝑢𝑡⟩

= ⟨−𝑖𝜔0𝜏𝑘𝑞
∗, 𝑢𝑡⟩ + 𝑞̄

∗(0)𝐹(0,𝑊(𝑧, 𝑧̄, 0) + 2𝑅𝑒(𝑧𝑞(0)))

= 𝑖𝜔0𝜏𝑘𝑧 + 𝑞̄
∗(0)𝐹(0,𝑊(𝑧, 𝑧̄, 0) + 2𝑅𝑒(𝑧𝑞(0)))

=
def
𝑖𝜔0𝜏𝑘𝑧 + 𝑞̄

∗(0)𝐹0(𝑧, 𝑧̄),

 

which can be rewritten in the following form:  

 
𝑑𝑧

𝑑𝑡
= 𝑖𝜔0𝜏𝑘𝑧(𝑡) + 𝑔(𝑧, 𝑧̄), (3.10) 

with  

 𝑔(𝑧, 𝑧̄): = 𝑞̄∗(0)𝐹0(𝑧, 𝑧̄) = 𝑔20
𝑧2

2
+ 𝑔11𝑧𝑧̄ + 𝑔02

𝑧̄2

2
+ 𝑔21

𝑧2𝑧̄

2
+⋯. (3.11) 

By the results in Section 6.2 of [45] and letting  

 𝑧 = 𝜉 + (
𝑔20

𝑖𝜔0𝜏𝑘
)
𝜉2

2
− (

𝑔11

𝑖𝜔0𝜏𝑘
)𝜉𝜉 − (

𝑔02

3𝑖𝜔0𝜏𝑘
)
𝜉̄2

2
+⋯, 

system (3.10) can be transformed into the Poincaré normal form  

 
𝑑𝜉

𝑑𝑡
= 𝑖𝜔0𝜏𝑘𝜉 + 𝑐1(0)𝜉|𝜉|

2 + 𝑂(|𝜉|5), 

where  

 𝑐1(0) =
𝑖

2𝜔0𝜏𝑘
(𝑔20𝑔11 − 2|𝑔11|

2 −
|𝑔02|

2

3
) +

𝑔21

2
. (3.12) 

In the next subsection, we shall compute the coefficients 𝑔20,  𝑔11,  𝑔02, and 𝑔21. 

3.3. Computation of the Coefficients 𝒈𝟐𝟎,  𝒈𝟏𝟏,  𝒈𝟎𝟐,  𝒈𝟐𝟏 in the Poincaré Normal Form 

By (3.8), we have  

 𝑢𝑡(𝜃) = (𝑢1𝑡(𝜃), 𝑢2𝑡(𝜃))
𝑇 = 𝑊(𝑡, 𝜃) + 𝑧𝑞(𝜃) + 𝑧̄𝑞̄(𝜃), 

this together with (3.7), (3.8) and (3.9) gives  

 
𝑢1𝑡(0) = 𝑧 + 𝑧̄ +𝑊20

(1)
(0)

𝑧2

2
+𝑊11

(1)
(0)𝑧𝑧̄ + 𝑊02

(1)
(0)

𝑧̄2

2
+ 𝑂(|(𝑧, 𝑧̄)|3),

𝑢1𝑡(−1) = 𝑒
−𝑖𝜔0𝜏𝑘𝑧 + 𝑒𝑖𝜔0𝜏𝑘𝑧̄ + 𝑊20

(1)
(−1)

𝑧2

2
+𝑊11

(1)
(−1)𝑧𝑧̄ + 𝑊02

(1)
(−1)

𝑧̄2

2
+ 𝑂(|(𝑧, 𝑧̄)|3).

 

By (3.2), we have  

 𝑔(𝑧, 𝑧̄) = 𝑞̄∗(0)𝐹0(𝑧, 𝑧̄) = 𝐷̄(1,0)𝜏𝑘 (
𝑓1(𝑢1𝑡(0), 𝑢1𝑡(−1))

𝑓2(𝑢1𝑡(0), 𝑢2𝑡(0))
) = 𝐷̄𝜏𝑘𝑓1(𝑢1𝑡(0), 𝑢1𝑡(−1)). 

Writing the nonlinear terms 𝑓1 and 𝑓2 in terms of 𝑧 and 𝑧̄, we have  
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𝑓1(𝑢1𝑡(0), 𝑢1𝑡(−1)) = 𝑀20

(1)
𝑧2 +𝑀11

(1)
𝑧𝑧̄ + 𝑀02

(1)
𝑧̄2 +𝑀30

(1)
𝑧3 +𝑀21

(1)
𝑧2𝑧̄ + 𝑀12

(1)
𝑧𝑧̄2 +𝑀03

(1)
𝑧̄3 + 𝑂(|(𝑧, 𝑧̄)|4),

𝑓2(𝑢1𝑡(0), 𝑢2𝑡(0)) = 𝑀20
(2)
𝑧2 +𝑀11

(2)
𝑧𝑧̄ + 𝑀02

(2)
𝑧̄2 + 𝑂(|(𝑧, 𝑧̄)|3).

 

Where  

𝑀20
(1) ≔ −

𝑎1𝑟1
(𝑎1 + 𝑥

∗)3
− 𝑏1𝑒

−𝑖𝜔0𝜏𝑘  

𝑀11
(1) ≔ −

2𝑎1𝑟1
(𝑎1 + 𝑥

∗)3
− 𝑏1(𝑒

−𝑖𝜔0𝜏𝑘 + 𝑒𝑖𝜔0𝜏𝑘) 

𝑀02
(1) ≔ −

𝑎1𝑟1
(𝑎1 + 𝑥

∗)3
− 𝑏1𝑒

𝑖𝜔0𝜏𝑘  

𝑀21
(1) ≔ −

𝑎1𝑟1
(𝑎1 + 𝑥

∗)3
(𝑊20

(1)(0) + 2𝑊11
(1)(0)) +

3𝑎1𝑟1
(𝑎1 + 𝑥

∗)4
 

 −𝑏1 (𝑊11
(1)(−1) +

𝑊20
(1)(−1)

2
+ 𝑒𝑖𝜔0𝜏𝑘

𝑊20
(1)(0)

2
+ 𝑒−𝑖𝜔0𝜏𝑘𝑊11

(1)(0)) 

Comparing the coefficients with (3.11), we have  

𝑔20 = 2𝐷̄𝜏𝑘𝑀20
(1)
,    𝑔11 = 𝐷̄𝜏𝑘𝑀11

(1)
,    𝑔02 = 2𝐷̄𝜏𝑘𝑀02

(1)
,    𝑔21 = 2𝐷̄𝜏𝑘𝑀21

(1)
. 

Thus, 𝑔20, 𝑔11 and 𝑔02 in (3.12) are all expressed by the coefficients of system (1.5). 

Next, we shall determine the expression of 𝑔21, in order to do that, we need to compute 𝑊20
(1)
(𝜃) and 𝑊11

(1)
(𝜃). 

From (3.6), (3.8) and (3.10), we have  

 
𝑑𝑊

𝑑𝑡
= (

𝐴(0)𝑊 − 2𝑅𝑒[𝑔(𝑧, 𝑧̄)𝑞(𝜃)], 𝜃 ∈ [−1,0),

𝐴(0)𝑊 − 2𝑅𝑒[𝑔(𝑧, 𝑧̄)𝑞(0)] + 𝐹0, 𝜃 = 0.
 (3.13) 

On the other hand, on the center manifold 𝐶0 close enough to the origin, we have  

 

𝑑𝑊

𝑑𝑡
= 𝑊𝑧

𝑑𝑧

𝑑𝑡
+𝑊𝑧̄

𝑑𝑧̄

𝑑𝑡
= (𝑊20(𝜃)𝑧 +𝑊11(𝜃)𝑧̄)

𝑑𝑧

𝑑𝑡
+ (𝑊11(𝜃)𝑧 +𝑊02(𝜃)𝑧̄)

𝑑𝑧̄

𝑑𝑡

= (𝑊20(𝜃)𝑧 +𝑊11(𝜃)𝑧̄)(𝑖𝜔0𝜏𝑘𝑧 + 𝑔(𝑧, 𝑧̄)) + (𝑊11(𝜃)𝑧 +𝑊02(𝜃)𝑧̄)(−𝑖𝜔0𝜏𝑘𝑧̄ + 𝑔̄(𝑧, 𝑧̄)).
 

Substituting the above equation and equation (3.9) into equation (3.13), comparing the coefficients of 𝑧2 and 𝑧𝑧̄, 

we get  

 𝐴(0)𝑊20(𝜃) = (
2𝑖𝜔0𝜏𝑘𝑊20(𝜃) + 𝑔20𝑞(𝜃) + 𝑔̄02𝑞̄(𝜃), 𝜃 ∈ [−1,0),

2𝑖𝜔0𝜏𝑘𝑊20(𝜃) + 𝑔20𝑞(𝜃) + 𝑔̄02𝑞̄(𝜃) − 2𝜏𝑘(𝑀20
(1)
, 𝑀20

(2)
)
𝑇
, 𝜃 = 0,

 (3.14) 

and  

 𝐴(0)𝑊11(𝜃) = (
𝑔11𝑞(𝜃) + 𝑔̄11𝑞̄(𝜃), 𝜃 ∈ [−1,0),

𝑔11𝑞(𝜃) + 𝑔̄11𝑞̄(𝜃) − 𝜏𝑘(𝑀11
(1)
, 𝑀11

(2)
)
𝑇
, 𝜃 = 0.

 (3.15) 

By (3.5), we know that when 𝜃 ∈ [−1,0), (3.14) and (3.15) are ordinary differential equations of 𝑊20(𝜃) and 𝑊11(𝜃), 

with 𝑊20(𝜃) = (𝑊20
(1)
(𝜃),𝑊20

(2)
(𝜃))

𝑇
, 𝑊11(𝜃) = (𝑊11

(1)
(𝜃),𝑊11

(2)
(𝜃))

𝑇
, whose solutions are given by  

 
𝑊20(𝜃) =

𝑖𝑔20𝑒
𝑖𝜔0𝜏𝑘𝜃

𝜔0𝜏𝑘
𝑞(0) +

𝑖𝑔̄02𝑒
−𝑖𝜔0𝜏𝑘𝜃

3𝜔0𝜏𝑘
𝑞̄(0) + 𝐸1𝑒

2𝑖𝜔0𝜏𝑘𝜃 ,

𝑊11(𝜃) = −
𝑖𝑔11𝑒

𝑖𝜔0𝜏𝑘𝜃

𝜔0𝜏𝑘
𝑞(0) +

𝑖𝑔̄11𝑒
−𝑖𝜔0𝜏𝑘𝜃

𝜔0𝜏𝑘
𝑞̄(0) + 𝐸2,

 (3.16) 

where, 𝐸1 = (𝐸1
(1)
, 𝐸1
(2)
)
𝑇
∈ R2, 𝐸2 = (𝐸2

(1)
, 𝐸2
(2)
)
𝑇
∈ R2 are two constant vectors to be determined. In what follows, we 

shall compute 𝐸1 and 𝐸2. 
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Consider the case when 𝜃 = 0. By (3.5), (3.14) and (3.15), we have  

 
∫
0

−1
𝑑𝜂(𝜃)𝑊20(𝜃) = 2𝑖𝜔0𝜏𝑘𝑊20(0) + 𝑔20𝑞(0) + 𝑔̄02𝑞̄(0) − 2𝜏𝑘(𝑀20

(1)
, 𝑀20

(2)
)
𝑇
,

∫
0

−1
𝑑𝜂(𝜃)𝑊11(𝜃) = 𝑔11𝑞(0) + 𝑔̄11𝑞̄(0) − 𝜏𝑘(𝑀11

(1)
, 𝑀11

(2)
)
𝑇
.

 (3.17) 

Substituting (3.16) into (3.17), and noticing that  

 (𝑖𝜔0𝜏𝑘𝐼 − ∫
0

−1
𝑒𝑖𝜔0𝜏𝑘𝜃𝑑𝜂(𝜃)) 𝑞(0) = 0,    (−𝑖𝜔0𝜏𝑘𝐼 − ∫

0

−1
𝑒−𝑖𝜔0𝜏𝑘𝜃𝑑𝜂(𝜃)) 𝑞̄(0) = 0, 

we have  

 (2𝑖𝜔0𝜏𝑘𝐼 − ∫
0

−1
𝑒2𝑖𝜔0𝜏𝑘𝜃𝑑𝜂(𝜃)) 𝐸1 = 2𝜏𝑘(𝑀20

(1)
, 𝑀20

(2)
)
𝑇
,    𝑎𝑛𝑑    ∫

0

−1
𝑑𝜂(𝜃)𝐸2 = −𝜏𝑘(𝑀11

(1)
, 𝑀11

(2)
)
𝑇
, 

which lead to  

 

𝐸1 =
2

|𝐵|
(
2𝑖𝜔0 − 𝐽2 0

𝑐𝑦∗ 2𝑖𝜔0 − 𝐽1 + 𝑏1𝑥
∗𝑒−2𝑖𝜔0𝜏𝑘

) (
𝑀20
(1)

𝑀20
(2)
) ,

𝐸2 = −
1

𝐽2(𝐽1−𝑏1𝑥
∗)
(
𝐽2 0
−𝑐𝑦∗ 𝐽1 − 𝑏1𝑥

∗) (
𝑀11
(1)

𝑀11
(2)
) ,

 (3.18) 

where  

 |𝐵| = (2𝑖𝜔0 − 𝐽2)(2𝑖𝜔0 − 𝐽1 + 𝑏1𝑥
∗𝑒−2𝑖𝜔0𝜏𝑘). 

Substituting (3.18) into (3.16), we have  

 

𝑊11
(1)
(−1) = −

𝑖𝑔11𝑒
−𝑖𝜔0𝜏𝑘

𝜔0𝜏𝑘
+
𝑖𝑔̄11𝑒

𝑖𝜔0𝜏𝑘

𝜔0𝜏𝑘
−

𝑀11
(1)

𝐽1−𝑏1𝑥
∗ ,    𝑊11

(1)
(0) = −

𝑖𝑔11

𝜔0𝜏𝑘
+

𝑖𝑔̄11

𝜔0𝜏𝑘
−

𝑀11
(1)

𝐽1−𝑏1𝑥
∗ ,

𝑊20
(1)
(−1) =

𝑖𝑔20𝑒
−𝑖𝜔0𝜏𝑘

𝜔0𝜏𝑘
+
𝑖𝑔̄02𝑒

𝑖𝜔0𝜏𝑘

3𝜔0𝜏𝑘
+

2𝑀20
(1)
𝑒−2𝑖𝜔0𝜏𝑘

2𝑖𝜔0−𝐽1+𝑏1𝑥
∗𝑒−2𝑖𝜔0𝜏𝑘

,

𝑊20
(1)
(0) =

𝑖𝑔20

𝜔0𝜏𝑘
+

𝑖𝑔̄02

3𝜔0𝜏𝑘
+

2𝑀20
(1)

2𝑖𝜔0−𝐽1+𝑏1𝑥
∗𝑒−2𝑖𝜔0𝜏𝑘

.

 

Therefore, 𝑐1(0) =
𝑖

2𝜔0𝜏𝑘
(𝑔20𝑔11 − 2|𝑔11|

2 −
|𝑔02|

2

3
) +

𝑔21

2
 can be expressed in terms of the parameters of system 

(1.5). 

By Theorem 2.2 in Section 6.2 of [45] and (2.10), it follows that if 𝑅𝑒(𝑐1(0)) < 0, the Hopf bifurcation of system 

(1.5) is forward, while if 𝑅𝑒(𝑐1(0)) > 0, the Hopf bifurcation is backward. On the other hand, for 𝑘 ≥ 1, at 𝜏 = 𝜏𝑘, all 

the Hopf bifurcating periodic solutions are unstable. However, at 𝜏 = 𝜏0, the bifurcating periodic solution is stable if 

𝑅𝑒(𝑐1(0)) < 0, while unstable if 𝑅𝑒(𝑐1(0)) > 0. 

We are now in the position to state the following results. 

Theorem 3.1. 

Let 𝜏𝑘 and 𝑐1(0) be defined in (2.9) and (3.12) respectively. Then, the following conclusions on the Hopf 

bifurcations of system (1.5) hold true: 

(i) If 𝑅𝑒(𝑐1(0)) < 0 (𝑟𝑒𝑠𝑝. , 𝑅𝑒(𝑐1(0)) > 0) holds, the Hopf bifurcation is forward (resp., backward); 

(ii) The Hopf bifurcations at 𝜏 = 𝜏𝑘, with 𝑘 ≥ 1, are always subcritical; 

(iii) If 𝑅𝑒(𝑐1(0)) < 0 (𝑟𝑒𝑠𝑝. , 𝑅𝑒(𝑐1(0)) > 0) holds, the Hopf bifurcation at 𝜏 = 𝜏0 is supercritical (resp., subcritical). 

Remark 3.1. The Hopf bifurcation with respect to parameter 𝜏 at 𝜏 = 𝜏𝑘 is said to be backward (resp., forward) if 

there is a small amplitude periodic orbit for each 𝜏 ∈ (𝜏𝑘 − 𝜀, 𝜏𝑘) (resp., 𝜏 ∈ (𝜏𝑘 , 𝜏𝑘 + 𝜀)) where 𝜀 > 0 is a small constant, 

and is said to be supercritical (resp., subcritical) if the bifurcating periodic solutions are orbitally asymptotically 

stable (resp., unstable) [46].  
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Remark 3.2. From subsection 3.3, we see that 𝑐1(0) in (3.12) can be expressed in terms of the parameters of 

system (1.5). However, the sign of 𝑐1(0) is unclear since 𝜔0𝜏 in (2.9) is not a special value.  

4. Numerical Simulations 

In this section, we consider one special case of system (1.5) and give some numerical results to support our 

analytical conclusions obtained in previous sections. 

Consider system (1.5) with 𝑟1 = 6, 𝑎1 = 10, 𝑏1 = 0.1, 𝑑1 = 0.2, 𝑟2 = 2, 𝑎2 = 3, 𝑏2 = 0.1, 𝑑2 = 0.5,  𝑐 = 0.1, that is,  

 (

𝑑𝑥

𝑑𝑡
= 𝑥 (

6

10+𝑥
− 0.2 − 0.1𝑥(𝑡 − 𝜏)) ,

𝑑𝑦

𝑑𝑡
= 𝑦 (

2

3+𝑦
− 0.5 − 0.1𝑦 + 0.1𝑥) .

 (4.1) 

The values of parameters are chosen hypothetically and have no particular biological background. System (4.1) 

has a positive equilibrium 𝐸4 ≈ (2.718,1.845) by (2.2). By (2.8) and (2.9), we have 𝜔0 ≈ 0.252, 𝜏0 ≈ 7.730. According to 

Theorem 2.2, the positive equilibrium 𝐸4 is asymptotically stable when 𝜏 ∈ [0, 𝜏0) and unstable when 𝜏 > 𝜏0. We take 

the initial condition to be (𝑥(𝑡), 𝑦(𝑡)) = (6,4) for 𝑡 ∈ [−𝜏, 0]. 

Based on some methods and algorithms of numerical bifurcation analysis [47], we plot the following Figs. 1 and 

2 using the DDE-Biftool, which is a MATLAB package for numerical bifurcation analysis of delay differential equations 

[48-50]. 

 

Figure 1: Stability change of the positive equilibrium. 

Figure 1 contains two bifurcation diagrams, they show the change of stability of the positive equilibrium 𝐸4 ≈

(2.718,1.845) at the critical value 𝜏0 ≈ 7.730 (which is marked as black asterisk in the diagrams). When 𝜏 < 𝜏0, 𝐸4 is 

stable (corresponds to the green part of the branch), when 𝜏 > 𝜏0, 𝐸4 is unstable (corresponds to the red part of the 

branch).  

 
Figure 2: Bifurcating of periodic solution. 
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Figure 2 shows the bifurcating of a stable periodic solution (corresponds to the green curve over the straight line) 

when 𝐸4 loses its stability. Here we only show the birfurcation diagram in the 𝜏 − 𝑦 plane and omit the diagram in 

the 𝜏 − 𝑥 plane.  

 

Figure 3: The trajectory graph on 𝑡 − 𝑥 plane of system (4.1) with 𝜏 = 7. 

The numerical simulations of system (4.1) for 𝜏 = 7 and 𝜏 = 8 are shown in Figs. 3–8, respectively.  

 

Figure 4: The trajectory graph on 𝑡 − 𝑦 plane of system (4.1) with 𝜏 = 7. 

 

Figure 5: The phase graph of system (4.1) with 𝜏 = 7. 
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Figure 6: The trajectory graph on 𝑡 − 𝑥 plane of system (4.1) with 𝜏 = 8. 

 

Figure 7: The trajectory graph on 𝑡 − 𝑦 plane of system (4.1) with 𝜏 = 8. 

 

Figure 8: The phase graph of system (4.1) with 𝜏 = 8. 

It is clear that when 𝜏 ∈ [0, 𝜏0), there is no periodic solution and 𝐸4 is asymptotically stable; when 𝜏 increases to 

the critical value 𝜏0, 𝐸4 loses its stability and Hopf bifurcation occurs. The Hopf bifurcation of system (4.1) is forward 

and supercritical. 

5. Conclusions 

In this paper, we have studied a 2-species commensalism system with a discrete delay and density dependent 

birth rates. Based on the results of existence and stability of equilibria obtained in [5], we have investigated the 
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distribution of roots of the characteristic equation and obtained that, when the delay 𝜏 is sufficiently small, the 

positive equilibrium is locally asymptotically stable, and when 𝜏 increases to a critical value, the positive equilibrium 

loses its stability and a Hopf bifurcation occurs, as 𝜏 continues to increase, a family of periodic solutions bifurcate 

from the positive equilibrium. Then, by using the normal form theory and the center manifold reduction introduced 

by Hassard et al. [43], we have derived the formulae 𝑐1(0) in (3.12) determining the direction of the Hopf bifurcation 

and stability of the bifurcating periodic solutions at critical values of 𝜏. Finally, numerical simulations have been 

given to illustrate the results of theoretical analysis. 

Conflict of Interest 

The authors declare no potential conflict of interests. 

Funding 

This research was supported by the National Natural Science Foundation of China (Nos. 12471176 and 12071491) 

and Guangdong Basic and Applied Basic Research Foundation (No. 2025A1515012221). 

Acknowledgments 

The authors would like to thank the editors and the referees for their very helpful comments and suggestions 

that led to an improvement in our original manuscript.  

Authors’ Contributions 

Tianyang Li: Writing-original draft. Qiru Wang: Writing-review and editing. 

References  

[1] Guan X, Chen F. Dynamical analysis of a two species amensalism model with Beddington-DeAngelis functional response and Allee effect 

on the second species. Nonlinear Anal Real World Appl. 2019; 48: 71-93. https://doi.org/10.1016/j.nonrwa.2019.01.002 

[2] Sun G. Qualitative analysis on two populations amensalism model. J Jiamusi Univ. (Natl Sci Ed) 2003; 21(3): 283-6. 

[3] Sun G, Wei W. The qualitative analysis of commensal symbiosis model of two populations. Math Theory Appl. 2003; 23(3): 65-68. 

[4] Chen B. Dynamic behaviors of a non-selective harvesting Lotka-Volterra amensalism model incorporating partial closure for the 

populations. Adv Difference Equ. 2018; 2018: 1-14. https://doi.org/10.1186/s13662-018-1555-5 

[5] Chen F, Xue Y, Lin Q, Xie X. Dynamic behaviors of a Lotka-Volterra commensal symbiosis model with density dependent birth rate. Adv 

Difference Equ. 2018; Paper No. 296: 1-14. https://doi.org/10.1186/s13662-018-1758-9 

[6] Wu R. A two species amensalism model with non-monotonic functional response. Commun Math Biol Neurosci. 2016; Paper No. 19: 1-

10. 

[7] Wu R, Li L, Zhou X. A commensal symbiosis model with Holling type functional response. Math Comput Sci. 2016; 16: 364-71. 

https://doi.org/10.22436/jmcs.016.03.06 

[8] Wu R, Zhao L, Lin Q. Stability analysis of a two species amensalism model with Holling II functional response and a cover for the first 

species. J Nonlinear Funct Anal. 2016; Paper No. 46: 1-15. 

[9] Xie X, Chen F, He M. Dynamic behaviors of two species amensalism model with a cover for the first species. Math Comput Sci. 2016; 16(3): 

395-401. https://doi.org/10.22436/jmcs.016.03.09  

[10] Luo D, Wang Q. Global dynamics of a Beddington-DeAngelis amensalism system with weak Allee effect on the first species. Appl Math 

Comput. 2021; 408(3): Paper No. 126368 (19 pages). https://doi.org/10.1016/j.amc.2021.126368 

[11] Luo D, Wang Q. Global dynamics of a Holling-II amensalism system with nonlinear growth rate and Allee effect on the first species. Int J 

Bifur Chaos Appl Sci Eng. 2021; 31(3): Paper No. 2150050 (26 pages). https://doi.org/10.1142/S0218127421500504 

[12] Wei Z, Xia Y, Zhang T. Stability and bifurcation analysis of a commensal model with additive Allee effect and nonlinear growth rate. Int J 

Bifur Chaos Appl Sci Eng. 2021; 31(13): Paper No. 2150204 (17 pages). https://doi.org/10.1142/S0218127421502047 

[13] Chen F, Zhang M, Han R. Existence of positive periodic solution of a discrete Lotka-Volterra amensalism model. J Shenyang Univ (Natl Sci) 

2015; 27(3): 251-4. 

[14] Lin Q, Zhou X. On the existence of positive periodic solution of a amensalism model with Holling II functional response. Commun Math 

Biol Neurosci. 2017; 2017: 1-12. https://doi.org/10.28919/cmbn/2809 



Li and Wang  Journal of Advances in Applied & Computational Mathematics, 12, 2025 

 

70 

[15] Li T, Wang Q. Stability and Hopf bifurcation analysis for a two-species commensalism system with delay. Qual Theory Dyn Syst. 2021; 

20(3): 1-20. https://doi.org/10.1007/s12346-021-00524-3 

[16] Li T, Wang Q. Bifurcation analysis for two-species commensalism (amensalism) systems with distributed delays. Int J Bifur Chaos Appl Sci 

Eng. 2022; 32(9): 1-16. https://doi.org/10.1142/S0218127422501334 

[17] Qu M. Dynamical analysis of a Beddington-DeAngelis commensalism system with two time delays. J Appl Math Comput. 2023; 69(6): 

4111-34. https://doi.org/10.1007/s12190-023-01913-4 

[18] Zhang J. Bifurcated periodic solutions in an amensalism system with strong generic delay kernel. Math Methods Appl Sci. 2013; 36(1): 

113-24. https://doi.org/10.1002/mma.2575 

[19] Zhang Z. Stability and bifurcation analysis for an amensalism system with delays. Math Numer Sinica. 2008; 30(2): 213-24. 

[20] Hu X, Li H, Chen F. Bifurcation analysis of a discrete amensalism model. Int J Bifur Chaos Appl Sci Eng. 2024; 34(2): 1-21. 

https://doi.org/10.1142/S0218127424500202 

[21] Li Q, Chen F, Chen L, Li Z. Dynamical analysis of a discrete amensalism system with the Beddington-DeAngelis functional response and 

fear effect. J Appl Anal Comput. 2025; 15(4): 2089-123. https://doi.org/10.11948/20240399 

[22] Xue Y, Chen F, Xie X, Han R. Dynamic behaviors of a discrete commensalism system. Ann Appl Math. 2015; 31(4): 452-61. 

https://doi.org/10.1155/2015/295483 

[23] Li Q, Kashyap A, Zhu Q, Chen F. Dynamical behaviours of discrete amensalism system with fear effects on first species. Math Biosci Eng. 

2024; 21(1): 832-60. https://doi.org/10.3934/mbe.2024035 

[24] Zhu Q, Chen F, Li Z, Chen L. Global dynamics of two-species amensalism model with Beddington-DeAngelis functional response and fear 

effect. Int J Bifur Chaos Appl Sci Eng. 2024; 34(6): 1-26. https://doi.org/10.1142/S0218127424500755 

[25] He X, Zhu Z, Chen J, Chen F. Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect. Open Math. 2022; 

20(1): 646-65. https://doi.org/10.1515/math-2022-0055 

[26] Zhou Q, Chen Y, Chen S, Chen F. Dynamic analysis of a discrete amensalism model with Allee effect. J Appl Anal Comput. 2023; 13(5): 

2416-32. https://doi.org/10.11948/20220332 

[27] Zhao M, Du Y. Stability and bifurcation analysis of an amensalism system with Allee effect. Adv. Difference Equ. 2020; 2020: 1-13. 

https://doi.org/10.1186/s13662-020-02804-9 

[28] Chen F, Chen Y, Li Z, Chen L. Note on the persistence and stability property of a commensalism model with Michaelis-Menten harvesting 

and Holling type II commensalistic benefit. Appl Math Lett. 2022; 134: 1-8. https://doi.org/10.1016/j.aml.2022.108381 

[29] Liu H, Yu H, Dai C, Ma Z, Wang Q, Zhao M. Dynamical analysis of an aquatic amensalism model with non-selective harvesting and Allee 

effect. Math Biosci Eng. 2021; 18(6): 8857-82. https://doi.org/10.3934/mbe.2021437 

[30] Liu X, Yue Q. Stability property of the boundary equilibria of a symbiotic model of commensalism and parasitism with harvesting in 

commensal populations. AIMS Math. 2022; 7(10): 18793-808. https://doi.org/10.3934/math.20221034 

[31] Singh M, Poonam. Dynamical study and optimal harvesting of a two-species amensalism model incorporating nonlinear harvesting. Appl 

Math. 2023; 18(1): 1-16. 

[32] Zhao M, Ma Y, Du Y. Global dynamics of an amensalism system with Michaelis-Menten type harvesting. Electron Res Arch. 2023; 31(2): 

549-74. https://doi.org/10.3934/era.2023027 

[33] Osuna O, Villavicencio-Pulido G. A seasonal commensalism model with a weak Allee effect to describe climate-mediated shifts. Sel Mat. 

2024; 11(2): 212-21. https://doi.org/10.17268/sel.mat.2024.02.01 

[34] Patra R, Maitra S. Dynamics of stability, bifurcation and control for a commensal symbiosis model. Int J Dyn Control. 2024; 12(7): 2369-

84. https://doi.org/10.1007/s40435-023-01367-3 

[35] Zhao K. Global asymptotic stability for a classical controlled nonlinear periodic commensalism AG-ecosystem with distributed lags on 

time scales. Filomat. 2023; 37(29): 9899-911. https://doi.org/10.2298/FIL2329899Z 

[36] Wei J, Wang H, Jiang W. Theory and Application of Bifurcation Theory for Delay Differential Equations. Beijing: Science Press; 2012 (in 

Chinese). 

[37] Cunningham W. A nonlinear differential-difference equation of growth. Proc Nat Acad Sci U S A. 1954; 40: 708-13. 

https://doi.org/10.1073/pnas.40.8.708 

[38] Hutchinson G. Circular causal systems in ecology. Ann New York Acad Sci. 1948; 50(4): 221-46. https://doi.org/10.1111/j.1749-

6632.1948.tb39854.x 

[39] Hale J. Theory of Functional Differential Equations. New York: Springer; 1977. https://doi.org/10.1007/978-1-4612-9892-2 

[40] Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston, MA: Academic Press; 1993. 

[41] Ruan S, Wei J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn 

Contin Discrete Impuls Syst Ser A Math Anal. 2003; 10: 863-74. 

[42] Ruan S. Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Quart 

Appl Math. 2001; 59(1): 159-73. https://doi.org/10.1090/qam/1811101 

[43] Hassard B, Kazarinoff N, Wan Y. Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press; 1981. 

 



Hopf Bifurcation in a Delayed Commensalism Model Li and Wang 

 

71 

[44] Song Y, Han M, Wei J. Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D. 2005; 200(3): 185-

204. https://doi.org/10.1016/j.physd.2004.10.010 

[45] Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer; 1991. 

[46] Yi F. Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-

diffusion-like coupling. J Differential Equations. 2021; 281: 379-410. https://doi.org/10.1016/j.jde.2021.02.006 

[47] Kuznetsov Y. Elements of Applied Bifurcation Theory (3rd Ed). New York: Springer-Verlag; 2004. https://doi.org/10.1007/978-1-4757-3978-

7 

[48] Engelborghs K, Luzyanina T, Roose D. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans Math 

Software. 2002; 28(1): 1-21. https://doi.org/10.1145/513001.513002 

[49] Mohd M, Abdul Rahman N, Abd Hamid N, Yatim Y. Dynamical Systems, Bifurcation Analysis and Applications. Singapore: Springer; 2019. 

https://doi.org/10.1007/978-981-32-9832-3 

[50] Sieber J, Engelborghs K, Luzyanina T, Samaey G, Roose D. DDE-BIFTOOL v.3.1.1 Manual-Bifurcation analysis of delay differential equations. 

arXiv:1406.7144. http://arxiv.org/abs/1406.7144  

 

 


