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ABSTRACT 

Functional data analysis (FDA) is a popular research area of data analysis that is well-

suited for modeling complex data structures such as time series data and images. In 

Linear Regression models, the random variables are often described using a finite--

dimensional vector space, under the assumption that the random variables are 

represented by a finite set of parameters. FDA allows us to model random variables as 

functions. This can lead to a more flexible and expressive approach to the statistical 

model. Within FDA, the specific paper investigates the potential of vector lattices to 

enhance model flexibility and address model uncertainty. The limitations of finite-

dimensional vector spaces in capturing the complexities of real-world random variables 

are discussed. An investigation is conducted into the concept of Vector Lattice Linear 

Regression Models (VLLM), highlighting their ability to effectively handle model 

uncertainty. 
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1. Introduction 

Functional data analysis (FDA) is the study of data whose ideal units of observation are functions given as several 

continuous domains, and the observed data are a sample of functions drawn from some population and sampled 

on a discrete grid, [1]. They presented a comprehensive overview of FDA, including key techniques such as mean 

and covariance functions, functional principal component analysis for dimension reduction and imputation, 

functional linear regression, and even nonlinear methods such as time warping and differential equations. Ramsay 

and Dalzell [2] defined the FDA as a four-step process: selecting the function space, specifying the analysis in 

functional terms, mapping observations to the function space, and interpreting the results back in the context of 

the original observations. This process makes use of powerful functional analysis techniques to analyse 

complicated, functional data. 

The functional data are, by their very nature, infinitely dimensional which poses theoretical and computational 

difficulties that vary depending on how the functional data were gathered. This complexity causes difficulties not 

seen in traditional analysis, making it more complicated to represent observations and estimate parameters, [3]. 

Despite these difficulties, the infinite dimensionality of the data is a rich source of knowledge that offers numerous 

opportunities for research and data analysis, [1]. Although functional data has been extensively considered, Levitin 

et al. [8] pointed out that the increasing number of complex data gathering techniques in behaviour research 

demands an adjustment of our understanding and analysis of it. The FDA has shifted data analysis by providing an 

insight into complicated, function-based data such as complex curves, detailed images, and dynamic time series. 

For further information regarding FDA and its recent developments, see [4-7]. 

The FDA frequently allows researchers to ask questions that would be either mathematically impossible or 

computationally inefficient to ask using traditional statistical methods; as such, the FDA represents both uniqueness 

in analysis and simplicity in execution, [8]. Ullah and Finch [9] conducted a comprehensive search of 11 electronic 

databases between January 1995 and December 2010 in order to identify peer-reviewed FDA application studies. 

The main framework of FDA till now is the frame of Hilbert Spaces. These FDA models cannot explain the use of 

fitting arising by assuming the constant variable as an explanatory variable. Horvath and Kokoszka [5] addressed 

several fundamental concepts from operator theory and concentrated on the properties of random samples in a 

Hilbert space. In this paper, we do explain that spaces with order units are not appropriate for the FDA. The space 

of continuous functions is such a case, since the constant function is an order unit under the pointwise partial 

ordering. The pointwise partial ordering on a set of functions 𝑓 and 𝑔 is defined as 𝑓 ≤ 𝑔 if and only if 𝑓(𝑥) ≤ 𝑔(𝑥) 

for all 𝑥 in the domain of 𝑓 and 𝑔. FDA modeling excludes continuous functions as a possible vector lattice for its 

models. On the other hand, the fact that 𝐿𝑝 when 1 ≤ 𝑝 < ∞ may be used in the FDA is interpreted since these spaces 

do not have order units with respect to the pointwise partial ordering. 

The theory of ordered vector spaces, including vector lattices (Riesz spaces), started around 1935 from three 

distinct works by Riesz in Hungary, Kantorovitch in the Soviet Union, and Freudenthal in the Netherlands. For a 

summary on this progress, the reader may see Van der Walt [10]. Their contributions established the foundation 

for this important area of mathematics, which has applications in various fields like functional analysis, economics, 

and optimization. The functional analysis framework of vector lattices can be used to define the uncertainty in FDA 

models. For instance, the set of all potential functions that could fit a specific data set could be represented by a 

subspace of a vector lattice. Vector lattices in this paper are actually subspaces of function spaces and their lattice 

ordering is actually the pointwise partial ordering. Subspaces as ideals and bands are particularly important in the 

analysis of partially ordered vector spaces, according to Kalauch and Malinowski [11]. In this paper, we propose the 

decomposition of a vector lattice into ideals for the determination of level of uncertainty in regression models. 

Readers are encouraged to read the references [10-15], for more information on ordered linear spaces, vector- 

lattices, lattice- subspaces, positive projections, and Riesz estimators. 
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Model structure and parameterization developments allow us to effectively reduce the model’s overall 

uncertainty, leading to a more accurate and useful analysis, [16]. Model Uncertainty may be defined in a general 

way as follows: Model uncertainty arises when system gains or other parameters are not precisely known, or can 

vary over a given range. The range of a data set may be represented by finite or infinite unions or intersections of 

closed intervals [𝑎, 𝑏], where 𝑎, 𝑏 ∈ 𝐸 and 𝐸 is a vector lattice. This is exactly the approach of this paper, which is 

mainly devoted to regression models. However, this approach which is consistent to the partial ordering of 𝐸 as a 

lattice, may be useful since it does not require topological arguments. Topological implications do arise on the other 

hand, relying on this approach. A non-trivial point of the paper is that vector lattices having order-units may not be 

a useful framework for linear regression models, since they do ’absorb’ any other variable. This is actually a finding 

relying on the order-structure of such a class of vector lattices. 

In this paper, we introduce the concept of Vector Lattice Linear Regression model (VLLM), which extends 

traditional linear regression to the context of vector lattices. The space of fitted values, error space, and VLLM 

subspace with regard to a particular subspace of explanatory variables are defined. This framework allows us to 

evaluate model uncertainty by examining how well the VLLM captures all variability in the data. Since ideals and 

subl-attices provide a more comprehensive understanding of model uncertainty, we investigate their relevance in 

VLLM in more detail. Riesz estimators are also introduced as a valuable tool for estimating model coefficients within 

vector lattices. We aim to provide insights into model uncertainty in FDA regression models by using these 

approaches. Additionally, the paper highlights the potential of Yudin bases, a special class of vector lattices, as a 

promising framework for further research in VLLMs. 

2. Preliminaries 

Let us recall some essential notions about ordered linear spaces: If 𝐸 is a non-trivial vector space, then a partial 

-ordering is a binary relation ≥ between the elements of this vector space. The properties of such a binary relation 

are the following:  

1.  𝑥 ≥ 𝑥, for any 𝑥 ∈ 𝐸 (reflexive)  

2.  If 𝑥 ≥ 𝑦 and 𝑦 ≥ 𝑥 for some 𝑥, 𝑦 ∈ 𝐸, then 𝑥 = 𝑦 (antisymmetric)  

3.  If 𝑥 ≥ 𝑦 and 𝑦 ≥ 𝑧, then 𝑥 ≥ 𝑧 (transitive)  

4.  If 𝑥 ≥ 𝑦 and 𝜆 ∈ 𝑅+, then 𝜆 ⋅ 𝑥 ≥ 𝜆 ⋅ 𝑦, where ⋅ denotes the scalar product, being defined on 𝐸 and 𝑅+ denotes 

the set of the real numbers.  

5.  If 𝑥 ≥ 𝑦 for some 𝑥, 𝑦 ∈ 𝐸, then 𝑥 + 𝑧 ≥ 𝑦 + 𝑧, for any 𝑧 ∈ 𝐸. Also, if 𝑥 ≥ 𝑦 for some 𝑥, 𝑦 ∈ 𝐸, then 𝑥 − 𝑧 ≥ 𝑦 − 𝑧, 

for any 𝑧 ∈ 𝐸.  

The last two properties denote that ≥ is compatible to the linear structure of 𝐸. 

Then the vector space, being endowed with a partial ordering relation ≥, which satisfies the above properties, is 

a partially ordered vector space. The set  

𝐸+ = {𝑥 ∈ 𝐸|𝑥 ≥ 0}, 

is called positive cone of this partially vector space. 0 denotes the zero element of the vector space 𝐸. Let us suppose 

that 𝐸 is a partially ordered vector space, being endowed with the partial ordering ≥. Let us suppose some 𝑥, 𝑦 ∈ 𝐸, 

where 𝐸 is a partially ordered vector space, endowed by ≥. The supremum of {𝑥, 𝑦} where 𝑥, 𝑦 ∈ 𝐸, with respect to ≥ 

is some 𝑢 ∈ 𝐸, such that 𝑢 ≥ 𝑥, 𝑢 ≥ 𝑦, while for any other 𝑟 ∈ 𝐸, such that 𝑟 ≥ 𝑥, 𝑟 ≥ 𝑦, then 𝑟 ≥ 𝑢. The infimum of 

{𝑥, 𝑦} where 𝑥, 𝑦 ∈ 𝐸, with respect to ≥ is some 𝑛 ∈ 𝐸, such that 𝑥 ≥ 𝑛, 𝑦 ≥ 𝑛, while for any other 𝑚 ∈ 𝐸, such that 𝑥 ≥

𝑚, 𝑦 ≥ 𝑚, then 𝑛 ≥ 𝑚. If the infimum and the supremum of {𝑥, 𝑦}, where 𝑥, 𝑦 belong in 𝐸, then 𝐸 is called vector -

lattice. In this case, the infimum of {𝑥, 𝑦} is denoted by 𝑥 ∧ 𝑦 and the supremum of {𝑥, 𝑦} is denoted by 𝑥 ∨ 𝑦. If 𝑆 is 

some non -trivial subspace of a vector -lattice, such that 𝑥 ∨ 𝑦 ∈ 𝑆 and 𝑥 ∧ 𝑦 ∈ 𝑆 for any 𝑥, 𝑦 ∈ 𝑆, then 𝑆 is called sub-



Kountzakis and Almohaimeed  Journal of Advances in Applied & Computational Mathematics, 12, 2025 

 

50 

lattice of 𝐸. A sub-lattice is actually a sub-space of a vector -lattice, which is a vector- lattice as well. Both the 

supremum and the infimum of any two elelemtns of 𝑆 belongs in 𝑆. As it is well –known, |x|=sup{x,-x} and an ideal 

A is a subspace of a vector lattice, which has the following property : For any a in A, and any d in E, such that |d| is 

less or equal to a (with respect to the partial ordering that makes E a vector lattice), we obtain that d is an element 

of A.  

3. Vector Lattice Linear Regression Model (VLLM) 

Let us consider the following essential regression model: 

 𝑦 = 𝑎0ℎ + 𝑎1𝑥 + 𝑒, (1) 

where 𝑎0, 𝑎1 ∈ 𝑅 and 𝑦, ℎ, 𝑥, 𝑒 ∈ 𝐸, where 𝐸 is a function space. Model Uncertainty appears is the study of the case 

where the error term 𝑒 is decomposed in the following way : 𝑒 = 𝑒0 + 𝑒1. hence, lack-of-fitting is related both in two 

ways of explanation. The first is that however 𝑦 ≠ 𝑎0𝑒 + 𝑎1𝑥 and the second is that even the way that 𝑒0 is considered 

as the residual term, the lack- of- fitting is too great as well. A lot of lack-of-fitting measures are well-known. The 

interpretation of such a phenomenon is that the geometry of the function space implies the presence of another 

term 𝑒1, such that 𝑒 = 𝑒0 + 𝑒1. The term 𝑒1 is not directly specified. In this way, we may say that Model Uncertainty 

appears in the regression model (1). In this case, we may wonder which variables we have to add in this regression 

model in order to increase goodness -of -fit. This is a rational question in any regression model. Another question 

is understanding the lack-of -fitting due to the geometry of the specific function space 𝐸. How less is the significance 

of the term 𝑒1 ? Another question is whether the presence of the variables ℎ and 𝑥 reduces gooodness -of -fitting ? 

The same questions do arise in the case of including more variables in the regression equation. 

Model Uncertainty is related to the essential questions in statistics and econometrics ”More or less 

variables ?” ”How many variables are necessary for explaining the behaviour of a data set ?” or ”Are these variables 

adequate for significant predictions ?” Even though we have to be careful not to overfit the model by adding too 

many additional variables, our model has to be able to account for any meaningful association discovered in the 

data. Model uncertainty can be used to compare the prediction accuracy of different models with different numbers 

of variables, as well as to identify variables that are important for explaining the data and variables that can be 

safely eliminated from the model. 

A Vector Lattice Linear Regression Model (VLLM) is the following:  

 𝑦 = 𝑎0𝑞 + 𝑎1𝑥1+. . . . +𝑎𝑚𝑥𝑚 + 𝑒, (3.1) 

where 𝑦, 𝑞, 𝑥1. . . , 𝑥𝑚, 𝑒 ∈ 𝐸 and 𝑎0, 𝑎1, . . . , 𝑎𝑚 ∈ 𝑅. The error term 𝑒 is independent from 𝑡, 𝑥1. . . , 𝑥𝑚 and 𝑞 is usually the 

constant function whose any value is equal to 1. The structure of the span 𝑋 = [𝑞, 𝑥1, . . . , 𝑥𝑚], which is a subspace of 

a vector lattice 𝐸, is important for the properties of the Linear Regression in Equation (3.1). The span 𝑋 is supposed 

to be a subspace of 𝑆. Any VLLM expressed by the Equation 3.1 is denoted VLLM(S) for abbrevation. Let us suppose 

an infinite dimensional vector lattice 𝐸. Due to the applications, which are usually appear in economics, we suppose 

that this vector lattice is a subspace of 𝐿0(𝛺, 𝐹, 𝑃). The last vector space is the one of real–valued 𝐹 -measurable 

functions, which are usually called random variables. 𝛺 is a non–empty set, whose cardinality is equal to the one of 

real numbers, 𝐹 is some 𝜎 -algebra, which contains subsets of 𝐹. These subsets are not only the empty set and the 

whole of 𝛺. Finally, 𝑃 is an atom–less probability measure defined on 𝐹. Let us suppose that 𝐿 is a subspace of the 

vector lattice 𝐸 and 𝐿⊥ the subspace of its disjoint elements, with respect to the lattice ordering. We remind that two 

elements 𝑥, 𝑦 in a vector lattice 𝐸 are disjoint if |𝑥| ∧ |𝑦| = 0, where 0 is the zero element of 𝐸. 

4. Some Useful Lemmas 

Lemma 4.1 𝐿⊥ is an ordered subspace as well, for any ordered subspace 𝐿 of the vector lattice 𝐸.  
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Proof. If 𝑥, 𝑦 ∈ 𝐿⊥, then |𝑥| ∧ |𝑧| = 0, |𝑦| ∧ |𝑧| = 0 for any 𝑧 ∈ 𝐿. Then |𝑥 + 𝑦| ∧ |𝑧| = |(𝑥 + 𝑦)| ∧ |𝑧| ≤ |𝑥| ∧ |𝑧| + |𝑦| ∧

|𝑧| = 0, for any 𝑧 ∈ 𝐿. Then, 𝑥 + 𝑦 ∈ 𝐿. We also suppose that 𝑥 ∈ 𝐿 and 𝑎 ∈ 𝑅. Then, |𝑎 ⋅ 𝑥| ∧ |𝑧| = |𝑎| ⋅ (|𝑥| ∧ |𝑧|) = |𝑎| ⋅

0 = 0. ⋅ denotes the scalar product on the vector space 𝐸.  

Lemma 4.2 𝐿 + 𝐿⊥ is a direct sum for any ordered subspace 𝐿 of 𝐸.  

Proof. Suppose that 𝑥 ∈ 𝐿 ∩ 𝐿⊥ and 𝑥 ≠ 0. Hence |𝑥| ∧ |𝑥| = |𝑥| = 0, which implies that 𝑥 = 0, a contradiction. Then, 

the sum 𝐿 + 𝐿⊥ is a direct sum.  

Lemma 4.3 If some ordered subspace 𝐿 of a vector lattice contains an order–unit of 𝐸, then 𝐿⊥ = {0}. 

Proof. If 𝑥 ∈ 𝐿⊥, then |𝑥| ∧ |𝑦| = 0 for any 𝑦 ∈ 𝐿. Since 𝑦 ∈ 𝐿, we get that |𝑦| ≤ 𝑡 ⋅ 𝑒 from the definition of an order–

unit. Hence, |𝑥| ∧ (𝑡 ⋅ 𝑒) = 0, for any 𝑡 ∈ 𝑅+. This is true if and only if 𝑥 = 0.  

5. Model Uncertainty 

𝑆 is a non-trivial subspace of some vector lattice containing the explanatory variables. We may suppose that the 

errors’ component is the disjoint complement of 𝑆, where 𝑆 is the ideal generated by {𝑧1, . . . , 𝑧𝑛} in 𝐸. Namely, 𝑆⊥ =

{𝑧 ∈ 𝐸||𝑧| ∧ |𝑦| = 0, for any 𝑦 ∈ 𝑆}. 

In the way indicated above, we give the following useful definitions and relevant main points of interest: 

• Space of Fitted Values (𝑺): This subspace of the vector lattice contains the explanatory variables and reflects 

the component of the model that explains the observed data.  

• Error Space with respect to 𝑺 (𝑺⊥): This disjoint complement of 𝑆 represents the portion of the data left 

unexplained by the model, including the errors and noise inherent in the observations.  

• Subspace of VLLM with respect to 𝑺 (VLLM(𝑺)): This represents the total VLLM with respect to 𝑆 as the direct 

sum of 𝑆 and 𝑆⊥. It is actually the direct sum 𝑆 ⊕ 𝑆⊥.  

• Model Uncertainty: This occurs when the VLLM(𝑆) does not cover the full vector lattice. this is the case of 𝐸 ≠

𝑆 ⊕ 𝑆⊥. Or else, there exists a residual space beyond any  

VLLM(𝑆).  

• Dimension of Model Uncertainty: This representing the dimension of the complementary subspace of 𝑆 ⊕

𝑆⊥ in 𝐸. It denotes the cardinality of the additional independent components required to adequately explain the 

data beyond the existing model.  

• Failed VLLM(𝑺): The VLLM(𝑆) fails if there exists one variable 𝑞 ∈ 𝑆, which appears in any VLLM(𝑆). Failure is an 

attempt to catch the case of the so-called ’over-fitting’. Of course, more than one single variable may appear in any 

VLLM(𝑆). This is the case of an ideal generated by one or more elements the vector lattice of 𝐸.  

6. Ideals and Sub–lattices in Vector Lattice Linear Regression 

Ideals are examples of vector lattice subspaces, where the notion or Model Uncertainty is more clear. If we 

assume that 𝐸 is a vector lattice, while 𝑆 is an ideal of it, then 𝑆 ⊕ 𝑆⊥ is a subspace of 𝐸, where 𝑆⊥ is the subspace of 

the elements of the vector lattice 𝐸, being disjoint on the elements of 𝑆. The above Proposition shows which is the 

relation between ideals and sub -lattices. The motivation for this result is that sub- lattices may be also used as a 

class of subspaces useful to Data Analysis. While every ideal is a vector sub–lattice, a vector sub–lattice is not 

necessarily an ideal. An example is the partially linear functions, which form a sub–lattice but not an ideal. Ideals 

simplify the estimation of VLLM parameters. Such a space is the one of partially linear functions defined on [0, 𝑇], 

where 𝑇 > 0. This subpace of the real -valued functions defined on [0, 𝑇] is a sub- lattice, while it is not an ideal. 
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Proposition An ideal 𝐼 generated by an arbitrary finite set of linearly independent elements lying in a vector 

lattice is a sub–lattice of 𝐸.  

Proof: This can be proven by looking at cases based on the number of generating elements:  

• Singleton ideal: If 𝐼(𝑧) is generated by a single element 𝑧 ∈ 𝐸+, then it is a sub- lattice of 𝐸 since the lattice 

operations on its elements are bounded by multiples of 𝑧. This means that there exists some 𝑡1, 𝑡2 non–zero real 

numbers such that  

 |𝑦| ≤ 𝑡1 ⋅ 𝑧 𝑎𝑛𝑑 |𝑥| ≤ 𝑡2 ⋅ 𝑧 (6.1) 

hence  

 𝑥 ∨ 𝑦 ≤ |𝑥| ∨ |𝑦| ≤ 𝑚𝑎𝑥{ 𝑡1, 𝑡2}𝑧 (6.2) 

and  

 𝑥 ∧ 𝑦 ≤ |𝑥| ∧ |𝑦| ≤ 𝑚𝑖𝑛{ 𝑡1, 𝑡2}𝑧 (6.3) 

• Two-element ideal: If 𝐼(𝑧1, 𝑧2) is generated by two elements 𝑧1 and 𝑧2 ∈ 𝐸+, then the Riesz decomposition 

property allows for separate analysis of positive and negative parts of elements within the ideal. By applying lattice 

operations and comparing dimensions, it can be shown that the ideal is closed under these operations, making it a 

sub–lattice. This implies that if 𝑥, 𝑦 ∈ 𝐼(𝑧1, 𝑧2), there exist 𝑟1, 𝑟2, 𝑞1 and 𝑞2, such that  

 |𝑥| ≤ 𝑟1 ⋅ 𝑧1 + 𝑟2 ⋅ 𝑧2 (6.4) 

and  

 |𝑦| ≤ 𝑞1 ⋅ 𝑧1 + 𝑞2 ⋅ 𝑧2 (6.5) 

From the Riesz Decomposition Property there exist 𝑥1, 𝑥2 such that 𝑥 = 𝑥1 + 𝑥2, such that  

 |𝑥1| ≤ 𝑟1 ⋅ 𝑧1,  |𝑥2| ≤ 𝑟2 ⋅ 𝑧2 (6.6) 

and 𝑦1 , 𝑦2 such that 𝑦 = 𝑦1 + 𝑦2 such that  

 |𝑦1| ≤ 𝑞1 ⋅ 𝑧1,  |𝑦2| ≤ 𝑞2 ⋅ 𝑧2 (6.7) 

hence  

 𝑥 ∨ 𝑦 ≤ |𝑥| ∨ |𝑦| ≤ (|𝑥1| + |𝑥2|) ∨ (|𝑦1| + |𝑦2|) ≤ 𝑚𝑎𝑥{ 𝑟1, 𝑞1}𝑧1 +𝑚𝑎𝑥{ 𝑟2, 𝑞2}𝑧2 (6.8) 

and  

 𝑥 ∧ 𝑦 ≤ |𝑥| ∧ |𝑦| ≤ (|𝑥1| + |𝑥2|) ∧ (|𝑦1| + |𝑦2|) ≤ 𝑚𝑖𝑛{ 𝑟1, 𝑞1}𝑧1 +𝑚𝑖𝑛{ 𝑟2, 𝑞2}𝑧2 (6.9) 

• n-element ideal: The general case for an n-element ideal follows through induction. 

7. Riesz Estimators 

Let us consider that 𝐼 is an ideal generated by the linearly independent positive elements 𝑧1, . . . , 𝑧𝑛 of 𝐸. The Riesz 

estimator of 𝑥 ∈ 𝐸 with respect to the ideal generated by |𝑧𝑖|, 𝑖 = 1, . . . , 𝑛 is the following element of 𝐼  

 𝑎(𝑥) = ∑𝑛
𝑖=1 𝑎𝑖(𝑥)|𝑧𝑖|, (7.1) 

where  
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 𝑎𝑖(𝑥) = 𝑖𝑛𝑓{ 𝑡𝑖 ∈ R||𝑥| ≤ 𝑡𝑖 ⋅ |𝑧𝑖|}, 𝑖 = 1, . . . . 𝑛. (7.2) 

The real numbers 𝑎𝑖 are well–defined, due to the Riesz Decomposition Property. The reader may see in Jameson 

[12] about the Riesz Decomposition Property in vector lattices. 

It is obvious that this is an element of 𝐸+, where 𝐸+ is the positive cone of the vector lattice being used as a model 

for the associated functional model. 

Example about Determination of Riesz Estimators 

Example 7.1 Let us consider 𝐸 = 𝐿2([0,1], 𝐵, 𝜆), a vector lattice with pointwise partial ordering, where 𝐵 is the 𝜎 -

algebra of Borel Sets for the interval [0,1] of the real numbers and 𝜆 is the Lebesgue measure defined on [0,1]. 

Consider 𝑆, the ideal generated by 𝑧1(𝑡) = 1 and 𝑧2(𝑡) = 𝑡, where 𝑡 ∈ [0,1] and 𝑥(𝑡) = 𝑡2, for any 𝑡 ∈ [0,1]. According 

to the above definition, 𝑡1 = 1 and 𝑡2 = 1. Moreover, we obtain that 𝑎1(𝑥) = 1, 𝑎2(𝑥) = 1, hence the Riesz estimator 

of 𝑥 is the function 𝑎(𝑥) = 1 + 𝑡, 𝑡 ∈ [0,1].  

Some vector lattices are not appropriate for fitting VLLM(S). Specifically, vector lattices having order–units are 

not appropriate for VLLM(S), since the ideal generated by an order-unit is the entire space. Since 1 is an order-unit 

of 𝐿∞(𝛺, 𝐹, 𝑃) Using 𝐿2 or in general some 𝐿𝑝(𝛺, 𝐹, 𝑃) , where 1 ≤ 𝑝 < ∞ has a motivation, which is implied by the fact 

that 1 is not an order–unit in these spaces if they are not finite–dimensional. Hence, the constant random variable 

1 is an element of some non–trivial VLLM(S) in these vector lattices. The reader may see the exact definition of an 

order-unit in vector lattices in Jameson [12]. 

Example 1 about order -units: Let 𝐸 = 𝐿∞(𝛺, 𝐹, 𝑃), where 𝛺 is a compact topological space, 𝐹 is the sigma-

algebra of Borel sets on 𝛺, and 𝑃 is a probability measure on 𝐹. Since 𝑆 = 𝐸 if 𝑆 is a vector lattice containing an order 

-unit, then in such a case 𝑆 ⊕ 𝑆⊥ = 𝐸 because 𝑆⊥ = {0}. In this case we obtain a failed VLLM(S), since the only 

explanatory variable is some order unit 𝑒 lying in 𝐸. This is actually the case of 𝐿∞(𝛺, 𝐹, 𝑃) or the case of 𝐶(𝛺) if 𝛺 is 

a compact topological space. Then the constant function 1 is an order unit in these spaces under the pointwise 

partial ordering.  

Example 2 about bands: When 𝑆 is a band of 𝐸, namely an order closed ideal of 𝐸, then the Model Uncertainty 

is equal to zero. 

Example 3 about 𝑳𝟐: In the vector lattice  

 𝐿2([0,1], B, 𝜆), 

consider the following VLLM:  

 𝑦 = 𝑎0(𝑥)1 + 𝑎1(𝑥)𝑧1 + 𝑒, 

where 𝑦, 1, 𝑧1 ∈ 𝐿2([0,1], 𝐵, 𝜆), and 𝑎0(𝑥), 𝑎1(𝑥) ∈ 𝑅. The error term 𝑒 is independent from 1, 𝑥1 and 1 is the constant 

function whose any value is equal to 1. Assume that 𝑥1 is a positive function in 𝐿2([0,1], 𝐵, 𝜆). Due to the fact that we 

can always select the coefficient 𝑎1(𝑥) to be positive, this VLLM does not admit model uncertainty. This indicates 

that if 𝑧1 = 0, the observed value of 𝑦 will always be greater than or equal to the predicted value of 𝑦. 

Example 4 about 𝑳𝟐: In the infinite-dimensional vector lattice  

 𝐿2([0,1], B, 𝜆), 

and a corresponding ideal generated by n elements of it, where n > 2 . We consider an associated VLLM(S), where S 

is the corresponding sub -lattice. The Riesz Estimator of the coefficients 𝑎𝑖(𝑥), where 𝑖 = 0,1, . . . , 𝑛, are provided by 

7.2. Once the coefficients are determined, we can use this VLLM to make predictions for new values of 𝑥. 
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8. Yudin Bases as a Further Research Framework of Vector Lattice Regression 

Models 

A class of Partially Ordered Linear Spaces of particular interest are the Vector Lattices with a Yudin Bases. These 

Partially Ordered Linear spaces are of particular interest, since they may extend research in vector lattice regression 

models (VLLMs). Their own characteristics provide promising possibilities for exploring new modelling approaches 

and addressing complex regression analysis issues. 

Partially ordered spaces having Yudin Bases do not have order units, as is shown in Werner et al. [17] and in 

Aliprantis and Tourky [18]. Hence any span of elements lying in a Yudin Space provides a VLLM. In Abramovich et al. 

[13], the relationships between lattice-subspaces and positive projections are thoroughly investigated. The question 

is to show some examples of Yudin Bases. If we consider 𝑐00(𝐺) and 𝐺 is a class of positive–valued functions defined 

of some 𝛺 this is a Yudin vector lattice, where lattice operations are the ones of the real numbers applied on the 

elements of 𝐺. 𝑐00 means that only a finite number of functions among G have non–zero coefficients. Hence, any 

Hamel Basis of positive real functions defined on 𝐺 ”produces” a Yudin Lattice.  

9. Conclusions 

In FDA, vector lattices provide a powerful framework for investigating model uncertainty. This approach provides 

a straightforward way to analyse the level of uncertainty in a given model as well as indicate potential areas for 

improvement. The structure of vector lattices allows us to divide the model space into subspaces that correspond 

to the residual uncertainty, error terms, and fitted values. It also enables us to measure how well the model 

represents the observed data and to discover potential missing components that could improve the model’s 

explanatory power. 

Riesz estimators prove to be a useful tool for estimating elements in vector lattices. Understanding their 

advantages and calculating methods are important for their efficient use in a wide range of settings. These 

estimation tools help researchers to approximate elements in a vector lattice based on their bounds and 

relationships with other elements. One can make informed predictions and inferences inside the vector lattice 

framework by effectively employing Riesz estimators. Our understanding of data analysis and modelling within this 

complex mathematical environment could improve with further investigations of Riesz estimators and their 

properties. 

The research highlighted the need of addressing the geometry of the function space in FDA. It suggested that 

vector lattices without order units may be more appropriate for FDA modeling. The concept of model uncertainty 

can be extended to a variety of statistical models. VLLM models can be used to describe complex interactions 

between functions while accounting for model uncertainty. These models relies heavily on ideals as they allow for 

efficient estimation and interpretation of model coefficients. Considering the lattice structure, Riesz estimators 

provide an appropriate approach for estimating VLLM coefficients. 

Furthermore, Tobit models represent a specific class of VLLMs. Tobit models are linear regression models with 

positive explanatory variables and exhibit disjoint supports. A key characteristic of these variables is that their values 

are often zero, either above or below a certain threshold. This property corresponds to the disjoint support of 

positive basis vectors within the sublattice generated by a design matrix columns. Therefore, Tobit models can be 

effectively understood and analyzed within the VLLM framework, leveraging the properties of vector lattices and 

Riesz estimators for improved model understanding and coefficient estimation.  
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