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1. Introduction

Classical stochastic differential equations (SDEs) driven by Brownian motion are widely used to model uncertain
phenomena and play a crucial role in numerous scientific and industrial fields [1-3]. However, such models typically
fail to account for ambiguous or uncertain probabilistic factors. In complex real-world environments, it is often
difficult to construct ideal models where probability can be precisely determined. As a result, probability uncertainty
has emerged as a significant and challenging area of research [4-6].

Motivated by financial challenges such as asset pricing, risk measurement, and decision-making under
probability uncertainty, Peng [7, 8] established a time-consistent sublinear expectation framework and developed
the theory of G-expectation. This theory provides the probabilistic foundation for defining G-Brownian motion,
which in turn serves as the driving noise for G-SDEs. Since then, both the theoretical developments and practical
applications of G-SDEs have garnered substantial research interest. Lin [9] explored G-SDEs with reflecting boundary
conditions. Luo and Wang [10] proved that the integration of a G-SDE in R can be reduced to the integration of an
ordinary differential equation parameterized by a variable in (22, F). Some properties such as pathwise properties,
homeomorphic flows, the strong Markov property, and asymptotic estimates for G-SDEs have been investigated in
[11-14].

Over the past decade, increasing attention has been devoted to stochastic stability and feedback control within
the G-expectation framework (G-framework). A variety of stabilities, including moment stability, quasi-sure stability,
and exponential synchronization, have been extensively studied. For instance, exponential stability for linear G-SDEs
was analyzed in [15]; moment stability under Lyapunov-type conditions was investigated in [16]; asymptotic
boundedness and exponential stability were established using the G-Lyapunov function method in [17]; asymptotic
stability in distribution for highly nonlinear G-SDEs was developed in [18]. Additional results on stochastic stability
and stochastic stabilization can be found in [19-23], among others. These contributions provide a foundation for
advancing the applications of G-SDEs.

In practice, the successful application of G-SDEs depends critically on both qualitative and quantitative properties
of their solutions. Although existing research has largely emphasized qualitative aspects, obtaining closed-form
analytical solutions for these equations remains generally infeasible. Therefore, the analysis of numerical methods
for G-SDEs is of significant practical importance. For classical SDEs driven by standard Brownian motion, there exists
an extensive body of literature on numerical analysis [24-30]. In contrast, relatively few works have addressed the
numerical analysis of G-SDEs, to the best of our knowledge. Yang and Li [31] introduced a 8-Euler-Maruyama (6-EM)
scheme for G-SDEs and discussed the p-th (for p € (0,1)) moment exponential stability of the scheme under the
global Lipschitz condition. They also derived convergence and stability results for the 6-EM scheme applied to
neutral stochastic delay differential equations driven by G-Brownian motion in [32]. Under the local Lipschitz and
linear growth conditions, Liu and Lu [33] examined the strong convergence of the EM scheme for G-SDEs. Deng et
al. [34] established that the EM method is exponentially stable in mean-square if and only if the corresponding
stochastic differential delay equations driven by G-Brownian motion (G-SDDEs) are exponentially stable in mean-
square under the global Lipschitz condition. Moreover, Yuan and Zhu [35] further proved the practical mean-square
exponential stability of the EM method for G-SDDEs under a condition that is less restrictive than the global Lipschitz
requirement.

Based on the above discussion, research on numerical methods for G-SDEs has mainly focused on Euler-
Maruyama-type schemes with order one-half. However, no work has been done on numerical methods for G-SDEs
with higher convergence orders. The objective of this paper is to examine the strong convergence of higher-order
schemes for G-SDEs. In the case of SDEs driven by standard Brownian motion, numerical schemes with first-order
convergence such as Milstein-type methods have been extensively studied. Examples include the tamed Milstein
[36], projected Milstein [37], symmetrized Milstein [38], implicit Milstein [39], truncated Milstein [40], positivity
preserving Milstein [41] and semi-implicit projected Milstein [42]. By combining the classical Milstein method with
G-expectation theory, we propose a 6-Milstein scheme for approximating the solution of G-SDEs. We establish the
strong convergence order of this scheme in the L"-norm for r = 2. Numerical experiments demonstrate that the
proposed 6-Milstein method performs effectively in terms of both convergence and flexibility, yielding smaller errors
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than the classical Milstein method and achieving a higher convergence order compared to the EM method.
Compared to previous studies on numerical methods for G-SDEs, the main contributions of this work are as follows:

* Novel 8-Milstein Scheme: We develop a new 6-Milstein scheme within the G-framework, which achieves a
higher strong convergence order compared to conventional Euler-Maruyama-type methods.

* First-Order Convergence: For the first time, we establish the first-order strong convergence of the 8-Milstein
method for G-SDEs in the L"-norm setting.

The rest of this paper is organized as follows. In Section 2, we review some necessary mathematical preliminaries
in the G-framework. Section 3 introduces the 6-Milstein scheme for G-SDEs. The convergence result of the scheme
is established in Section 4. Numerical experiments are given in Section 5. Finally, Section 6 concludes this paper.

2. Preliminaries

Let R denote the one-dimensional Euclidean space. Denote the scalar product by (-,-) and the norm of x by |x|
for any x € R. Denote by f’ the first derivative of a function f:R - R and f” the second derivative. Let C?(R;R,)
denote the space of continuous functionals f: R —» R, with continuous derivatives of orders up to 2. For two real
numbers a and b, a vV b := max(a,b) and a A b == min(a,b). Let (2, H,E) be a sublinear expectation space, where
is a given set, H is a linear space of real valued function defined on . The space H can be considered as the space
of random variables.

Definition 2.1 [8] A sublinear expectation E is a functional E: H — R satisfying
1. Monotonicity: E[X] = E[Y]ifX > V;

2. Constant preserving: E[c] = c;

3. Sub-additivity: For any X,Y € H, E[X + Y] < E[X] + E[Y];

4. Positivity homogeneity: E[AX] = AE[X] for 1 > 0.

Definition 2.2 [8] A d-dimensional stochastic process {B(t)};, 0N a sublinear expectation space (2, H,E) is called
a G-Brownian motion if the following properties are satisfied:

1.B(0) = 0;

2. for each t,s = 0, the increment B(t +s) — B(t) and B(s) are identically distributed and is independent from
(B(t1),B(ty),,B(t,)), foreachne Nand0 <t < <t,<t;

3. lim.o B[ [BOPI™ =0.
Let
G(a) =5E[aB(1)?], Va € R, (1)
where ° = E[B(1)?], a2 = —E[-B(1)?], 0 < ¢ < 7 < o. Denote by H, the filtration generated by G-Brownian motion
{B(t)}:»0. For some basic notations about G-It6 integral, one can refer the reference [8]. The following lemma and

proposition are useful in our analysis.

Proposition 2.3 [8] Let &, € M4(0,T). Then, for any t € [0,T],

E UTfsdB(t)] =0,

T T
EUﬁmwﬂsfﬂwws
0 0
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T
E[ < EZEU |fs|2ds].
0

Lemma 2.4 [11] Letr = 2 and &, € M{(0,T). Then, forany t € [0,T],

2

J; 6,dB(s)

_m ! 2
—IE[ fo &, d(B)(s)

r/2

.
E <c,(r,o) |t —s|"?1E

)

t
f 1|2 du

r t
<5 |t—s|"1 Ef 1€, |7 du,
S

sup f e dBW)

Ssvst

E

sup | £,(B)Yw)

S<V<t

where ¢, (r, @) is a constant dependent of r and &.

3. 0-Milstein Scheme for G-SDEs

For the sake of simplicity, we only discuss the case of scalar G-Brownian motion. In fact, our results can be
generalized to the case of multi-dimensional G-Brownian motion. Consider the following one-dimensional G-SDE:

dx () = f(X(®)dt + g(X(©))dB(t) + h(X())d(B)(t), t >0,
X(0) = X,, (2)

where B(t) is a one-dimensional G-Brownian motion and (B)(t) is the quadratic variation process of the G-Brownian
motion B(t). Let f, g,h: R » R be Borel measurable functions. We impose the following hypotheses.

Assumption 3.1 (Global condition) There exists a positive constant x, such that for any x;,x, € R,
If o) = Flx)l Vg (x1) = gGe)| V [h(x1) = h(xp)] < req |y — x5 3)
Assumption 3.2 There exists a positive constant k, such that for any x;,x, € R,
IL*g (1) — L'g (x2))] < Kalxy — X3, (4)
where the operator L! is defined by L'g(x) == g(x)g'(x).

Assumption 3.3 Let f, g, h be two times continuously differentiable functions. There are positive constants K,
such that for any x € R,

FONV IS @V RV R @V (g Vg ()] < Ka(T + [x]). (5)

Under Assumption 3.1, the G-SDE (1) has a unique continuous solution on t > 0, see [8]. We denote this true
solution by X(t). From (2) and (3), we have

IfFCOIVIgEI VIRV L g()] < Ky (1 + [x]), Vx €R, (6)

where K; := (i, V k) + (|f(0)] v ]g(0)]| v |h(0)| v |L*g(0)]). For each V € C*(R;R,), we have the following G-Itd
formula

1 2
W (x©) = VKO O + (3 CONgEO) +VHOHX®) ) a8

+V'(X () g(X())dB(0). (7)
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We now begin to introduce the idea of Milstein method for G-SDE (1). For a twice continuously differentiable
function g: R - R, the G-It6 formula (6) provides the representation

9(x®) = g0o) + [ g (x@)r(xa)du + G " (X@)|g(x@)[* + g’(X(u))h(X(u)))d(B)(u)
0 0
+[79'(Xw)g (XW)dBw), 0<s<t. 8)

Inserting this into (1) gives that
X() =X, +f f(X(s))ds +f h(X(s))d(B)(s) + g(Xo)B(¢)

+0 [T 9" (X(w)g(X(w))dBw)dB(s) + RR 9)

with remainder term

RR=I fg’ (X(Ww)f (X (w))dudB(s)
0 Y0

t rs 1 2
+ f j (Egu(x(u))|g(x(u))| + g’(X(u))h(X(U))>d(B)(u)dB(S)-
0 Yo

For a sufficiently small t > 0, under some regularity of g(X), by truncating the remainder term RR with order 3/2,
we have the following approximation

X(O) ~ Xo + f(Xp)t + g(X0)B(®) + h(X)d(B)(®) + g' (X)g(Xo) [ [ dB(w)dB (s). (10
Moreover, we have the following multiple integrals of type
[y J5 dB WdB(s) = 2[IB)I* - (B)(®)]. (1)
Inserting this into (10) gives
X() = Xo + f(Xo)t + g(Xo)B(t) + h(Xo)d(B)(t) + ig’(Xo)g(Xo)[IB(t)I2 — (B)(®)]. (12)
(12) provides an approximation expansion of order greater than 1/2 for the G-Itd process X(t) near X,.

Now, we are ready to construct our numerical scheme for G-SDE (1). Fixany T > 0, let N be a positive integer and
6 =T/N < 1 a step size. Combining (12) with 8-method, we define the following 6-Milstein scheme

zi =y + 0f(2)6
Yierr = Vi T f(2)6 + g(2) 4By + h(z,)A(B) + %ng(zk)(MBkF — AB)), k 20, (13)

where z, = X,, Yo = Xo — 0f(Xo)8, 6 € [0,1], t, = k8, 4By = B(tys1) — B(ti), A(B) = (B)(trs1) — (B)(t), L'g(x) =
g(x)g' (x). Inserting v, = z, — 8f(2,)6 into the second equation of (13), we get

Zgrr = Zg + 0f (Zr41)6 + (1 — 0)f (2)6 + 9(2,)ABy + h(zy)A(B) + %ng(zk)(lﬂBkl2 — A(B)y)- (14)
Define

8K, 6

1
5 = ——A1l, 6€(0,1];
1, 6 =0.
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In order to get a well-defined solution of (14), we assume that § < §* which implies that the equation
z=y+0f(2)8

has a unique solution z = F(y) for any y € R via the Banach fixed point theorem. For any t € [ty, ty,1), define the
continuous Milstein solution:

Y(6) = yi + f(2)(t = i) + gz (B(t) — B(ti)) + L'g () + h(z ) ((BY(E) — (B)(ti))
Z(t) = F(Y (D) (15)
with Y(0) = X, — 06f (Xo), I, = fttk AB (s)dB(s), where AB(s) and s are defined by
4B(s) = B(s) — B(s),Vs € [0,T],
s = ty, VS € [ty, tys1)-
Moreover, (15) can be rewritten as the following equivalent form:

Y(©) =y, + fo s (2(s))ds + jﬂ P (2(s)) dB(s) + fo g (2(s)) 4B(s)dB(s) + JO h (2(s)) d(B)(s)

Z(t) = F(Y(®)). (16)

Thus, we have Y (¢t,) = y, and
V) =)+ [ f(2() ds + f 9 (2()) dBE) + [ 19 (2(5)) ABS)dB() + [ 1 (2(2)) diBY),  (17)

which means Y (t) and Y(t) coincide with the discrete solution at the grid points. Let ): R — R be twice differentiable.
Then the following Taylor formula

YO = PO =P GG -y +—yLy—y) ;A=Y (" +sby —y))ds (18)
holds. Replacing y and y* in (18) by Y(¢) and Y (t), respectively, we obtain from (17) that

w@a»—w@@D=w(ﬂﬂxgg@@DdMQ)+mw» (19)

where

Ry :=¢'(y(;))<f (2())d f (2(s)) 4B(s)dB(s) + f (Z(g))d(B)(s))

+|Y(s) = Y(s)]? fol(l —s)y” (Y(g) +s (Y(s) - Y(g))) ds
Noting that g’ (Z(g)) g (Z(g)) =Llg (Z(g)) then we conclude from (19) that

9(2()) - g (2(s)) - 19 (2(s)) 4B () = Ry (9). (20)

In what follows, C deontes a generic positive constant independent of step size §, whose value may change from
line to line.
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4. Main Results

In order to show the main results, we need some lemmas. We first state a known result by Yin et al. [20] as a
lemma.

Lemma 4.1 Let Assumption 3.1 hold. Then for any r = 2, there exists a constant C = C(r, T, o) such that

E[sup |X(t)|r] <c.

0<t<T

Now, we establish the boundedness of r-th moments of 8-Milstein solutions.

Lemma 4.2 Let Assumptions 3.1, 3.2 and 3.3 hold. Then forany r > 2 and 6§ < §*,

£ [ sup IZ(t)IT] vE [ sup IY(t)IT] <c 21)
0<t<T 0st<T
and
D [ sup [¥(£) — Z(t)r] < com, (22)
0<t<T

where € = C(ky,k,,7,T, 7, 0) is a positive constant independent of 6.

Proof: By the G-1t6 formula and Assumption 3.1, we conclude from (15) that

t t
YOI = [Yo|? +f0 2(Y(s), f(Z(8)))ds + fo 2(Y(s), g(Z(s)))dB(s)
t
+f (19(Z() + L'g(Z(s))AB(5)I* + 2(Y (5), h(Z(5)))) d(B)(s)
0

t t
< vl + fo (Y© + K+ |Z©P) ds + fo 2(Y(s), 9(Z()))dB(s)

+ [, 3L+ 1Z©)1?) + 2111 g (Z()AB(5)[* + Y (5)[2) d(B)(s). (23)

Foranyr >2andt, €[0,T], we have

o E[ sup |Y(t)|2r] < Yol” + T (6) + M,(8) + Mg (). (24)

ostst,
} (25)

} (26)

where

n,(t) = E{ sup fo(z | Y ()P +(1+ 33K (1+]| Z(s) |2))Js

OStStl

[[1g(Z(s)ABGs) | ds

0<t Stl

I,(t) = Zrﬁrﬁi\{ sup
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M3(8) = Zrﬂﬁ{ Sup (Y (5), g(Z())dB(s) }

By the elementary inequalities, we have

M () <T"'E f t1|(2|y(s)|2 + (14 35)K2(1L + |Z()D)| ds

<C+ Cfotlﬁ [ sup |Y(u)|2r] ds + Cfotlﬂ?[sup |Z(u)|27] ds.

0suss 0suss

By Peng et al. [Ref. 8, Proposition 3.1.6, p.52], we have
E|AB(s)|*" = E|B(s) — B(s)|?" < E|B(&)|*" < |2r|n5" 8.
According to the Holder inequality, we have
M,(t) <275 T8 [ Ay (Z(g)) AB(s)|2rds].

Since 4B(s) = B(s) — B(s) is independent of Z(s), we have

E[|Ltg(Z(s))4B(s)|?"] = E [E [|L1g (2(5) AB(s)|2rL=Z (s)]

< CSTE(1+ |z (s)I*).
Substituting this into (29) gives

M,(6) < €8 [y B(1 +[2(s)) ds < € +C ;B | sup 12w | ds.
<Uss

By Lemma 2.4 and (6), we have

r t1

M;(t) < CE

ty
(Y SI? +19(Z())ds
0

ty
<CE (L4 Y)|* + |1Z(s)|*)ds
0

<C+ Cfotiﬁ [ sup |Y(u)|2r] ds + Cfotlﬁ [ sup IZ(u)lzr] ds.

0<uss 0<uss

Substituting (8), (31) and (12) into (24), we get

E[ sup |Y(t)|2r] <C+ Cfotlﬁ [ sup |Y(u)|2r] ds + Cfotlﬁ [ sup |Z(u)|2r] ds.

0<ts<tq 0<uss 0<uss
From (6), we have
(ZO,fEZON S KIZOIA+1ZOD < KA +1ZOD? < 2K+ 1ZO).

From this and Y (¢) = Z(t) — 6f(Z(t))8, we have
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[Y()I? = 1Z(®)* — 208(Z(t), f(Z(£))) + %I f (Z(£))|*6?
> |Z(t)|? — 4K,05(1 + |Z(1)]|?) = (1 — 4K,06)|Z(t)|? — 4K, 6.
Thus, we have
(1 —4K,08)|Z(t)|> < |Y(1)|? + 4K, 66. (35)

For any 6§ < 6*, we have

1-4K,08 —
From this and (35), we have

|Y(t)|?>+4K, 08
1-4K, 06

1Z()|? < < 2(IY(0)|? + 4K, 08) < (2 + 4K)(1 + |[Y (D)]2). (37)

By (33) and (37), we get

@[ sup |Y(®)|*"

ostst

<C+ Cfotlﬁ [ sup IY(u)Izr] ds.

0<uss

Using the Gronwall inequality, we get the desired assertion (21). Combining this with the fact that Z(t) — Y (¢t) =
8f(Z())8, which means

1Z(®) YOl = K, (1 + 128, (38)
we get the other assertion (22). Thus, the proof is complete.
Applying assumptions 3.1, 3.2, 3.3 and combining with lemmas 4.1 and 4.2, we have the following lemma.
Lemma 4.3 Let Assumptions 3.1, 3.2 and 3.3 hold. Then forany r > 2 and 6 < §*,
sup E|f(x@)|"v sup E[g(x )| v sup E|h(x@)]" < ¢
sup Bl (X®)[" v sup Elg' (@) v sup E[n'(x@)]" < ¢
sup B|f"(x@)|" v sup Blg"(x@)|" v sup B R (x@)[" < ¢
sup E |L1g(X(t))|r <cC (39)
0<t<T
Moreover, replacing the true solution X(t) by the Milstein solutions Z(t) or Y (t), the assertion (39) still holds.
Lemma 4.4 Let Assumptions 3.1, 3.2 and 3.3 hold. Then for any r = 2 and § < §*,
E|X(t) — X(t)|" < €872, vte]0,T], (40)
and
E|lY(t) —Y(®)|" < €82, Vvte|[0,T], (41)

where C = C(kq, k,, 7, T, 7,0) is a positive constant independent of §.
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Proof: Using Lemmas 2.4 and 4.3, we get from (2) that

r

.
E|X(t) —X@®)|" = CE + CE

f h(X(s))d(B)(s)

+ CE Utg (X(s))dB(s)

f f (X(s))ds

t t t
< CSr_lf Elf(X(s))lrds+C5r/2‘1f Elg(X(s))|rds+CEZT6r‘1f E|h(X(s))|"ds
t t t

<C8™?, te[o,T]. (42)

From (17), it follows that

YO -(0) = £ (2) (- ©) + 9 (2(2) (B® - B)) + 129 (2(0)) e + £ (200) (BXO = BY©D)  (43)
where I, = f; J; dB WdB(s). Therefore,
ElY(6) - YOI < CSE[If Z@)I] + CE[lg(Z) (B(®) — BW)I']
+CE[IL' g (Z (@)l + CE[IRZ @) (B)(®) = (BYO)I'] (44)
Note that B(t) — B(t) is independent from Z(t), hence
E[lg@@)B®) - BOII'] = E[ElgIB®) - BOI],_, (] (45)
< C§"2E[|lg(Zz@)|"] < €572

Moreover,

r

|B(t) = B®I* = (B)(®) — (B)(®)

E|l.,|" = E

2
< i(mB(&)lzr + E|(B)(5)|2r) < i([er!! + 1)52r527 =:¢,(r,0)8". (46)
Similarly, we have
Elng(Z(g)ILt)Ir -F [E“ng(x)lrlbf]x:z(g)] < cz(r,E)WE“ng(ZQ))V] <Cé" (47)

and
ErZ©(B)®) — BYO)I" = E[E[Ih(@) " (BY®) — (BYD)], ()|
< ¢, (r,3)TEIRZ ()| < C5". (48)
Plugging (45), (47) and (48) into (44) obtains (41). Thus, the proof is complete.
Lemma 4.5 Let Assumptions 3.1, 3.2 and 3.3 hold. Then for any r = 2 and § < §*,
E|IR.()|" <C6, (49)

where C = C(ky, k,,7,T,7,0) is a positive constant independent of §.
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Proof: From (19), we obtain that
Fr@) -1 (r@) = £ (v(©) f; 9 (2(5)) dBs) + Ra(h),

where

R =F(r(v) < f (2(s))a f (2(s)) 4B(s)dB(s) + f (2(s)) d(B)(s)

HYE =Y f;a -9 (¥() +5(Y6) - ¥(9)) ds

=R1(f)

By the Hélder inequality and (41), we have

BIR, (NI < jo &I - (o)l (¥ +s(re - v()) 1] as

1/2

< fo (&) - v (B (r©+s(r© -v())rr) as

< c(1+E|r@F +E|r(s)?)"*s" < co7.
From (19), we have
EIR.(DI™ < CSTE[If' Y ) Z)IT] + CE[If' Y (L' g(Z () eel"]
+CE[IR,(NI"] + CE[If' (Y ()h(Z())(B)(S) = (BY)I']-

By the Hélder inequality and Lemma 4.2, we have

EIF (Yol < (BlF (v(s)) PE| £ (2(9)) ) < c.

Similarly, we have
E[lf )L g@e)I < ¢
and
E|l 5" < C6™.
Thus, we have
E[If' (Y ()IL g (Z()s|"] < €67,

and

E[If' (Y (£)h(Z())(B)(s) = (BY)I']

= E[E[If GORGI KB = I,y 0)00m06)

< TEEIf' Y ())REZ©)|" < €67

Substituting (52), (54), (55) and (56) into (53), we get the desired assertion (49).
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Now, we establish the convergence result of the 6-Milstein method for G-SDEs as below.

Theorem 4.6 Let Assumptions 3.1, 3.2 and 3.3 hold, let X(¢t) denote the solution of G-SDE (2), and let Y and Z
represent the 6-Milstein approximations defined by (15). Then forany r > 2 and § < §7,

B [osliET | X() — Y(t)lr] <cor (57)
and
B [ sup | X(6) - Z(t)v] < cor (58)
0<t<T

where € = C(ky, k,,1,T,7,0) is a positive constant independent of step size §.

Proof: (2) can be rewritten as:

X(®) =Xo + [, f (X(s))ds + [, g (X())dB(s) + [, h(X(s))d(B)(s) (59)

By (59) and (15), we have
e(t) = e(0) + [, (F(X(s)) — f(Z())ds + [, o ()dB(s) + f, (h(X(5)) — h(Z(5)))d(B)(s), (60)

where e(t) = X(t) — Y(t) and a(s) == g(X(s)) — g (Z(g)) —IL'g (Z(g)) AB(s). Applying G-Ité formula to (60), we have
e = e +2 [ () f(KG) = FEE)) ds +2 [ (e(),0()) dBE)
0 0
+ [ 10 + 26e(), (X)) ~ HEZEMABE)
0
t t
= le(0)]” +2 f (e(s), F(X(s)) — F(Y(s))ds +2 f (e(s), F(Y(5)) — F(Y()))ds
t t
2 f(Y —flz d 2d(B
#2] (£ (1(9) ~ £ (29)) s + [ 1o@P atB))
t t
+2 [ (e(s),0(2) dB(s) + 2 [ (e(sh(X(5)) ~ AT EINABIS)
0 0
2 f (e(), h(Y(5)) — h(Y ())(B)(s) + 2 f (e(s), h(Y () — h(Z())d(B)(S)
< OIF OIS + 26, [ Te@Ids + 1, [ le()Pd (B
0 0

+2 [ 1o dB)6) + 2 [ (e(s),0(5))aBCs)

=J1(t) =J2(8)

+2f (e(s), fF(Y () — f(Z(9))ds + 2f (e(s), f(Y(s)) = fF(Y(9)))ds

=J3(t) =Ja(t)

+2 [[{e(), h(Y (£)) = h(Z(DINA(B)(S) + 2 [ (e(s), A(Y (5)) = h(Y ()N d(B)(s). (61)

=J5(t) =J(t)
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For any t, € [0,T] and r = 2, we have

< 07 (X" 67 + K [sup | f 21e()I? ds + [ 2 le)? d(BYS)] |

- E[ sup le(t)]"
gzt

0stst,

0stst,

+ iﬁ[ sup Ili(t)l”z] (62)
=
Apply G-1t6 formula to g(X(s)), we obtain
9(X(s)) = g (x(s)) + f Sng(X(u))dB(u) + f Sg’(X(u)) F(Xw))du
+1: (3o (x@la(x@)[*) + g’ (X@)r(Xw)) (B (63)

Inserting this into a(s) = g(X(s)) — g (Z(g)) —Lg (Z(g)) AB(s), we get

o(s) = g(X()) — g(Z(s)) + f (L g(X(w)) — L1g(Z(w))dB (u)
+ f 9'(X@)F (X (w))du + j [0/ (X()h(XW)] dB)wW)
sq 5
+ [ 30" x@)lg(x@)l aB)w
= g(X()) — g(Z()) + j (L' g (X (w)) — L1g (X (w))dB (u)

+ f (L'g(X W) — L'g(Z(w)))dB (w) + j [9'(XW)r(XW)] d(BYw)

+f;%9” (x)]g(x(w)|*d(BYw) (64)

According to Assumptions 3.1 and 3.2, we have

T

Elo(s)I"
6r—1

<ElgX(s) —9(Z)|" +E

f: <L1g(X(u)) —I'g (X(g))) dB(u)

r

+E

[ @woxay - gwnase| + [ (o (xe)n(xew))adew

r

st T st
+E f 59”(X(u))lg(X(u)I2d(B>(u) +E f Eg’ (X)X (wdu

N
<k E|X(s) - Z()I" + KIV/HJ- ElX(w) - XW|"ds
S

+i§T/21 f Sﬂmxm) —Z(w)|"ds + (1 +35°7)8"! f SﬂE|g'(X(g))f(X(u))rds
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+(5) o7 Bl Oraol ) dw

By the Lemma 4.3 and the Hoélder inequality, we have
Elg'(X@W)f(X@)I" v E|g" (Xw)lgX@)I’I" < C.
Therefore,

Elo(s)I”
6r—1

< CE[X(s) = Y(s)I" + CE|Y(s) = Z(s)I" + K{ 6"
+x5 87271 [PEIX(w) — Z(w)|"ds + €872t [TEIY () — Z(w)|"ds + C5".

With the aid of Lemma 4.2, we obtain

Elo(s)|” < CEle(s)|" + C8™ + k[ 8™ + C87/2E|e(s)|” + €8%7/2 < CEle(s)|" + 5.

By Lemma 2.4 and (67), we have

r/Zl

ts ts
Elo(s)|"ds < Cf E|o(s)|"ds + C6".
0

E[ sup Ih(t)lr/z] = @[ sup f |lo(s)12d(B)(s)
0

Oststy ostst,

< TT/Z—lET f
0

By the elementary inequality

b2
2ab < ea? +?, Va,b,e > 0,

and Lemma 2.4, we get

r/Zl

t
E[ sup IJz(t)I”z] =21/? E[ sup f (e(s),0(s))dB(s)
0

oststy oststy

ty /4
< 2"%¢,(r,9)E <f [(e(s), a(s))]? ds)
0

J:la(s)l2 ds

< Zr/zcl(r,E)E[ sup |e(s)|/?
0stst,

r/4l

ty r/2
< ,BJE[ sup Ie(s)lr] + Cﬂ?( lo(s)|? ds)

Ostst,

< ,81@[ sup Ie(s)|r] +CE Utlla(5)|r ds] +C67
0

0stst,
where B, is a constant to be determined and (67) has been used. Similarly, we have
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r/Zl

J: (6(5)'f(Y(§)) —f(Z(g))) ds

E[ sup |]3(t)lr/2] < CE[ sup
0stst,

0ststy

< CE

e(s), FY(s) - f(Z@)H”ZdS]
<C ' d CtIEY -flZ 'd
< [ Blelrds +¢ [ BF@) - £ (2(9)) s
<c| “Ble(s)7ds + ¢ | B (s) - 2(s)1ds
0 0

ty
< Cf Ele(s)|"ds + C5™. (70)
0
Using (19) and definition of J,(t) gives that

1@ =2 [ (), FY() = FY @)hes
=2 (). F ) f g (X(w)) dB(w) + By ())ds

=2 fo (e(), /(Y () (Z(s))AB(s))ds + 2 fo (e(s), Ry (F))ds

< [Fle(s)2ds + [ IR, (F)[2ds + 2 [1(X(s) — Y (s), ' (Y (£))g(Z(5))AB(s))ds. (71)
=:J41(t)
Inserting
e(s) = e() + [[(F X W) = fZW))du + [J s@)dB W) + [ (h(X (W) = h(Z(W)))du (72)

into J,,(t), we have the following decomposition

4
Ja1 = 2141i(t)'
i=1

where
Jin® =2 [y {e). £ (¥(5)) 9 (2(2)) 4B()) ds (73)
Jux2(® =2 [} (S owaB @, £ ((5)) g (2(s)) 4B()) ds (74)
S @ =2 f; (LX) = FZ@))du, £ (¥ ()g(Z()AB(S)) ds (75)
Ju1a(® =2 f; (X @) = h(Z@))du, f' (¥ ()9 (2()AB(5)) ds. (76)

Due to the fact that 4B(s) = B(s) — B(s) is independent from Y(s) and Z(s), we get that
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E[|(v(2) 9 (2(2)) 48| | = B [E[lF gl 1BGS) = BOT, _ym-n00)

< o8 |r (v(9) g (20))[ ] < 67

where Lemma 4.3 has been used. With the aid of the Hélder inequality and Lemma 2.4, we get that

r/2
l ds

N

E [ sup |J412(t)|r/2] < CE [ | it [ s dno.f (v(s)) 9 (2(5)) 4B

0ststy

t1
scf (E
0

1/2

Sa(u) dB(u)| E

(ve)s (2(0) 4505 )

. 1/2
<c (8 L ol du) " ds.

Inserting (67) into (78) gives

1/2
t s
E[ sup |]412(t)|r/2] < Cf <5T‘1 (f Elo(w)|" du + C6T)> ds
0stst; 0 s

1/2
< Cfot1 (6r(IE|e(§)|r + C62T)) ds
< Cfot1 (((YTIE|e(§)|T)1/2 + C6T) ds < Cfot1 Ele(s)|"ds + Cd".

For any t € [0,T], define n(t) :== max{n:t, < t} and

s (et P eSS < trrrs
- t Dty <SS

According to integration by parts formula, we have
[ (B@) = Bt du = tiaa[B(tesr) = B8] = [, udB@) = [ (@ — w) dB(w).
Moreover, we have

]‘“1() f (e(s), f'(Y(5))g(Z(s))AB(s))ds = f f (e(s), f'(Y(5))g(Z(s)))dB(uw)ds

n(t) 1

f " (60, £ 009 ds + f f (€(tnie)s f' Oney) 9 o)) B (W) ds,

n(t) n(t)

Inserting (80) into (81), we have

n(t)-1 .

f +1(tk+1 —u)(e(te), f' (Vi) g (zi))dB (u) + f (t = u)e(tn), ' Vn)) 9 Znee))dB (u)

k=0 tn()

]411(t)

= [y @ —u)(e@), f'(Y ()9 (Z(W))dBw).

Applying the Hélder inequality and Lemma 2.4, we have
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B [ sup |1411(t)|r/2] < CE fotl |@—w (e, s (v@w)g (Z(z))>|r/2 du

0stst,

<o [ B[fetw).r (v) a (2))[

< co [ (BleBlF (v()) s (260) 1) au
< C [[*Ele(s)|"ds + €&, (83)

Moreover, we have the following decomposition

Jua®/2= | < | (f(Y(z))—f(Z(z)))du,f’(Y(g))g(Z(g))AB(S)>ds
*J
)

j FEwW) - f(X(E)))du,f’(Y(i))g(Z(i))AB(S)> ds

f FX@W — fFr@)du, f'(Y(s))g(Z(s))4B (S)> ds

=11, (t) + M, (¢t) + T5(t). (84)

r/zl

By Lemma 2.4, we have

t S
fo < | (f(Y(z))—f(Z(z)))du,f’(Y(i))g(Z(g))AB(S)>ds

r/2
ds‘

1/2

EIf’(Y(i))g(Z(i))AUS’(S)IT) ds

ostst,

<f FOr@) - f(Z(z)))du,f’(Y(i))g(Z(i))AB(S)>

tq
sc@f
0
ty
scf (E
0

" * 1/2
< Cf <5T—1f E[|f(Y(E)) _f(Z(E))Vdu] 6”2) ds

J FrW) - fZwW))du

<cf(s37E|F (v(s)) - f (Z(g))lr)m ds < €87 (85)

and

M5 (6) =J0 J W) = fFA @), f' Y ()g(Z(s)))dB(u)ds

n(t)-1

- Z f i (FX) = fid [ ) g(zi))dB(w)ds

k=0 "tk

H [ FEO) = F ) )9 dB s

tn(t) tn(t)

98



Convergence of 8-Milstein Method for SDEs with G-Brownian Motion

n(t)-1

= Z J' +1(tk+1 -5) <f(X(tk)) f), f! (Yk)g(Zk))dB(S)

k=0 "tk

“[ =9 r (r©) -1 (1) £ On)alen)) 55

ta(e)

SINGED) <f (x©)-£(v(®).£ () 9(z (§))> dB(s).

In the same fashion as (83) was obtained, we also have
— ~ r/2 [t _ , r/2
]E[ sup |l'[3(t)| ] < CIEf |(s —s){f (X(g)) -f (Y(g))g (Z(g)))' ds
0

0stst
r/Z]

t1
Ele(s)|™?ds < Cf E[ sup Ie(s)lr] ds + C87
0

Ostst,

< co7/2 jo g [|f(X(§)) ~ (@) (v©) 9 (2)

ty
< Co/? f

0

and

r/2:|

L@@y @@y, £ (V($)Z )85

r/2
ds‘

1/2

E[ sup |ﬁ1(t)|r/2] {sup

osts<t;
51
< CE j
0

< Cf (s —s)f Y(s)) (Z(g))r] E |f’ (Y(g)) g (Z(g)) AB(s)|r/2)

j Fr@) = fFZW)du, f'(Y(s))g(Z(s))4B (S)>

< [ (23R (s) - 2(s)[") " ds < €87/ < co7

Inserting (88), (87) and (85) into (84) gives

< Cf [ sup Ie(s)lr] ds + C6".

0<tst;

[ sup | J413(0)[7/?

0<t<tq

Similarly, we have

< Cf [ sup |e(s)|r] ds + C6".

0stst,

[ sup | J414(0)|7?

0stst,

By (83), (85), (89) and (90), we obtain

< Cf [ sup Ie(s)lr] ds+ C6".

ostst

[ sup | J14(t) |T/2

0<t<tq

With the help of Lemma 4.5, we get from (7) that
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[sup A (t)lr/z] < Cf E[le(s)|"]ds + CJ, 1[E[ sup Ie(s)lr] ds + C6". 9N
o0stst, 0stst,
< Cf IE[ sup Ie(s)lr] ds + C8" (92)
o0<tst,

In a similar fashion as (92) is obtained, we also can show that

IE[ sup |]5(t)|r/2] < Cf [ sup Ie(s)lr] ds + C67. (93)
0stst; 0s<tst;
and
[E[ sup | Je (t)lr/z] < Cf [ sup Ie(s)lr] ds + C67. (94)
0st<tq 0<t<t,

By (68)- (70), (92)-(94), we conclude from (61) that

6
<grty E[ sup |Ji(t)|f/2] Ol A
i=1

ostst,

E[ sup le(®)|"

Ostst,

+ (2K1(1 + EZ))T Tt ftlﬁle(s)lrds)

0

< 8r/2—131[g[5up [E;|e(u)|r] +Cf0tlIE[sup |e(u)|r] ds + C§8". (95)

0<us<s <uss

If we choose an appropriate constant ; such that 8/271p; < 1, then we conclude from (95) that we have

[ sup |e(t)|r] < Cf E [ sup |e(u)|r] ds + C&".

0sts<t,
By the Gronwall inequality, we have
D [ sup [X(t) — Y(t)r] < o
0<t<T
(96)
Combining this with (22) of Lemma 4.2 gives

E[sup X)) — Z(t)lr] < C6".
0<t<T
(97)

Thus, we complete the proof.

Remark 4.7 Compared with the convergence order of one-half for G-SDEs established in [Deng et al. (2019)] and
[Yang and Li(2019)], our numerical scheme achieves a higher convergence order of one. When the term Lg is
omitted, the 6-Milstein scheme reduces to the 8-EM scheme for G-SDEs. Furthermore, by setting 6 =0, ¢ = 1, and
o =1, the scheme simplifies to the classical Milstein scheme for standard SDEs. The proposed 6-Milstein scheme
for G-SDEs thus offers considerable flexibility, particularly in contexts where SDEs are driven by Brownian motion
with distribution uncertainty.
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5. Numerical Experiments
In this section, we will test the following schemes: 6-Milstein scheme (G-TMIL) (14);
* Euler-Maruyama scheme (G-EM)
Yiri =Y+ f(Y)d + g(Yi)AB, + h(Y)A(BY,, Yy = X
+ Backward Euler-Maruyama scheme (G-BEM)
Yee1 =Y+ f(YVer)A + gV )AB, + h(Y)A(B),, Yo = Xy;

* Milstein scheme (G-MIL)
1
Yierr =Y + f(Y)A + gV )ABy + Eng(Yk)(lﬂBklz —A(B)), Yy =X

The aim of the tests is to compare the performance of the schemes: their convergence orders, quantitative errors
and computational costs. The experiments were performed on a Windows desktop computer with an Intel Core
CPU i5-9400.

We will apply the above methods to a population growth model in the G-framework, i.e., the following linear G-
SDE

dX(t) = aX(@)dt + bX(t)dB(t) + cX(t)d(B)(t), t>0,
X(0) = X,, (98)
where a, b, and ¢ are real constants. The explicit solution to this G-SDE is
X(t) = XOeat+b3(t)+(c—o.5b2)(3)(t)_ (99)

Moreover, if b2 + 2¢ < 0 and a + G(b? + 2¢) < 0, then the trivial solution of G-SDE (98) is exponentially stable in
mean-square, see [16, Example 5.4].

Moreover, we use the method from [34] to approximate G-expectation. Let B(¢t): N(0, [gZ,EZ]t). Denote by M the
number of random sample and J the number of partition. Consider an equidistant partition ¢ = g, < - 0; < - <
o, =5.Fori=12,--Mandj = 12,-J, define z/' by

Zhr = 7+ 0f (241)8 + (1= O)f (20)8 + g(2, )¢ (k) + k(2 )} 6
+ X (g (N (E (k)2 — 678), k =0,1,2,- (100)

with z, = Xo, where &/{(k): N(0,576). Then

~ 1 &
~ Jji _
]EZ]("’maX_E Z) >k_05132a“'
1<j<J P

(101)
the right term of (101) is termed the maximal sample average of z,.
5.1. Errors, Convergence Orders and Computational Costs

This subsection compares the strong convergence orders, maximum sample average of absolute errors, and
computational costs among the methods described above.
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Table 1: Maximal sample average errors e; and convergence orders of approximations for Example 5.1.
) 27° 2710 271t 2712 2713 Order
G-EM 1.2447e-01 8.6450e-02 5.5201e-02 4.2845e-02 3.0626e-02 0.5064
G-BEM 1.1940e-01 8.5334e-02 5.4426e-02 4.2317e-02 3.0639e-02 0.4937
G-MIL 3.2937e-02 1.5678e-02 7.9239%e-03 3.9469e-03 2.0871e-03 0.9948
G-MIL(6 =1) 3.0128e-02 1.4746e-02 7.4187e-03 3.6681e-03 1.8725e-03 1.0023
G-MIL (6 = 0.5) 9.3195e-03 4.6409e-03 2.3877e-03 1.1399e-03 6.2310e-04 0.9831
Table 2: CPU times for the selected schemes for Example 5.1.
P 2—9 2—10 2—11 2—12 2—13 a Y
G-EM 1.006s 1.968s 3.886s 7.726s 15.431s 0.0020 -0.9937
G-BEM 1.471s 2.905s 5.731s 11.458s 22.787s 0.0030 -0.9926
G-MIL 1.073s 2.079s 4.144s 8.159s 16.260s 0.0026 -0.9713
G-MIL(# =1) 1.555s 3.077s 6.083s 12.018s 23.950s 0.0032 -0.9898
G-MIL (6 = 0.5) 1.547s 3.041s 6.070s 12.019s 23.942s 0.0032 -0.9915
10° 100
—t— EN S * G-EM
= = =Slope of 0.5 S - & G-MIL
=—#— Milstein(6=0) ~ —%— G-MIL, =05
1@+ Milstein(6=1) S o A G-MIL, 8 =1
5 107 + =@= 1 Milstein(6=0.5) 1 = —.— G-BEM
s F e e Slope of 1.0 0 - — — — Slope of —1
g) 107 ~ ~
E ~
% g s
2 107t { =
£ o
3 o
©
£ 10'}
g -3
= 10 " 4
107 — 10°
10 10 10 107 10° 107
Step size & Step size &

(a) Errorsvs. & (b) CPU times vs. &
Figure 1: Simulations of Example 5.1.

Example 5.1 Consider scalar G-SDE (98) witha=2,b=1,¢=0, X, =1, 0 = 0.6 and & = 0.8. In our numerical
tests, we will focus on the error at the endpoint T, so we let

e; = E|X(T) — Y(T)I,

where E is approximated by the maximal sample average, and X and Y represent the true and numerical solutions,
respectively. We set T = 1 and M = 1000. The true solution X is computed by (99).

Error Analysis: Table 1 and Fig. (1) present the maximum sample average errors and the experimentally
observed convergence orders for the corresponding methods. The observed convergence orders for the G-EM and
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G-BEM schemes are close to the theoretical value of 0.5, while those for the G-MIL and G-TMIL schemes are close to
1.0. For a fixed step size §, the most accurate scheme is G-MIL, and the less accurate is G-EM.

Computational Cost Analysis: The computational costs, measured in CPU seconds, are presented in Table 2 for
the selected schemes. We also provide a diagram of computing time versus step size in Fig. (1). We observe that the
G-EM scheme is the fastest, while G-MIL with 8 = 1 is the slowest. Compared to the EM-type scheme, the Milstein-
type scheme incorporates an additional term: %ng(Yk)(|ABk|2 — A(B),), which increases the computational cost but
improves the convergence order. Assuming that the CPU runtime obeys a power law relation

y=ad¥, Ve (01],

the corresponding nonlinear fitting results for « and y for each scheme are presented in the last two columns of
Table 2. We observe that the values of y for all schemes are close to —1, indicating that the computational time of
these schemes is approximately inversely proportional to the step size §.

5.2. Stability

1 T T T

Milstein

D g3t

Figure 2: Simulation of E|Y(t)|? by Milstein scheme for Example 5.2.
This subsection tests the numerical stability of the 6-Milstein scheme of G-SDE (98).
Example 5.2 Consider G-SDE (98) with the following parameters
a=2 b=1 c¢=-5 X,=1 0¢2=08 o =1.0. (102)

Stability Analysis: According to [Li et al. (2016), Theorem 5.5], the solution of (102) is exponentially stable in
mean-square with the Lyapunov exponent equal to -3, i.e.,

E[X(D)|* < |Xo|?e73¢, vt =0,
since
2a+2G(b% +2¢) <2a+b%c° +G(4c) =2 X2+ 1242%0.8% (=5) = =3 < 0.

Note that the corresponding unperturbed system
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dX(t) =2X()dt, t>0,
X(0) =1, (103)

is unstable. However, introducing the stochastic perturbation X(t)dB(t) — 5X(t)d(B)(t) to (103) results in system
(102), which is exponentially stable in mean-square. We examine the stability of the Milstein scheme using a step
size § =0.005. With 6 = 0.5, the mean-square stability of the 6-Milstein method is illustrated in Fig. (2),
demonstrating that the true solution is exponentially stable in mean-square.

6. Conclusion

This paper mainly investigates the convergence of the 8-Milstein scheme for G-SDEs. We first construct a Milstein-
type scheme for G-SDEs according to the G-1té formula and then establish the moment bound of the 6-Milstein
solutions. Moreover, we prove the scheme converges strongly to the true solution with order one in the L"(£2; R)
sense by the theory of G-expectation. Numerical experiments, including simulation of G-expectation, confirm the
effectiveness of our theoretical results.

In future work, we will investigate numerical methods for G-SDEs with non-globally Lipschitz continuous
coefficients.
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