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Bifurcation Analysis of Fractional-Order Hopfield Networks Wang and Jiang

1. Introduction

Fractional calculus generalizes classical integer-order calculus by extending differentiation and integration to
arbitrary real orders. Unlike integer-order calculus, which primarily characterizes local properties of functions,
fractional calculus incorporates hereditary and memory effects [1]. Consequently, it is widely regarded as an
effective tool for describing real-world systems in complex fields such as physics [2], biology [3], and viscoelastic
fluids [4]. The distinctive feature of fractional derivatives lies in their nonlocality: the current state of a function
depends not only on its instantaneous value but also on its historical states. Although this property poses challenges
for computational efficiency, it provides significant advantages in describing natural systems with memory effects.
Compared with ordinary differential equation models, fractional differential equation models can more accurately
capture the dynamical behavior of complex systems. More importantly, fractional operators can broaden the
stability range of systems and delay the occurrence of Hopf bifurcations, making them highly valuable in the study
of nonlinear systems and complex networks.

When differential equations involve the historical values of state variables, they give rise to delay differential
equations. The fundamental theory and applications of such equations have been systematically studied [5-8]. For
example, Matignon [9] investigated the stability of fractional delay differential equations (FDDEs); works [10, 11]
analyzed the bounded-input bounded-output stability of linear time-invariant FDDEs. Hwang and Cheng [12]
proposed numerical methods for testing FDDE stability, while [13] studied the stability of specific types of FDDEs,
and [14] further examined the stability and bifurcation characteristics of generalized FDDEs. In terms of complex
dynamical behavior, Bhalekar and Daftardar-Gejji [15] as well as Daftardar-Gejji et al. [16] conducted in-depth
studies on chaos in FDDEs. Bhalekar [17] revealed chaotic features of different FDDE systems, and in collaboration
with others [18, 19], analyzed their applications in nuclear magnetic resonance. These achievements have laid a
solid theoretical foundation for the deep integration of fractional-order systems and delays.

In addition to commensurate fractional-order systems, incommensurate fractional differential systems (IFDSs),
in which different state variables evolve with distinct fractional orders, have attracted increasing attention. IFDSs
can more flexibly describe heterogeneous memory effects and multi-scale dynamics in complex systems, and thus
provide a more realistic modeling framework. The well-posedness of general IFDSs was investigated in [20], while
[21] studied the existence and uniqueness of mild solutions for incommensurate systems with constant delay. The
Ulam-Hyers stability of linear IFDSs was analyzed in [22], and uncertainty analysis of discrete IFDSs in neural
networks was examined in [23]. Furthermore, inverse problems and applications of generalized IFDSs were
discussed in [24]. These studies collectively highlight the theoretical importance of IFDSs and motivate further
investigations into the dynamic behavior of multi-delay incommensurate fractional neural networks.

Early studies on delay-induced dynamics primarily focused on single- and double-delay systems. For instance,
Wang [25] developed a stability analysis framework for fractional-order Hopfield neural networks with delays, while
Yuan [26] highlighted the significant influence of self-connection delays on bifurcation behaviors. Moreover,
references [27-29] investigated the stability regions and Hopf bifurcations of double-delay differential equations.
With the advancement of research, multi-delay fractional-order neural networks have attracted increasing attention.
In practical systems such as neural networks, communication networks, and distributed control, multi-delay
phenomena are widespread, including heterogeneous transmission delays among neural pathways [30], local and
long-distance communication delays in networked systems [31], and heterogeneous sensor feedback delays in
distributed systems [32]. To address these issues, Li [33] established complete and Mittag-Leffler synchronization
criteria for fractional-order neural networks with time-varying delays using Lyapunov methods, Kronecker-product
techniques, and adaptive delayed controllers. Ma [34] analyzed Hopf bifurcations in a dual-delay BAM neural
network via characteristic equations and root distribution, revealing the effect of fractional order on bifurcation
points. Kumar et al. [35] and Sivalingam [36] proposed improved L1-based predictor-corrector methods for
numerically solving multi-delay fractional-order systems and simulating delay systems with memory effects,
providing effective tools for both theoretical analysis and practical applications.

Meanwhile, fractional-order dynamical models, owing to their ability to characterize memory and hereditary
properties, have demonstrated substantial advantages in modeling complex real-world systems. Prior work has
highlighted the applicability of fractional-order models to disease transmission, biological interactions, and social
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behavior dynamics. For instance, the effects of prey refuge and fear factors on the stability and dynamical behavior
of a fractional-order predator-prey system were examined in [37]. Fractional differential equations were
subsequently employed to investigate the transmission dynamics of lumpy skin disease, along with a systematic
evaluation of the effectiveness of quarantine and vaccination strategies [38]. In addition, a Caputo fractional-order
model for coffee berry disease was proposed, with analyses of equilibrium stability, existence and uniqueness of
solutions, and parameter sensitivity, demonstrating its relevance to plant pathology through numerical simulations
[39]. More recently, a social media addiction model incorporating Caputo fractional derivatives and fractal-fractional
operators was introduced, establishing existence and uniqueness of solutions as well as Ulam-Hyers stability, and
illustrating the potential of fractal-fractional operators in capturing complex social behaviors [40].

Taken together, these studies reveal that fractional-order approaches and multi-delay structures offer significant
advantages across ecological systems, epidemiological modeling, and social behavior dynamics. Thus, investigating
the multi-delay characteristics of complex systems holds considerable theoretical importance and practical
relevance.

It is worth noting that in fractional neural networks, self-connection delay and communication delays are two
key types of delays. Self-connection delay refers to the delay caused by the influence of a neuron’s own past state
on its future evolution. Such delay usually arises from signal processing and transmission times within the neuron,
or from computation and feedback mechanisms in artificial neural networks. Existing studies have shown that in
second-order recurrent neural networks with delays, suppressing self-connections helps enhance stability and
achieve asymptotic convergence [41]. In contrast, communication delay refers to the time required for signal
transmission between neurons. This type of delay, particularly pronounced in complex network topologies or long-
distance connections, plays a decisive role in synchronization and stability. Wang et al. [42], in studying fractional
inertial Cohen-Grossberg neural networks, deeply analyzed the impact of time-varying delays on stability and
periodic behavior, further highlighting the crucial role of communication delay in neural network dynamics.
However, most existing research focuses on single- or double-delay systems. For more realistic systems with three
or more delays, theoretical tools and efficient analytical methods remain lacking, due to the presence of multiple
transcendental terms in the characteristic equations, the complexity of stability regions, and the difficulty of
bifurcation analysis. This issue is especially pronounced when both self-connection and communication delays
coexist, since the coupling effects of different types of delays become significant, and traditional dimensionality
reduction methods fail to accurately capture the dynamic behavior.

To further explore the dynamic behavior of fractional neural networks with multiple delays, this paper considers
a three-delay model consisting of one self-connection delay and two distinct communication delays. For the
characteristic equation containing multiple transcendental terms, the classical procedure of multiplying by
exponential terms is used to remove delay-related decay factors and facilitate root distribution analysis. The real
and imaginary components are then separated to identify the Hopf bifurcation conditions. In this work, Cramer's
rule is employed as a convenient algebraic technique to solve the resulting system of equations. Within this
established analytical framework, we investigate the stability and bifurcation characteristics of the system and verify
the findings through numerical simulations using the predictor-corrector method.

2. Preliminary Knowledge

This section provides a fundamental explanation of the Caputo fractional derivative and its corresponding
Laplace transform.

Definition 1 [43] The Caputo fractional order g -th derivative of f(¢t) is

DU () = iy o (€ = )17 fID (s)ds,

where f € L*([0, b]), I'(-)is the Gamma function, g is the fractional orders,0 < g < 1, [q] is the ceiling of q.

Definition 2 [44] The Laplace transform let f: [0, ) — R be of exponential order, i.e., there exist constants M > 0
and a € R such that
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If (O] < Me® vt =>0.
Then the integral
L{f}(s):= F(s): = [ f(x)e ™ dx
converges for all s > max{a, 0}, and F(s) is called the Laplace transform of f.

Furthermore, let ¢ > 0 and set m: = [q]. If f possesses derivatives up to order m — 1 on [0, ) and ™1 is locally
absolutely continuous, then for the same range of s satisfies

L2 {DJf}(s) = sTF(s) — TRy s77* fED(0).

In particular, for y(x): = E,(—Ax7) with 2 > 0, one has

s~
sd+1"

L{y}(s) =
Note 1 L{f (t — o)} = e 5P F(s), L{af,(t) + bf,(t)} = aF;(s) + bF,(s).

Predictor-corrector scheme [45] is a method proposed by Diethelm et al. in 2002 for computing fractional order
differential equations, also known as the generalized Admas-Bashforth-Moulton method.Its superiority lies in its
ability to solve the problem of numerically approximating the solution of general fractional order differential
equations.

Consider fractional order time delay differential equation:

{qu(t) = fi(t,x(t),x(t —0)), t€][0,T],

x® () = g(b), t € [-0,0], (1)

where f; is a nonlinear function, q € (0,1], ¢ > 0 is the time delay. h = T/N,N is sufficiently large, k = o /h, k,N € Z,
t,=nh,n=-k,—-k+1,---,-1,0,1,--,N, denote the approximate solution x; (t) = x(t) of equation (1). Then

xp(t) =g, j=—k,—k+1,-,-1,0,
the approximate solution of equation (1) containing time delay is
xp(t; — o) = x,(jh — kh) = x,(tj—),j = 0,1,--+, N,
substituting the approximate solutionx;, into (1) for integration of order g yields

X (tass) = 9(0) + —— [ (tpsr — DT f1(G, x(0), x(C — 0))d,

I'(q)

according to the above equation, from the composite trapezoidal integration formula [46], it can be obtained that

hd
Xp(thsr) =g9(0) + mfl(tn+1'xh(tn+1)’xh(tn+1 —0))

hd n
mzlﬁﬂ ajni1f1 (G xn (&), xp (5 — 0))

hd
=g(0) + mfl(tn+1' Xp (Ens1)s Xn (Enr1-k))

hd
rioi 27=0 Y fi () Xn (), % (E-1)),

+ r'(q+2)

of these,
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ni*tl —(n - q)(n + 1)9, j=0,
QG = (M—j+2)* + (- -2(n—j+ 1D, 1<j<n,
1’ ] =n + 1.

Since there are x;,(t,+,) on both the left and right sides of equation (2) and the function f; is nonlinear, it is very
difficult to find the solution x; (t,;,) of equation (2). Therefore, the term x;(t,+,) on the right side of equation (2) is
replaced by xf (t,.1), and xf (t,..,) is the prognostic term for the solution x;, (t,.1). Applying the composite rectangle
rule [47] to the square (1) yields the prediction term

1
xf (the1) =g(0) + %Z}l:o bjns1f1 (&, xp (8)), X, (t; — 0))

1
=g(0) + @ o bjm+rf1 20 (8, Xp (Ej—1)),

of these,
hq
bjn+1 = 7((71 +1-D1=m—-ND.
Lemma 1 [21] The m dimensional fractional order linear system without time delay:
( DV1x;(t) = ag1%1 (1) + a2%2(8) + - + A Xon (0),
DY2x,5(t) = az1x1(t) + Az, () + + + Ao Xy (0),

: 3)
Dmem(t) = am1Xy (t) + Az X; (t) + -t ammxm(t)x

y; € (0,1],(i = 1,2,---,m), assume that M is the least common multiple of the denominator of uy,u,, =+, Uy, v; = %

u,v) =1,u;,v; € Zt, wherei = 1,2,---,m and record r = 2. Let A(%) denote the identity matrix of (3)
v Yy

M1

— a1 — Q12 Tt T Qum
M
—dz1 AV —ay; e —agm
AA) = : :
M
~Qm1 Am2 e AT —

then the zero solution of the system (3) is globally asymptotically stable in the Lyapunov sense when all roots 1 of
the equation det( A(1)) = 0 satisfy the condition that all have negative real parts.

The following is an m dimensional linear time delay fractional order system.

Lemma 2 [20] The m dimensional linear time delay fractional order system:

D"x;(t) = ay1 X, (t — 011) + - + Ay X (E — Oum),
D"2x,(t) = ap1 X1 (t — 031) + =+ + A Xon (£ — T2n),

DYmxp () = A X1 (t — Op1) + -+ QX (t — ),
here y; € (0,1], i = 1,2,--,m, —max;; 0;j = —0Opmax, 0 = (0;j)mxm € (R)™" denotes the delay matrix, 4 = (a;;)mxm

denotes the coefficient matrix, x;(t), x;(t — 0;;) € R denotes the state variables, x;(t) € C[~0mq, ,Laplace transforms
on each side of the system (4).

LD"x,(8)) = L[ag1%,(E — 011) + -+ + AymX (£ — O1m)],
L(DV2x5(8)) = L[az1%1(t — 021) + =+ + AamXm (£ — 02im)],

LD (6)) = L@y 21 (€ = Or) + - + Gy (£ = Ty,
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From the definition and properties of the Laplace transform, it follows that

{ s"1X,(s) = a;1e™ 11X (8) + -+ agme M X (),
s2X,(s) = ay1e7%921X,(s) + - + ayme *72mX,, (s),

stmX,  (s) = ape™5m1X;(s) + - + apme ommX,, (s),

Consequently,
SYI — alle_so—ll e _alme_salm Xl(s)
_a21e_50-21 _aZme_SUZm XZ(S)
: : : =0.
_amle_sa'ml oo gYm — amme_so'mm Xm(s)

The identity matrix of system (4) is defined as S:
Syl —_ alle_sull _alme_saln
( _a21e_50—21 eose _a2m6_562m \

S= : : : .
\ _amle_so-ml SYm — amme_samm/

If all roots s of the characteristic equation det(S) = 0 have negative real parts, then the zero solution of the
system (4) is Lyapunov globally asymptotically stable.

3. Model Descriptions

This section describes a three-neuron, three-delay fully connected neural network sustem (5). The system takes
into account both instantaneous and delayed interactions between neurons, effectively simulating complex systems
with memory and long-term dependencies.

DNy, (t) = —p1y1(t) + yuM;(y1(t — 01)) + p1 N1 (¥2(t — 02))

+x:. Ty (y3(t — 03)),
D2y, (t) = —p2y2(t) + LMy (Y2 (t — 01)) + p2No(y3(t — 02))

+i, T, (71 (¢ — 03)), (5)
D¥ys(t) = —p3y3(t) + 3M3(y5(t — 01)) + p3N3(y1 (¢t — 02))

+r3T5 (Y2 (t — 03)),

y; € (0,1], (i = 1,2,3) denotes the fractional order order, y;(t) indicates the neuron node, p; > 0 is called the
neuron autotuning parameter, ¢, p; and k; € R are the connection weight, M;(), N;(-), T;(-)denotes the activation
function, g, > 0 denotes the self-connection time delay, g, = 0 and o; > 0 are different communication delays in the
system.

The structure of system (5) is shown in Fig. (1).

A
A\
. — _yz

Figure 1: Topological structure of fractional order neural network system.
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The main objective of this paper is to establish Hopf bifurcation of fractional order neural network system with
three-time delays to investigate the influence mechanism of time delay combination on the bifurcation point of the
network and to consider the influence of time delay and order on the stability of the system so that the precise
stability intervals and bifurcation conditions are obtained.

Usually, in order to reduce the difficulty of numerical analysis and numerical simulation, we need to make some
assumptions about some state variables.

The activation functions M;(), N;(-), T;(-)are assumed to be bounded, continuously differentiable, monotone
increasing sigmoid-type functions, and satisfy the Lipschitz condition.

In the numerical simulation part, we choose tanh( -) as the specific activation function. Since tanh( -) is bounded,
smooth, monotone, and Lipschitz continuous, it fully satisfies the above assumptions, thereby ensuring consistency
between the theoretical analysis and the simulation results.

Under the given conditions, system (5) has a zero equilibrium point. This assumption is commonly used in neural
network analysis for convenience. For neural networks with a non-zero equilibrium point, a coordinate shift can be
applied to transform it into a zero equilibrium point, facilitating further analysis.

For any activation function M;(+), its Taylor expansion around the equilibrium point 0 (retaining the first-order
term) can be written as

M;(y;(t — 07)) = M;(0) + My (0)y;(t — ) + o(y; (t — ).

If the equilibrium is at the origin and we assume M;(0) = 0 (which holds for odd-symmetric sigmoids such as
tanh), then the constant term vanishes and the linearized approximation becomes

M;(y;(t — g5)) = £,y;(t — 0;).
Simarily

M;(yi(t —0;)) = g,y — 0j),
M;(y;j(t —0j)) = xy;(t— o).

hereby, £; = ;M;'(0). ; = p;N;'(0), x; = 1, T;"(0)(i = 1,2,3).

Linearising at the origin of system (5) and using the Taylor expansion yields

D"y (t) = —py1() + £1y1(t — 01) + 12 (t — 02)
+x,y3(t — 03),
D2y, (t) = —poy.(t) + €2, (t — 1) + £,y3(t — 03)
4 +x,¥,(t — 03), (6)
D¥3ys(t) = —p3y3(t) + £3y5(t — 01) + 3y, (t — 73)
+x3y,(t — 03),

Good results have been achieved after linearisation with this method in many articles, such as solving fractional-
order binary delay Cohen-Grossberg neural networks [48], fractional order dynamic model of genetic regulatory
networks with delays [49], etc.

4. Main Results

In order to study the local stability of fractional order neural network system (5) and to obtain the bifurcation
conditions, this section will be divided into the following seven cases according to a linear system (6).
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Situation 10, =0, =053, =0
For g, = 0, = 03 = 0, the linear system (6) reduces to system (7) without a time delay, as shown below.
D"y (t) = =p1y1 (1) + €151 (1) + §01¥2(8) + x1Y5(0),

DY2y, (t) = —poy2(t) + €2, (1) + $2¥5(t) + x4 (0), 7)
DV3y3(t) = —p3y3(t) + £3y3(t) + 031 (8) + x3Y,(0).

The identity matrix of (7) is:

s"+p -4 —§1 —X1
—X3 s +p, -4, —§;
—§93 —X3 B +p;—4£, )

under the condition that g, = 0, = g; = 0, system (6) is asymptotically stable if all the roots of det(S) = 0 satisfy the
conditions of Lemma 1.

Situation 20, > 0,0, =053 =0

If 0, > 0,0, = 03 = 0, then (6) becomes a single time delay system (8) as follows
D"y (8) = —=p1y1 () + €1y1(t — 01) + £1Y2 () + x1y3(8),
D2y, (t) = —poy2(t) + €21, (t — 01) + #2273 (t) + X1 (1), (8)
DV3ys(t) = —p3y3(t) + £3y3(t — 01) + #23y1(t) + x3Y, (1),

The identity matrix of single time delay system (8) is

—S0o-
s +p —Y{.e 1 —§0, —x;
1% —S0o
—X s’z +p2 - fze 1 _802
Y: —Sao
_(@ —X s’3 +p __g e 1

The characteristic equation of system (8) is

Ay(s) + A (5)e 51 + A,(s)e 2591 + A, (s)e™ 3591 = (, 9)
Of these,

AO(S) = ghtr2tys + p351’1+]/2 + pzshﬂ/s + p15Y2+Y3
+D2p3S1 + p1p3ST? + P1p2S" + P1p2Ds
—§01892803 — X1X2X3
—§3%15"? — P30 %1 — 01X,
—§01P3X2 — §2%35" — §0,p1 X3

A(s) = _1?3SV1+V2 — 1/0251’1"'1’3 — ngV2+V3
—(p2f1 + p3t2)s™ — (p1f3 + p3fy)s?
—(p1?2 + p2t1)sh?
—p1P2?s + D103tz + Papsts
—§3t2x1 — 103X, — 01213 — §201%3

Az(s) = ‘82‘8351/1 + ‘81‘8351/2 + 1,”11,”ZSV3
+p31f, + D213 + D1t2ls

A3 (S) = _‘31‘32’03.

Wang [50] formulate an expression for the bifurcation point of a characteristic equation containing any order
transcendental function utilizing the eigenvalue distribution method.
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Multiply both sides of the equation (9) by et and e?$%1

{AO(S)eml +A1(5) + Az(s)e™* + Ag(s)e™ 7 =0,

Ao(5)e%7 + A, ()€ + Ay (s) + As(s)e ™ = 0. (10)

According to the condition for a Hopf bifurcation in the system from reference [51], we set s=
5(cosg+ ising), (@ > 0), and insert s into (10). By Euler’s formula, we have

— (=id — =9 ,iqn/2 _ 4 qmn Co (AT
slT=(w)!=w' el =0w [cos(z)+15m(2)].
here, w, q € R. Therefore, the real and imaginary parts of s? are given respectively by
—q qn —q . (9%
" cos (7) and @’ sin (7)

For brevity, we let AR, Al denote the real and imaginary parts of 4;(s), (i = 0,1,2,3), respectively, which can then
be obtained.

(0;11 coswoy + G, sinwoy + €53 cos2w0, + €y, sin2wo, = —A,%,
€, 1 co0s@oy + €,y sinw oy + €,s cos 2woy + €,y sin2wo; = —A,,
1 €31 cOS@ 0y + Csp sinw 0y + €35 cos 2 w0y + €4y sin 2 wo; = —A,F, (1)
k0:41 cosway + G,y sinwoy + €3 cos 20, + €4y sin2wo; = —A,,

here

Ci = AR+ A, Cu=A—A), C3=AF C,=4A),
€ = Aol + Azlv €y = AOR - Asz €y = A3Ix €y = _A3R:
Ca = AN+ A", Gy = A — A, Gy = AS, Gy =-A),
Co =AY +A), Cp=AF AR, Ciy=A), Cu=AS

The determinant of coefficient of equations (11) can be expressed as follows:

€1 Gy G5 €y

€ Gy Gy Gy
C=1C3 G5 G55 Cyyl

Cui Gy Gz Cyy

To ensure the existence and uniqueness of solutions to system (8), the coefficient matrix in equation (11) should
be non-singular.

To further establish the bifurcation point with respect to g,, the expressions for cos w g; and sinw o; can be
computed using Cramer’s law

cos(@ay) = 2 = ¥, (@), (12)

sin(@o;) = 2 = (@)
in
—A1R €, G Cp €11 —A1R €z €y
—-A," Gy €3 Gy €y —A, €3 Cp
¢, = _AzR Csz G5 Gyl ¢, €3y _AzR Cs3  Cyyl
A, Gy Gy Gy G —A) Gy Gy
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From equation (12) it is clear that

—2 —2
Hypothesis 2 There are positive real roots in equation (13).
From the first equation in the system of equations (12), we can see that

[arccos(W;(@)) + 2kn], k=012, (14)

1
1k @

Define the first bifurcation point of system (8) as

J— . R — JR— 1 _—
010 = Min{ g, 011, ) O1f» = } = 5arccos(‘{’1(a}))

. —Hg, RHsR-Hg TH!
Hypothesis 3 R

# 0, where H, *, H,.’,
H®, Hy'are the real and imaginary parts of H,, and H, respectively, with H,, and H, described in the following
equation (10).

Lemma 3 s(g;) = u(o;) + iw(o;) be a solution of equation(9) satisfying u(oy,) =0, wW(0;,) = W, Near g; = dy,.
Then the following transversality condition holds
ds
Re —]

#0
do;

(w=wg,01=010)

Proof

Let H(s,01) = Ag(s) + A1(s)e 51 + A,(s)e 2591 + A, (s)e™ 3571, By the implicit function theorem, the equation is
differentiable with respect to o;:

as _ _Hoy
ao = h (15)

Hy = —s[A;(s)e™ 7t + 2A,(s)e ™%t + 3A3(s)e 1],
Hy  =A(s) +[A'(s) — 1A (s)]e ™1
+[A;'(5) = 20:A,(s)]e 7>

+[A3'(s) — 301A5(s)]e 7.
Based on equation (15), we can deduce

ds _ HUl
doy  Hg

_ Hg,R+iHg,'
HgR+iHg!

_ (—Hg,R-iHg D(HSR-iHs")

(H2+HsH?2
R R 1 1 R 1 1 R
_ _H0'1 Hg _Ha'l Hg -Ha'1 Hg _Ha'l Hg
- R 1 R 1
(Hs™)2+(Hs )? (Hs)2+(HsH)Z
therefore,
e [ ds _ —Hg,"HR-Hs 'HS'
doy (Hs™)2+(H)?

(@=w0,01=010)
Let 4,/% and 4;"" be the real and imaginary parts of 4;, and 4;% and 4;' be the real and imaginary parts of 4;,
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respectively.
R _— _ = TARcin(T 7 1 —_—
Hg, = —wo[A] sin(we010) — Ay cos(wy010)

+2A% sin(2w,07,) — 2A) cos(2w,07,)
+3AR sin(3wy07,) — 3A5 cos(3wy07,)]

Hél = _(‘l)_o[AI1e cos(wy0y,) + AI1 sin(wq070)
+2A% cos(2wq01,) + 24} sin( 2wy07,)
+3A% cos(3wy01,) + 3A5 sin(3wy07,)]

H = AT + (AT — G10AY) cos(@g010)
+(A] — 019AY) sin(@g010)
+(AF — 2010A%) cos(2w,070)
+(A] — 2070A%) sin( 2wy 010)
+(A5 — 3010A%) cos(3w,070)
+(A% — 3070A%) sin(3wy010)

H; = A§ + (Af — G10A}) cos(@o010)
+(010AT — AT) sin(@e010)
+(A7 — 2070A%) cos(2wo0710)
+(2010A% — AT) sin( 2w, 070)
+(A% — 3070A%) cos(3we0710)
+(3010A5 — AT sin(3w,070)

Given Hypothesis 3 and the applicability of Lemma 2, it follows that a Hopf bifurcation occurs at o, = 7,4, where
the stability range is [0, 7.¢).

Situation3 0, > 0,0 =03 =0
If 0, > 0,0, = 05 = 0, system (6) is transformed into a single time delay system (16) as follows

D"y, (1) = —=p1y1 (1) + €151 (1) + p1Y2(t — 02) + x1Y3(L),
D2y, (t) = —py2(t) + £3Y,(8) + p2ys(t — 03) + x,71 (D),

(16)
D¥3y3(t) = —p3ys(t) + €3y3(t) + pay1(t — 02) + X3, (D),
the identity matrix of single time delay system (16) is:
s +p -4 —§1e7°72 —X1
) s +p, — 4, —§,e7%%
—§r3e7°% —X3 s +p3 — 43
The characteristic equation of system (16) is as follows

By (s) + B1(5)e™59 + B,(s)e %592 + By(s)e 3572 = (, (17)

Where

Bo(s) = s1H23 4 (p3 — £3)s11472 + (py — €)™ + (py — £4)s72™73
+(P2p3 — P2l — p3fy + £283)sh
+(P1p3 — P13 — p3ty + £1€3)s"?
+(P1p2 — D1tz — P2ty + £1€2)sP?
+P1P2P3 — P1P2¥t3 — P1P3tz + 12t
—D2P3ty + D2t fs + 3ty — 18205 — x1%,x5

Bi(s) = —§3x,(s"2 +p, — ;) — 91%,(s7 +p3 — £3)
—§2%3(s" +py — 1)
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By(s) =0, Bs3(s) = —£16£:63-

Equation (17) is multiplied by e$92, e?5?2 on both sides

Bo(5)e*” + By () + By (5)e ™7 + By(s)e %% = 0,
BO(S)eZSUZ + Bl(s)esaz + BZ(S) + BS(S)e—saz — 0. (1 8)

Lets =& (cosg+ isin g) (@ > 0) be the positive imaginary root of the system of equations (18).

For simplicity, the real and imaginary parts of B;(s) (i = 0,1,2,3) are denoted by

R I
B and B;j,
respectively. It can then be obtained that ...
211 COS @ 0, + Eq, SIND 0, + Eq3 €0S 2 D0, + By, 5in 2 Do, = —B, R,
321 coS @ 0'2 + 522 Sin @ 0'2 + 523 coSs 2 650'2 + 524 Sin 2 &)\0'2 = _Bll, (,l 9)
531 coS 6)\0'2 + 532 sin@ (o)) + 533 cos 2 6)\0'2 + 534_ sin 2 6)\0'2 = _BZR,
E41C0S @ 0, + B4y SIND 0, + E43 €0S 2 D0, + B4y sin2 Do, = —B,’,

here

Determinant of coefficient of equations (19)

i1 Z12 E13 Eng

a1 By Epz Eyy
E=1831 E3p Ezz EHyyl

By Eap Euz By

To ensure the existence of a unique solution to the system of equations, it is desirable that the coefficient matrix
of equations (19) be non-singular.

Same as situation 2, using Cramer’s law

~ Eq G A~
cos o, == =Y, (D),
N 2, =~
sind g, = —= = W, (®), (20)
where
R 7 = = = —_RR = =
—-Bf Eiz Ei3 Ens S11 BY Ei3 Egy
I = = = = Rl = =
—Bi By Epz Eyy =21 By Ey Ep
= =|_RR = = = = == _RR = =
-1 By E3p Eizz Egufr 22 =31 By E3z EHi
I = = = = —_R! = =
—By Ei Euz By S41 By Eus Eus

From equations (20)
9 %@) + 9, (@) = 1.
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Hypothesis 4 Equation (21) has positive real roots.
It follows from the first equation of equations (20) that
Goic = = larccos(P, (@) + 2ken], = 0,1,2, - (22)

—

Define the first bifurcation point a,, = min{a,, -+, 5, =+ } = %arccos( ¥, (@)) of the system (16).

Situation40; > 0,0, =0, =0

Provided that o; > 0,while o, = g, = 0, system (6) is transformed into the single delay system (23) as follows
DYy, () = —p1y1(8) + 4151 () + §01y2(8) + x1Y5(t — 03),

DY2y,(t) = —poy2 (1) + €22 () + §2Y3(t) + x,y1(t — 03),
D¥3y3(t) = —p3y3(t) + £3y3(t) + 231 (1) + x3Y,(t — 03),

the identity matrix of single time delay system (23) is:

sf+p -4 —§1 —x;e7%%
—S0:
—xpe7°% sV +p, — 4 —§>
—§3 —xze % s¥3 +p3 — 43

The characteristic equation of the system (23) is
Co(s) + C1(s)e™5%3 + C,(s)e™259 + C5(s)e 3593 = 0, (24)
where
Co(s) = sMT12%Ys + (p3 — £3)s71772 + (py — £,)s"1*73
+(py — €1)S72*7 + (D203 — ot — €aps + £203)s"
+(P1p3s — P1ts — Pty + €1€3)s2 + (p1py — Pty — oty + £1f2)sP
+D1P2P3 — P1P2t3 — P1pats + p1t2ts
—P2P3ts + Prt1ls + p3tily — £10505 — 010,603
Ci(s) = —§3x1(s"2 + py — £3) — 1%2(s" + p3 — £3)
—§2x3(s" +py — 1)
C,(s)=0
C3(s) = —x1x5x3
Multiplying e$?3 and e2$9 on both sides of equation (24) directly yields the following equation

Co(5)e®? + Cy(s) + Ca(s)e ™% + C5(s)e 2% = 0,
Co(5)e%57 + C,(5)e5% + C,(s) + C(s)e 5% = 0. (25)

Lets = @(cos g +isin g), @ > 0 be the positive imaginary solution to the system of equations (25). For simplicity,
we denote the real and imaginary parts of C;(s) (i = 0,1,2,3) by CF(s) and ¢/(s), respectively.
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Fll COS( 60—3) + F12 Sln( 50_3) + F13 COS( 250_3) + F14 Sln( 250—3) = _Cf,
F21 COS( 50—3) + F22 Sln( 60_3) + F23 COS( 250_3) + F24 Sln( 250_3) = _Cll,

~ A ~ o R (26)
F3; cos(@ao3) + F3, sin(@o3) + F33 cos(2d0a3) + Fay sin( 2@03) = —C3,

\F41 cos(@a3) + Fup sin(@03) + Fuz cos(2@03) + Fuy sin( 2@a3) = —CL.

in here
( Fi, = CoR + CzRv Fi, = C21 - COI: Fi3 = C3R, Fiy = C31:
Fp = Col + Czl’ Fpy = CoR - CzR’ Fp3 = C31‘ Fay = _CsR'
1 F3, = C1R + C3R: F3, = C3I - C1I‘ F33 = CoR’ F3y = _Col'
Fy1 = C11 + C3Iv Fyp = C1R - C3Rx Fy3 = COI: Fyy = CoR-

determinant of coefficient of equations (26)
Fll l:12 F13 F14
_ l:21 FZZ F23 F24—
F31 F32 F33 F34— ’
F41 F4—2 F43 F4—4—

The existence of a unique solution to the system of equations requires that the coefficient matrix in equations
(26) be non-singular.

Note 1 F,, F,expressions such as £;,=, use Cramer’s rule
~ F1 Tt ~
coswoz =—4= Y, (@),

sin@ oy =2 = B,(@), (27)

from the system of equations (27)
7% (@) + 9,2 (@) = 1. (28)

Hypothesis 5 equation (28) has positive real roots
From (27)

G = %[arccos(fp1 (@)) + 2kn], k=0,1.2,.. (29)
Define the first bifurcation point of the system (23), 63, = min{ 63,831, ***, G3r, " } = %arccos(@l(a)).
The determination of the stability range for this situation is similar to the steps in Situation 2 and is omitted here.
Situation 50, > 0, g, € (0,45), g5 € (0,d30)

It should be noted that the connectivity adopted in this work is not arbitrarily constructed; rather, it is based on
the prototypical structure of a three-neuron Hopfield network. In practical neural communication networks, both
local feedback pathways and pathways originating from different sources often involve distinct transmission delays.
Consequently, a topology composed of a self-connection delay plus two communication delays is reasonable. In this
topology, g, represents the intrinsic membrane delay arising from the neuron's self-regulatory inhibitory
mechanism, whereas g, and g5 correspond to delays associated with signals originating from different sources and
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traveling along two communication routes of potentially different distances or media, whose transmission
characteristics and temporal scales are often inconsistent.

Moreover, a three-node network constitutes the minimal structure capable of exhibiting multi-delay coupling
effects, encompassing both local feedback and asymmetric coupling. This structure has thus been widely employed
in studies of the stability and bifurcation mechanisms of delayed neural networks. The primary purpose of selecting
this model is to investigate the cooperative effects among these three types of delays and to examine their impact
on system stability, rather than to replicate a specific biological network. Furthermore, it has been shown that in
three-node networks, differences in connection delays can significantly influence information transmission
efficiency and overall network functioning; for instance, such effects have been observed in cortico-thalamo-cortical
Circuits [49].

When g, = 0, g, € (0,65), 05 € (0,d3;), and o, # g3, g, is treated as a bifurcation parameter in the analysis of
bifurcation in system (6).

The identity matrix associated with the linear system (6) is given by:

—Sao —Sao: —Sao:
s +p, —£e75% —f1e75%2 —x;e7%%
—x,e" 5% s¥2 +p, —£,e75% —§0,e75%
—§0,e75%2 —x;e759% sY3 + py; — £3e75%1

The characteristic equation of linear system (6) is
Do(s) + D1(s)e % + D,(s)e 2571 + Dy(s)e 3591 = 0, (30)
where
Dy(s) = s1H72473 4 p V1tV 4 p, gV1¥Ys 4 G¥2HYs
+D203S" + P1p35'? + p1pas’? + pipaps
—§10:83 777 — X1 Xy x3 725
—(§93%1572 + 3Py, )e 572+ 73)
—(§91%28"* + 1p3x;)e 52+ 73)
—(§92X35" + f,p1x3)e 521,
Dy(s) = —f3sM1¥Y2 — £, gV1¥Ys — p gV2tV3
—(p2f3 + p3ty)s" — (P13 + p3t)sr?
— (P12 + P2£1)sT? — p1p3ts — Pap3fy — P12t
+ (32, + §183%, + §,£1x5)e502103),
Dy(s) = £,£,5Y8 + £,835Y2 + £,£5s1
+p1€2s + Ptz + p3tits,
Ds(s) = —¥14,%5.
Multiplying e*?1 and e%°1 on both sides of equation (30), we get

Do(s)escfl + Dl(s) + Dz(s)e—sdl + D3(s)e_25"1 =0,
Do(s)e?*?t + D;(s5)e° + D, (s) + D3(s)e™ "t = 0. (31)
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Lets = w(cos§+ ising)(w > 0) be a positive imaginary root of equations (31), and D;* and D;’ be the real and
virtual parts of D;(s)(i = 0,1,2,3), respectively.

Now, separate the real part and virtual part

P, cos w oy + P, sinw oy + Py3 cos 2 way + Py, sin 2 woy = —D, R,
P,1 c0s @ 0, + P, sin w 0y + Py3 cos 2 woy + Py, sin 2 wo, = —D,/,
P31 cos w 0y + Py, sinw 0y + P33 €05 2 woy + Py sin 2 woy = —D,K, (32)

P, cos 01 + Py, Sin w 0y + Py3 €05 2 w0y + Pyy sin 2 wo, = =D/,

here

P, = DoR + DzR' P, = Dzl - Dol: P; = D3R, P, = D3I'
Py = DOI + Dzl: Py, = DOR - Dsz Py3 = D3Ix Py = _DsR:
Py = D1R + D3R: P, = D3I - D1Ix P33 = DoRx Py, = _DOI:
P, =D,' + D5/, P, =D,"-D;%, Pz =D, P, =D,"

\

The characteristic equation of this part contains coefficients Dy, D;, D,, D5, ..., but these coefficients themselves
include exponential terms related to other time delays. The computation is large, and we will perform numerical
solutions in Numerical simulations.

In order to verify Hopf’s bifurcation condition, the following hypothesis is proposed in this paper.

Gix1+Gzx2

T # 0, where Gy, x4, G, x2 is described by equation (37).
1 2

Hypothesis 7

Lemma 4 Let s(0y) = u(0y) + iw(oy,) be a solution of equation (30) satisfying u(a;*) =0, w(o,*) = w, Near o, =
a,". Then the following transversality condition holds

ds
Re —]

#0
do;

(w=wp,01=01")

Proof

The real and imaginary parts of D;’(s) can be expressed in terms of D;'* and D;"’. According to the implicit function
theorem, find the derivative of equation (30) with respect to o,

4 _G6) _ _Fou
doy  x(s)  Fg’ (33)
of these,
F(o1,5) =Dg(s) + Dl(s)e_so'l + Dz(s)e—ZSUl + D3(S)e_35‘71‘
G(s) = s[D,(s)e™t + ZDZ(S)e_Zsal + 3D3(s)e‘35"1],

x(s) =Dy (s) +[Dy'(s) — 1Dy (s)]e ™"
+[D2’(S) - 201132(5)]9_2501
+[D3'(5) - 301D3(5)]e_3501-

From equation (37) it can be deduced that

ds G X1 + G X,
Re| | i T
do,

w=wyo0 =0, =
( 0 Y1 1) X12+X22
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Gl = (l)o(DlR sin (Oh) 0_1* - D11 coSs (Oh) 0_1* + ZDZR sin 2 (1)00—1*
—2D," cos 2 wyo,* + 3D;3% sin 3 wyo,* — 3D’ cos 3 wyay*),

G, = wo(D;®coswyo,* + Dy sinwy oy + 2D,R cos 2 wyo,*
+2D,! sin 2 wyo,* + 3D3% cos 3 wyo,* + 3D3R sin 3 wy0, "),
X1 =Dg + (Dff — 07 D) cos(weoy) — (Df — 07D}) sin( w,o7)

+(DR — 20:D%) cos(2wq07) — (DY — 207 DY) sin(2wqy0y)
+(D — 30;D%) cos(3wyor) — (DY — 30; D) sin(3w,07),

X2 =Dy + (D — 0yDY) sin(weo7) + (DY — 07 D7) cos(w,07)
+(DF — 20;D¥) sin(2wy07) + (DY — 207 DY) cos(2wqy07)
+(DR — 30, DY) sin(3wyor) + (DY — 30:DL) cos(3w,ya7).

By Hypothesis 7, the transversality condition holds, thus completing the proof of Lemma 4.

We similarly prove the bifurcation points where the other two time delays give rise to bifurcations about Lemma
3, and give the stability ranges corresponding to these two time delays. On this basis, the bifurcation point of the
system about the last time delay when these two time delays are in the stability range is further proved using Lemma
4. From this, we derive the following theorems.

Theorem 1 If Hypotheses 1 to 7 hold, then the following results hold
(1) If o, €[0,65),05 €[0,d30),0; € [0,0,") , the zero equilibrium point of system (5) is asymptotically stable.

(2) If g, € [0,65), 05 € [0,735), and a; > a;*, the zero equilibrium point of system (5) is unstable, and system (5)
undergoes a Hopf bifurcation at g, = a;".

Similarly situation 5 leads to situation 6 which leads to Theorem 2, and situation 7 which leads to Theorem 3.
Theorem 2 Under satisfying all the hypotheses, the following result can be obtained
(3) Ifay, €]0,075), 05 € [0, d3,), when g, € [0,0,*), the zero equilibrium point of system (5) is asymptotically stable.

(4) If o, €]0,05),05 € [0,d355), when o, € [0,%,+0), the zero equilibrium point of system (5) is unstable and
system (5) undergoes a Hopf bifurcation at g, = g,".

Theorem 3 Under satisfying all the hypotheses, the following result can be obtained
(5) Ifay, €]0,070), 0, € [0,d55), when g; € [0,05%), the zero equilibrium point of system (5) is asymptotically stable.

(6) If o, €]0,019),0, € [0,d5), when o5 € [0, +0), the zero equilibrium point of system (5) is unstable and
system (5) undergoes a Hopf bifurcation at g; = a5™.

5. Numerical Simulations

In order to verify the correctness of the results of the theoretical analysis in this paper, the system (4) is simulated
numerically using the predictor-corrector scheme for systems of fractional order delay differential equations.

In the case of multiple discrete delays a;, g5, 05 that are not integer multiples of each other, the delayed terms
y(t — 0;) generally do not fall on the computational grid points t, = kh. In this work, we handle the delayed terms in
the predictor-corrector method using linear interpolation. where t,,, and t,,,, are the grid points satisfying t,, < t; —
0 < ty41. Where system (1) in t € [0,T] , assume that ¢t is divided into N,that is {t, = nh:n =k +2,---,N + k} and
satisfies h = T/N, k = max[},%2, 2], where y(t; — ;) = y(jh — kih) = y(tj4,).j € Zand k < j < n — 2. Denote y,,,; =
Yin(tas1) @s the approximate value of y; at t,,,, in the system (5) using the predictor-corrector method,i = 1,2,3.
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Firstly, according to (2), the system (5) is discretized and the discrete form is

hY1 p
Yo [P

+14 tanh(yf;l_kl,l) +p1 tanh(yrz:+1—k2,1)
+icy tanh(Ypy g g 1) + X0 Gt (—P1Yja
+4 tanh(yj_i, 1) + p1 tanh(yj_, 1)

+i; tanh(yj_k, 1)),

Yn+11 = Yo t

2 p p
Y (2+2) [=P2YVns12 2 tanh( Yy, 1y, o)

+p, tanh( yfl’ﬂ_kzlz) t K tanh(y1f+1—k3.2)
+ Xj=0 Gn+1 (—P2Yj2 + o tanh(yj, 2)
+p, tanh(y;_k, ) + Ky tanh(yj_i, 2))],

Yn+12 = Yoz T

Yn+13 = Yozt ﬁ [_P3y1117+1,3 + 13 tanh(yf;_l_kls)
+ps5 tanh(y,f+1_k2,3) + K3 tanh(yr?+1—k3,3)
+ Xic0 Gjne1 (—P3Yj3 + 13 tanh(yj, 3)
+p3 tanh(yj_k,3) + ks tanh(y;_,3))]-

The following three examples are discussed for simulation experiments on system (5). The examples chosen in
this paper have several significant advantages to fully reflect the complexity and representativeness of the system.

Firstly, in the choice of fractional order, we adopt three different orders, avoiding the monotonicity of the uniform
order, making the model more suitable for the situation of inconsistent system memory effects in practice, and
reflecting the flexibility and wide applicability of fractional order systems.

Second, in the design of coefficients, we especially chose the settings of mixed positive and negative coefficients
with various size distributions, which not only reflects the real structure of the coexistence of excitation and
inhibition among neural networks but also increases the nonlinear complexity of the system.

Third, in the initial value selection, we set all three initial values non-zero and different, which enhances the
generality and persuasiveness of the system simulation. Finally, in the setting of time delay parameters, we
demonstrate the effect on the other time delay and the stability and bifurcation behavior of the system by first
introducing two different time delays and adjusting them within a certain range. In particular, in combination with
the analysis of the change of the bifurcation point, we reveal the evolution mechanism of the system from stability
to oscillation, highlighting the time delay sensitivity and regulation potential of fractional-order time delay neural
networks.

In summary, good stabilization or bifurcation behaviors are still observed under different parameter settings.
5.1. Example 1

In this example, the bifurcation problem of system (34) is investigated by discussing situation 5a; > 0,0, € (0, 65;),
o3 € (0, d30) with o, as the bifurcation parameter

D%%%y (t) = —1.8y,(t) + 1.2 tanh(y,(t — 77))
+2.1tanh(y,(t — 0,)) + L.3tanh(y;(t — 03)),

D7y, (t) = —1.1y,(t) + 1.2 tanh(y,(t — 071)) (35)
—0.9tanh(ys;(t — 0,)) — 1.3 tanh(y,(t — 03)),

DO%®y;(t) = —12y;3(t) — 1.3 tanh(y;(t — 01))

+0.9 tanh(y,(t — 0,)) — 1.2 tanh(y,(t — 03)),
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Inthis system (39), The step sizeis h = 0.1, its initial conditions we can set as (y, (0), y,(0), ¥5(0)) = (0.01,—0.01,0.01),
0, =0.6,0;=09.

From the parameter settings, we know that the Hypotheses 1-7 are satisfied, and we can clearly figure out that
w = 0.4315, according (30) o, = 1.6301, when ¢, = 1.62 < g;*, the zero equilibrium point of the system (32) is
asymptotically stable, as shown in Fig. (2) knowing that (1) of Theorem 1 holds, when g, = 1.66 > g,*, the system
loses its stability, and starts to oscillate, as shown in Fig. (4), and in Fig. (5), it is clearly and intuitively shown that
when g, = g,*, the bifurcation occurs, So as in Fig. (3) and Fig. (5) it can be seen that (2) of Theorem 1 holds.

In Fig. (6), we can clearly see the effect of the time delays combination (o,,d3) on g;*,when the communication
delays g, and g5 are both small (i.e., near the origin of the coordinate plane), the critical value a;* is correspondingly
large. As o, and a5 increase, the critical valueo;* decreases. This reveals a dynamic, mutually compensatory trade-
off between the two delays. which also tells us that ¢, * is not only controlled by the parameter only; through Fig. (7),
we can see that the stability interval of the fractional order neural network is longer than that of the integer order
neural network, and the range of the adjustable time delay is wider in the stability interval.
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Figure 2: The time-series and phase diagrams of system (35), 0, = 0.6, 05 = 0.9, 6, = 1.62 < g;* = 1.6301.
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Figure 3: This set of figures shows three different orders y; = 0.5, y, = 0.6, y; = 0.7. Compared with Example 1, although the
orders are different, the resulting effects are similar and do not depend on a particular choice of the ending.
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5.2. Example 2

In this example, situation 6 o, > 0, g; € (0,077,), g5 € (0, d3,) are discussed to study the bifurcation of system (39)
using o, as the bifurcation parameter

D%y, (t) = 1L4y,(t) + 0.9 tanh(y,(t — 0,)) — 0.9 tanh(y,(t — 7))
—1.3tanh(y;(t — 03)),
D%%y,(t) = 1.1y,(t) — 0.9 tanh(y,(t — 0y)) + 0.9 tanh(y;(t — 7))
] —1.2 tanh(y,(t — 03)), (36)
D*%ys(t) = 14y3(t) — 1tanh(y;(t — 01)) — 0.8 tanh(y1(t — 03))
—1.9tanh(y,(t — g3)),

In this system (36),The step size is h = 0.05, its initial conditions we can set as (y;(0),y,(0),y5(0)) =
(0.05,0.01,0.02), o, = 0.6, g5 = 1.2.

Because all the hypotheses are satisfied, we can clearly work out that w = 0.6994, since Situation 6 has been
omitted, the calculation of g,* is the same as that of 4,* to obtain ¢,* = 4.3255, the zero equilibrium point of the
system (36) is asymptotically stable when o, = 4.3 < 0,*, Theorem 2 (3) holds as shown in Fig. (8), and the system
loses its stability and starts to oscillate when ¢, = 4.8 > ,*, as shown in Fig. (9), and it is clearly and intuitively
demonstrated that bifurcation occurs when ¢, = g, in Fig. (10), as in Fig. (9) and Fig. (10) know that Theorem 2 (4)
holds.

In Fig. (11),as the self-connection delay o, or the communication delay o5 increases, the critical delay g, exhibits
a pronounced decreasing trend.The rates of change along the o, axis and the g; axis are found to be different. The
surface may be steeper in the g, direction than in the o5 direction. This indicates that, in this particular system, the
critical communication delay o,* is more sensitive to variations in the self-connection delay o;.

By comparing the convergence of the fractional order neural network and the integer order neural network in
Fig. (12), we can see that the integer order neural network oscillates a little bit more obviously than the fractional
order.
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5.3. Example 3

In this example, situation 705 > 0, g, € (0,07,) , 05 € (0,d5) are discussed to study the bifurcation of system (36)
with g5 as the bifurcation parameter

D%y (¢) = 0.5y;(t) — 0.7 tanh(y,(t — 01)) — L tanh(y,(t — 03))
—1.2tanh(y;(t — a3)),
D%y, (t) = 0.4y,(t) — 0.5 tanh(y,(t — 0;)) + 0.5 tanh(y;(t — 7))
] +1 tanh(y,(t — 03)), (37)
D%y, (t) = 0.6y5(t) — 0.5 tanh(y;(t — a;)) — 0.8 tanh(y,(t — 7))
—1tanhy, (t — 03)),

In this system (37), whose initial conditions we can set as (y;(0),y,(0),y5(0)) = (0.03,—0.03,0.03) , g, = 1.8, g, =
2.1,h =0.1.

From all the above hypotheses, we can clearly work out w = 1.3695,since Situation 7 has been omitted, the
calculation of g5* is the same as that of g,* to obtain o5* = 0.4310, when o5 = 0.43 < g3, the zero equilibrium point
of the system (40) is asymptotically stable, Theorem 3(5) holds as seen in Fig. (13), when g; = 0.45 > g5*, the system
loses its stability and starts to oscillate as shown in Fig. (14), and in Fig. (15) it is clearly visualised that the bifurcation
occurs when o3 = a3*, Thus from Fig. (13) and Fig. (14), Theorem 3(6) holds.

In Fig. (16) it can be clearly see the simultaneous increase of the self-connection delay g, and the communication
delay o, can significantly suppress o;* and in this example we also compare the stability of the fractional order
neural networks with that of the integer order neural network. It is clear that the stability and dynamic performance
of the fractional order neural network is better in Fig. (17).
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6. Conclusion

Delays are inherent in many real-world systems. In neuroscience, different types of delays directly affect the
speed of information processing and cognitive functions; in communication networks, multi-delay factors
determine the reliability, congestion level, and real-time performance of data transmission; in distributed control
and robotic systems, mismatches between local and remote feedback delays may critically influence system stability
and the success of cooperative tasks. Therefore, multi-delay effects are not merely theoretical constructs but
fundamental factors shaping the behavior of biological and engineering networks.

In this paper, we established and analyzed a fractional-order Hopfield neural network with three distinct delays:
one self-connection delay and two communication delays. Because these delays interact nonlinearly, conventional
delay-transformation techniques cannot be applied directly. To overcome this difficulty, we derived the
characteristic equation containing three transcendental terms and developed a general strategy to solve for the
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bifurcation points by combining structural properties of the equation with Cramer’s rule. On this basis, an explicit
Hopf bifurcation criterion was obtained, allowing us to determine the stability region of the system.

The theoretical results demonstrate that when each delay remains below its critical value, the equilibrium point
is asymptotically stable. Once any delay exceeds its threshold, the system undergoes Hopf bifurcation and
transitions into periodic oscillations. Moreover, the coupling effects among the three delays significantly shift the
bifurcation boundaries, indicating that system stability is jointly shaped by internal and communication delays
rather than by a single delay parameter. Additionally, comparative analyses show that fractional-order neural
networks possess larger stability regions and stronger oscillation-suppressing capabilities than their integer-order
counterparts, confirming the beneficial role of fractional memory in delaying bifurcations and enhancing stability.

From a numerical perspective, we employed an improved predictor-corrector method tailored for fractional
multi-delay systems. This approach effectively captures the nonlocal memory of fractional derivatives while
maintaining high numerical accuracy and stability, making it a reliable computational tool for studying complex
fractional-order neural dynamics. The numerical simulations agree closely with the theoretical predictions, further
validating the correctness and robustness of the proposed analysis framework.

Beyond the specific model studied here, the analytical techniques and numerical methodology developed in this
work have broad applicability. They can be extended to gene regulatory networks, multi-agent cooperative systems,
neuromorphic circuits, and the stability analysis of modern power grids, where multiple types of delays and memory
effects coexist. Therefore, this study not only advances the theoretical development of multi-delay fractional
dynamical systems but also provides practical tools and insights for stability control, delay management, and
performance optimization in complex networked systems.
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