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ABSTRACT 

This study extends a traditional neural network model to an asymmetric Hopfield 

model incorporating triple time delays through a combined qualitative and 

quantitative analytical approach. The system is first linearized using Taylor series 

expansion, followed by the determination of bifurcation points in the resulting system 

of equations containing quadratic transcendental terms. An improved Adams-

Bashforth-Moulton predictor-corrector method is employed for discretization 

analysis. Theoretical findings are validated through three numerical case studies, with 

further examination of how time delays influence the system’s dynamic behavior. 
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1. Introduction 

Fractional calculus generalizes classical integer-order calculus by extending differentiation and integration to 

arbitrary real orders. Unlike integer-order calculus, which primarily characterizes local properties of functions, 

fractional calculus incorporates hereditary and memory effects [1]. Consequently, it is widely regarded as an 

effective tool for describing real-world systems in complex fields such as physics [2], biology [3], and viscoelastic 

fluids [4]. The distinctive feature of fractional derivatives lies in their nonlocality: the current state of a function 

depends not only on its instantaneous value but also on its historical states. Although this property poses challenges 

for computational efficiency, it provides significant advantages in describing natural systems with memory effects. 

Compared with ordinary differential equation models, fractional differential equation models can more accurately 

capture the dynamical behavior of complex systems. More importantly, fractional operators can broaden the 

stability range of systems and delay the occurrence of Hopf bifurcations, making them highly valuable in the study 

of nonlinear systems and complex networks. 

When differential equations involve the historical values of state variables, they give rise to delay differential 

equations. The fundamental theory and applications of such equations have been systematically studied [5-8]. For 

example, Matignon [9] investigated the stability of fractional delay differential equations (FDDEs); works [10, 11] 

analyzed the bounded-input bounded-output stability of linear time-invariant FDDEs. Hwang and Cheng [12] 

proposed numerical methods for testing FDDE stability, while [13] studied the stability of specific types of FDDEs, 

and [14] further examined the stability and bifurcation characteristics of generalized FDDEs. In terms of complex 

dynamical behavior, Bhalekar and Daftardar-Gejji [15] as well as Daftardar-Gejji et al. [16] conducted in-depth 

studies on chaos in FDDEs. Bhalekar [17] revealed chaotic features of different FDDE systems, and in collaboration 

with others [18, 19], analyzed their applications in nuclear magnetic resonance. These achievements have laid a 

solid theoretical foundation for the deep integration of fractional-order systems and delays. 

In addition to commensurate fractional-order systems, incommensurate fractional differential systems (IFDSs), 

in which different state variables evolve with distinct fractional orders, have attracted increasing attention. IFDSs 

can more flexibly describe heterogeneous memory effects and multi-scale dynamics in complex systems, and thus 

provide a more realistic modeling framework. The well-posedness of general IFDSs was investigated in [20], while 

[21] studied the existence and uniqueness of mild solutions for incommensurate systems with constant delay. The 

Ulam–Hyers stability of linear IFDSs was analyzed in [22], and uncertainty analysis of discrete IFDSs in neural 

networks was examined in [23]. Furthermore, inverse problems and applications of generalized IFDSs were 

discussed in [24]. These studies collectively highlight the theoretical importance of IFDSs and motivate further 

investigations into the dynamic behavior of multi-delay incommensurate fractional neural networks. 

Early studies on delay-induced dynamics primarily focused on single- and double-delay systems. For instance, 

Wang [25] developed a stability analysis framework for fractional-order Hopfield neural networks with delays, while 

Yuan [26] highlighted the significant influence of self-connection delays on bifurcation behaviors. Moreover, 

references [27-29] investigated the stability regions and Hopf bifurcations of double-delay differential equations. 

With the advancement of research, multi-delay fractional-order neural networks have attracted increasing attention. 

In practical systems such as neural networks, communication networks, and distributed control, multi-delay 

phenomena are widespread, including heterogeneous transmission delays among neural pathways [30], local and 

long-distance communication delays in networked systems [31], and heterogeneous sensor feedback delays in 

distributed systems [32]. To address these issues, Li [33] established complete and Mittag-Leffler synchronization 

criteria for fractional-order neural networks with time-varying delays using Lyapunov methods, Kronecker-product 

techniques, and adaptive delayed controllers. Ma [34] analyzed Hopf bifurcations in a dual-delay BAM neural 

network via characteristic equations and root distribution, revealing the effect of fractional order on bifurcation 

points. Kumar et al. [35] and Sivalingam [36] proposed improved L1-based predictor–corrector  methods for 

numerically solving multi-delay fractional-order systems and simulating delay systems with memory effects, 

providing effective tools for both theoretical analysis and practical applications. 

Meanwhile, fractional-order dynamical models, owing to their ability to characterize memory and hereditary 

properties, have demonstrated substantial advantages in modeling complex real-world systems. Prior work has 

highlighted the applicability of fractional-order models to disease transmission, biological interactions, and social 
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behavior dynamics. For instance, the effects of prey refuge and fear factors on the stability and dynamical behavior 

of a fractional-order predator–prey system were examined in [37]. Fractional differential equations were 

subsequently employed to investigate the transmission dynamics of lumpy skin disease, along with a systematic 

evaluation of the effectiveness of quarantine and vaccination strategies [38]. In addition, a Caputo fractional-order 

model for coffee berry disease was proposed, with analyses of equilibrium stability, existence and uniqueness of 

solutions, and parameter sensitivity, demonstrating its relevance to plant pathology through numerical simulations 

[39]. More recently, a social media addiction model incorporating Caputo fractional derivatives and fractal-fractional 

operators was introduced, establishing existence and uniqueness of solutions as well as Ulam-Hyers stability, and 

illustrating the potential of fractal-fractional operators in capturing complex social behaviors [40]. 

Taken together, these studies reveal that fractional-order approaches and multi-delay structures offer significant 

advantages across ecological systems, epidemiological modeling, and social behavior dynamics. Thus, investigating 

the multi-delay characteristics of complex systems holds considerable theoretical importance and practical 

relevance. 

It is worth noting that in fractional neural networks, self-connection delay and communication delays are two 

key types of delays. Self-connection delay refers to the delay caused by the influence of a neuron’s own past state 

on its future evolution. Such delay usually arises from signal processing and transmission times within the neuron, 

or from computation and feedback mechanisms in artificial neural networks. Existing studies have shown that in 

second-order recurrent neural networks with delays, suppressing self-connections helps enhance stability and 

achieve asymptotic convergence [41]. In contrast, communication delay refers to the time required for signal 

transmission between neurons. This type of delay, particularly pronounced in complex network topologies or long-

distance connections, plays a decisive role in synchronization and stability. Wang et al. [42], in studying fractional 

inertial Cohen–Grossberg neural networks, deeply analyzed the impact of time-varying delays on stability and 

periodic behavior, further highlighting the crucial role of communication delay in neural network dynamics. 

However, most existing research focuses on single- or double-delay systems. For more realistic systems with three 

or more delays, theoretical tools and efficient analytical methods remain lacking, due to the presence of multiple 

transcendental terms in the characteristic equations, the complexity of stability regions, and the difficulty of 

bifurcation analysis. This issue is especially pronounced when both self-connection and communication delays 

coexist, since the coupling effects of different types of delays become significant, and traditional dimensionality 

reduction methods fail to accurately capture the dynamic behavior. 

To further explore the dynamic behavior of fractional neural networks with multiple delays, this paper considers 

a three-delay model consisting of one self-connection delay and two distinct communication delays. For the 

characteristic equation containing multiple transcendental terms, the classical procedure of multiplying by 

exponential terms is used to remove delay-related decay factors and facilitate root distribution analysis. The real 

and imaginary components are then separated to identify the Hopf bifurcation conditions. In this work, Cramer ’s 

rule is employed as a convenient algebraic technique to solve the resulting system of equations. Within this 

established analytical framework, we investigate the stability and bifurcation characteristics of the system and verify 

the findings through numerical simulations using the predictor–corrector method. 

2. Preliminary Knowledge 

This section provides a fundamental explanation of the Caputo fractional derivative and its corresponding 

Laplace transform. 

Definition 1 [43] The Caputo fractional order 𝑞 -th derivative of 𝑓(𝑡) is  

 𝐷𝑞𝑓(𝑡) =
1

Γ(⌈𝑞⌉−𝑞)
∫ (𝑡 − 𝑠)⌈𝑞⌉−𝑞−1
𝑡

0
𝑓(⌈𝑞⌉)(𝑠)𝑑𝑠, 

where 𝑓 ∈ 𝐿1([0, 𝑏]), 𝛤(⋅)is the Gamma function, 𝑞 is the fractional orders,0 < 𝑞 ≤ 1, ⌈𝑞⌉ is the ceiling of 𝑞. 

Definition 2 [44] The Laplace transform let 𝑓: [0,∞) → 𝑅 be of exponential order, i.e., there exist constants 𝑀 > 0 

and 𝑎 ∈ 𝑅 such that  
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 |𝑓(𝑡)| ≤ 𝑀𝑒𝑎𝑡  ∀𝑡 ≥ 0. 

Then the integral  

 ℒ{𝑓}(𝑠): = 𝐹(𝑠): = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
 

converges for all 𝑠 > 𝑚𝑎𝑥{ 𝑎, 0}, and 𝐹(𝑠) is called the Laplace transform of 𝑓. 

Furthermore, let 𝑞 > 0 and set 𝑚:= ⌈𝑞⌉. If 𝑓 possesses derivatives up to order 𝑚 − 1 on [0,∞) and 𝑓(𝑚−1) is locally 

absolutely continuous, then for the same range of 𝑠 satisfies  

 ℒ ⥂ {𝐷0
𝑞
𝑓}(𝑠) = 𝑠𝑞𝐹(𝑠) − ∑ 𝑠𝑞−𝑘𝑚

𝑘=1 𝑓(𝑘−1)(0). 

In particular, for 𝑦(𝑥):= 𝐸𝑞(−𝜆𝑥
𝑞) with 𝜆 > 0, one has  

 𝐿{𝑦}(𝑠) =
𝑠𝑞−1

𝑠𝑞+𝜆
. 

Note 1 ℒ{𝑓(𝑡 − 𝜎)} = 𝑒−𝑠𝜎𝐹(𝑠), ℒ{𝑎𝑓1(𝑡) + 𝑏𝑓2(𝑡)} = 𝑎𝐹1(𝑠) + 𝑏𝐹2(𝑠). 

Predictor-corrector scheme [45] is a method proposed by Diethelm et al. in 2002 for computing fractional order 

differential equations, also known as the generalized Admas-Bashforth-Moulton method.Its superiority lies in its 

ability to solve the problem of numerically approximating the solution of general fractional order differential 

equations. 

Consider fractional order time delay differential equation:  

 {
𝐷𝑞𝑥(𝑡)  =  𝑓1(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜎)),   𝑡 ∈ [0, 𝑇],

𝑥(𝑘)(𝑡)  =  𝑔(𝑡),                            𝑡 ∈ [−𝜎, 0],
 (1) 

where 𝑓1 is a nonlinear function, 𝑞 ∈ (0,1], 𝜎 > 0 is the time delay. ℎ = 𝑇/𝑁,𝑁 is sufficiently large, 𝑘 = 𝜎/ℎ, 𝑘,𝑁 ∈ 𝑍, 

𝑡𝑛 = 𝑛ℎ, 𝑛 = −𝑘,−𝑘 + 1,⋯ ,−1,0,1,⋯ ,𝑁, denote the approximate solution 𝑥ℎ(𝑡) ≈ 𝑥(𝑡) of equation (1). Then 

𝑥ℎ(𝑡𝑗) = 𝑔(𝑡𝑗), 𝑗 = −𝑘,−𝑘 + 1,⋯ ,−1,0, 

the approximate solution of equation (1) containing time delay is 

𝑥ℎ(𝑡𝑗 − 𝜎) = 𝑥ℎ(𝑗ℎ − 𝑘ℎ) = 𝑥ℎ(𝑡𝑗−𝑘), 𝑗 = 0,1,⋯ ,𝑁, 

substituting the approximate solution𝑥ℎ into (1) for integration of order 𝑞 yields 

𝑥ℎ(𝑡𝑛+1) = 𝑔(0) +
1

Γ(𝑞)
∫ (𝑡𝑛+1 − 𝜁)

𝑞−1𝑡𝑛+1
0

𝑓1(𝜁, 𝑥(𝜁), 𝑥(𝜁 − 𝜎))𝑑𝜁, 

according to the above equation, from the composite trapezoidal integration formula [46], it can be obtained that  

 

𝑥ℎ(𝑡𝑛+1) = 𝑔(0) +
ℎ𝑞

Γ(𝑞+2)
𝑓1(𝑡𝑛+1, 𝑥ℎ(𝑡𝑛+1), 𝑥ℎ(𝑡𝑛+1 − 𝜎))

 +
ℎ𝑞

Γ(𝑞+2)
∑ 𝑎𝑗,𝑛+1𝑓1
𝑛
𝑗=0 (𝑡𝑗, 𝑥ℎ(𝑡𝑗), 𝑥ℎ(𝑡𝑗 − 𝜎))

= 𝑔(0) +
ℎ𝑞

Γ(𝑞+2)
𝑓1(𝑡𝑛+1, 𝑥ℎ(𝑡𝑛+1), 𝑥ℎ(𝑡𝑛+1−𝑘))   

 +
ℎ𝑞

Γ(𝑞+2)
∑ 𝑎𝑗,𝑛+1𝑓1
𝑛
𝑗=0 (𝑡𝑗, 𝑥ℎ(𝑡𝑗), 𝑥ℎ(𝑡𝑗−𝑘)),   

 (2) 

of these, 
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 𝑎𝑗,𝑛+1 = (

𝑛𝑞+1 − (𝑛 − 𝑞)(𝑛 + 1)𝑞 ,                                        𝑗 = 0,       

(𝑛 − 𝑗 + 2)𝑞+1 + (𝑛 − 𝑗)𝑞+1 − 2(𝑛 − 𝑗 + 1)𝑞+1, 1 ≤ 𝑗 ≤ 𝑛,
1,                                                                                    𝑗 = 𝑛 + 1.

 

Since there are 𝑥ℎ(𝑡𝑛+1) on both the left and right sides of equation (2) and the function 𝑓1 is nonlinear, it is very 

difficult to find the solution 𝑥ℎ(𝑡𝑛+1) of equation (2). Therefore, the term 𝑥ℎ(𝑡𝑛+1) on the right side of equation (2) is 

replaced by 𝑥ℎ
𝑃(𝑡𝑛+1), and 𝑥ℎ

𝑃(𝑡𝑛+1) is the prognostic term for the solution 𝑥ℎ(𝑡𝑛+1). Applying the composite rectangle 

rule [47] to the square (1) yields the prediction term 

 
𝑥ℎ
𝑃(𝑡𝑛+1) = 𝑔(0) +

1

Γ(𝑞)
∑ 𝑏𝑗,𝑛+1𝑓1
𝑛
𝑗=0 (𝑡𝑗, 𝑥ℎ(𝑡𝑗), 𝑥ℎ(𝑡𝑗 − 𝜎))

= 𝑔(0) +
1

Γ(𝑞)
∑ 𝑏𝑗,𝑛+1𝑓1
𝑛
𝑗=0 (𝑡𝑗, 𝑥ℎ(𝑡𝑗), 𝑥ℎ(𝑡𝑗−𝑘)),   

 

of these, 

𝑏𝑗,𝑛+1 =
ℎ𝑞

𝑞
((𝑛 + 1 − 𝑗)𝑞 − (𝑛 − 𝑗)𝑞). 

Lemma 1 [21] The 𝑚 dimensional fractional order linear system without time delay:  

 

{
 
 

 
 
𝐷𝛾1𝑥1(𝑡) = 𝑎11𝑥1(𝑡) + 𝑎12𝑥2(𝑡)   + ⋯+ 𝑎1𝑚𝑥𝑚(𝑡),

𝐷𝛾2𝑥2(𝑡) = 𝑎21𝑥1(𝑡) + 𝑎22𝑥2(𝑡)   + ⋯+ 𝑎2𝑚𝑥𝑚(𝑡),
⋮

𝐷𝛾𝑚𝑥𝑚(𝑡) = 𝑎𝑚1𝑥1(𝑡) + 𝑎𝑚2𝑥2(𝑡) + ⋯+ 𝑎𝑚𝑚𝑥𝑚(𝑡),
 (3) 

𝛾𝑖 ∈ (0,1],(𝑖 = 1,2,⋯ ,𝑚), assume that 𝑀 is the least common multiple of the denominator of 𝑢1, 𝑢2, ⋯ , 𝑢𝑚, 𝛾𝑖 =
𝑣𝑖

𝑢𝑖
, 

(𝑢𝑖, 𝑣𝑖) = 1, 𝑢𝑖 , 𝑣𝑖 ∈ 𝑍
+, where 𝑖 = 1,2,⋯ ,𝑚 and record 𝑟 =

1

𝑀
. Let 𝐴(𝜆) denote the identity matrix of (3) 

𝐴(𝜆) =

(

 
 

𝜆𝑀𝛾1 − 𝑎11           − 𝑎12            ⋯     − 𝑎1𝑚         

    −𝑎21          𝜆
𝑀𝛾2 − 𝑎22      ⋯    − 𝑎2𝑚      

     ⋮                         ⋮                     ⋯                ⋮         
       −𝑎𝑚1                𝑎𝑚2                ⋯    𝜆𝑀𝛾𝑚 − 𝑎𝑚𝑚   

)

 
 

 

then the zero solution of the system (3) is globally asymptotically stable in the Lyapunov sense when all roots 𝜆 of 

the equation 𝑑𝑒𝑡( 𝐴(𝜆)) = 0 satisfy the condition that all have negative real parts. 

The following is an 𝑚 dimensional linear time delay fractional order system. 

Lemma 2 [20] The 𝑚 dimensional linear time delay fractional order system:  

 

{
 
 

 
 

𝐷𝛾1𝑥1(𝑡) = 𝑎11𝑥1(𝑡 − 𝜎11) + ⋯+ 𝑎1𝑚𝑥𝑚(𝑡 − 𝜎1𝑚),

𝐷𝛾2𝑥2(𝑡) = 𝑎21𝑥1(𝑡 − 𝜎21) + ⋯+ 𝑎2𝑚𝑥𝑚(𝑡 − 𝜎2𝑚),
⋮  

𝐷𝛾𝑚𝑥𝑚(𝑡) = 𝑎𝑚1𝑥1(𝑡 − 𝜎𝑚1) + ⋯+ 𝑎𝑚𝑚𝑥𝑚(𝑡 − 𝜎𝑚𝑚),
 (4) 

here 𝛾𝑖 ∈ (0,1], 𝑖 = 1,2,⋯ ,𝑚, −𝑚𝑎𝑥𝑖𝑗 𝜎𝑖𝑗 = −𝜎𝑚𝑎𝑥 , 𝜎 = (𝜎𝑖𝑗)𝑚×𝑚 ∈ (R+)𝑛×𝑛 denotes the delay matrix, 𝐴 = (𝑎𝑖𝑗)𝑚×𝑚 

denotes the coefficient matrix, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡 − 𝜎𝑖𝑗) ∈ R denotes the state variables, 𝑥𝑖(𝑡) ∈ 𝐶[−𝜎𝑚𝑎𝑥  ,Laplace transforms 

on each side of the system (4).  

 (

ℒ(𝐷𝛾1𝑥1(𝑡)) = ℒ[𝑎11𝑥1(𝑡 − 𝜎11) + ⋯+ 𝑎1𝑚𝑥𝑚(𝑡 − 𝜎1𝑚)],

ℒ(𝐷𝛾2𝑥2(𝑡)) = ℒ[𝑎21𝑥1(𝑡 − 𝜎21) + ⋯+ 𝑎2𝑚𝑥𝑚(𝑡 − 𝜎2𝑚)],
⋮

ℒ(𝐷𝛾𝑚𝑥𝑚(𝑡)) = ℒ[𝑎𝑚1𝑥1(𝑡 − 𝜎𝑚1) + ⋯+ 𝑎𝑚𝑚𝑥𝑚(𝑡 − 𝜎𝑚𝑚)],
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From the definition and properties of the Laplace transform, it follows that 

{
 
 

 
 

𝑠𝛾1𝑋1(𝑠) = 𝑎11𝑒
−𝑠𝜎11𝑋1(𝑠) + ⋯+ 𝑎1𝑚𝑒

−𝑠𝜎1𝑚𝑋𝑚(𝑠),

𝑠𝛾2𝑋2(𝑠) = 𝑎21𝑒
−𝑠𝜎21𝑋1(𝑠) + ⋯+ 𝑎2𝑚𝑒

−𝑠𝜎2𝑚𝑋𝑚(𝑠),
⋮

𝑠𝛾𝑚𝑋𝑚(𝑠) = 𝑎𝑚1𝑒
−𝑠𝜎𝑚1𝑋1(𝑠) + ⋯+ 𝑎𝑚𝑚𝑒

−𝑠𝜎𝑚𝑚𝑋𝑚(𝑠),
 

Consequently, 

(

 
 

𝑠𝛾1 − 𝑎11𝑒
−𝑠𝜎11 ⋯ −𝑎1𝑚𝑒

−𝑠𝜎1𝑚

−𝑎21𝑒
−𝑠𝜎21 ⋯ −𝑎2𝑚𝑒

−𝑠𝜎2𝑚

⋮ ⋮ ⋮
−𝑎𝑚1𝑒

−𝑠𝜎𝑚1 ⋯ 𝑠𝛾𝑚 − 𝑎𝑚𝑚𝑒
−𝑠𝜎𝑚𝑚

)

 
 

(

 
 

𝑋1(𝑠)

𝑋2(𝑠)
⋮

𝑋𝑚(𝑠)

)

 
 
= 0. 

The identity matrix of system (4) is defined as 𝑆: 

𝑆 =

(

 
 

𝑠𝛾1 − 𝑎11𝑒
−𝑠𝜎11 ⋯ −𝑎1𝑚𝑒

−𝑠𝜎1𝑛

−𝑎21𝑒
−𝑠𝜎21 ⋯ −𝑎2𝑚𝑒

−𝑠𝜎2𝑚

⋮ ⋮ ⋮
−𝑎𝑚1𝑒

−𝑠𝜎𝑚1 ⋯ 𝑠𝛾𝑚 − 𝑎𝑚𝑚𝑒
−𝑠𝜎𝑚𝑚

)

 
 
. 

If all roots 𝑠 of the characteristic equation 𝑑𝑒𝑡( 𝑆) = 0 have negative real parts, then the zero solution of the 

system (4) is Lyapunov globally asymptotically stable. 

3. Model Descriptions 

This section describes a three-neuron, three-delay fully connected neural network sustem (5). The system takes 

into account both instantaneous and delayed interactions between neurons, effectively simulating complex systems 

with memory and long-term dependencies.  

 

{
 
 
 

 
 
 
𝐷𝛾1𝑦1(𝑡) = −𝑝1𝑦1(𝑡) + 𝜄1𝑀1(𝑦1(𝑡 − 𝜎1)) + 𝜌1𝑁1(𝑦2(𝑡 − 𝜎2))

 +𝜅1𝑇1(𝑦3(𝑡 − 𝜎3)),                                                         

𝐷𝛾2𝑦2(𝑡) = −𝑝2𝑦2(𝑡) + 𝜄2𝑀2(𝑦2(𝑡 − 𝜎1)) + 𝜌2𝑁2(𝑦3(𝑡 − 𝜎2))

 +𝜅2𝑇2(𝑦1(𝑡 − 𝜎3)),                                                         

𝐷𝛾3𝑦3(𝑡) = −𝑝3𝑦3(𝑡) + 𝜄3𝑀3(𝑦3(𝑡 − 𝜎1)) + 𝜌3𝑁3(𝑦1(𝑡 − 𝜎2))

 +𝜅3𝑇3(𝑦2(𝑡 − 𝜎3)),                                                         

 (5) 

𝛾𝑖 ∈ (0,1], (𝑖 = 1,2,3) denotes the fractional order order, 𝑦𝑖(𝑡) indicates the neuron node, 𝑝𝑖 > 0 is called the 

neuron autotuning parameter, 𝜄𝑖, 𝜌𝑖  and 𝜅𝑖 ∈ 𝑅 are the connection weight, 𝑀𝑖(⋅), 𝑁𝑖(⋅), 𝑇𝑖(⋅)denotes the activation 

function, 𝜎1 ≥ 0 denotes the self-connection time delay, 𝜎2 ≥ 0 and 𝜎3 ≥ 0 are different communication delays in the 

system. 

The structure of system (5) is shown in Fig. (1).  

 

Figure 1: Topological structure of fractional order neural network system. 
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The main objective of this paper is to establish Hopf bifurcation of fractional order neural network system with 

three-time delays to investigate the influence mechanism of time delay combination on the bifurcation point of the 

network and to consider the influence of time delay and order on the stability of the system so that the precise 

stability intervals and bifurcation conditions are obtained. 

Usually, in order to reduce the difficulty of numerical analysis and numerical simulation, we need to make some 

assumptions about some state variables. 

Hypothesis 1 𝑀𝑖(⋅), 𝑁𝑖(⋅), 𝑇𝑖(⋅) ∈ 𝐶
1(R, R) ,𝑀𝑖(0) = 𝑁𝑖(0) = 𝑇𝑖(0) = 0. 

The activation functions 𝑀𝑖(⋅), 𝑁𝑖(⋅), 𝑇𝑖(⋅)are assumed to be bounded, continuously differentiable, monotone 

increasing sigmoid-type functions, and satisfy the Lipschitz condition. 

In the numerical simulation part, we choose 𝑡𝑎𝑛ℎ( ⋅) as the specific activation function. Since 𝑡𝑎𝑛ℎ( ⋅) is bounded, 

smooth, monotone, and Lipschitz continuous, it fully satisfies the above assumptions, thereby ensuring consistency 

between the theoretical analysis and the simulation results. 

Under the given conditions, system (5) has a zero equilibrium point. This assumption is commonly used in neural 

network analysis for convenience. For neural networks with a non-zero equilibrium point, a coordinate shift can be 

applied to transform it into a zero equilibrium point, facilitating further analysis. 

For any activation function 𝑀𝑖(⋅), its Taylor expansion around the equilibrium point 0 (retaining the first-order 

term) can be written as  

 𝑀𝑖(𝑦𝑗(𝑡 − 𝜎𝑗)) = 𝑀𝑖(0) +𝑀𝑖′(0)𝑦𝑗(𝑡 − 𝜎𝑗) + 𝑜(𝑦𝑗(𝑡 − 𝜎𝑗)). 

If the equilibrium is at the origin and we assume 𝑀𝑖(0) = 0 (which holds for odd-symmetric sigmoids such as 

𝑡𝑎𝑛ℎ), then the constant term vanishes and the linearized approximation becomes  

 𝑀𝑖(𝑦𝑗(𝑡 − 𝜎𝑗)) ≈ ℓ𝑖𝑦𝑗(𝑡 − 𝜎𝑗). 

Simarily  

 
𝑀𝑖(𝑦𝑗(𝑡 − 𝜎𝑗)) ≈ ℘𝑖𝑦𝑗(𝑡 − 𝜎𝑗),

𝑀𝑖(𝑦𝑗(𝑡 − 𝜎𝑗)) ≈ 𝑥𝑖𝑦𝑗(𝑡 − 𝜎𝑗).
 

hereby, ℓ𝑖 = 𝜄𝑖𝑀𝑖
′(0). ℘𝑖 = 𝜌𝑖𝑁𝑖

′(0), 𝑥𝑖 = 𝜅𝑖𝑇𝑖
′(0)(𝑖 = 1,2,3). 

Linearising at the origin of system (5) and using the Taylor expansion yields  

 

{
 
 
 

 
 
 
𝐷𝛾1𝑦1(𝑡) = −𝑝1𝑦1(𝑡) + ℓ1𝑦1(𝑡 − 𝜎1) + ℘1𝑦2(𝑡 − 𝜎2)

 +𝑥1𝑦3(𝑡 − 𝜎3),                                                  

𝐷𝛾2𝑦2(𝑡) = −𝑝2𝑦2(𝑡) + ℓ2𝑦2(𝑡 − 𝜎1) + ℘2𝑦3(𝑡 − 𝜎2)

 +𝑥2𝑦1(𝑡 − 𝜎3),                                                   

𝐷𝛾3𝑦3(𝑡) = −𝑝3𝑦3(𝑡) + ℓ3𝑦3(𝑡 − 𝜎1) + ℘3𝑦1(𝑡 − 𝜎2)

 +𝑥3𝑦2(𝑡 − 𝜎3),                                                  

 (6) 

Good results have been achieved after linearisation with this method in many articles, such as solving fractional-

order binary delay Cohen-Grossberg neural networks [48], fractional order dynamic model of genetic regulatory 

networks with delays [49], etc. 

4. Main Results 

In order to study the local stability of fractional order neural network system (5) and to obtain the bifurcation 

conditions, this section will be divided into the following seven cases according to a linear system (6). 
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Situation 1𝜎1 = 𝜎2 = 𝜎3 = 0 

For 𝜎1 = 𝜎2 = 𝜎3 = 0, the linear system (6) reduces to system (7) without a time delay, as shown below.  

 {

𝐷𝛾1𝑦1(𝑡) = −𝑝1𝑦1(𝑡) + ℓ1𝑦1(𝑡) + ℘1𝑦2(𝑡) + 𝑥1𝑦3(𝑡),

𝐷𝛾2𝑦2(𝑡) = −𝑝2𝑦2(𝑡) + ℓ2𝑦2(𝑡) + ℘2𝑦3(𝑡) + 𝑥2𝑦1(𝑡),

𝐷𝛾3𝑦3(𝑡) = −𝑝3𝑦3(𝑡) + ℓ3𝑦3(𝑡) + ℘3𝑦1(𝑡) + 𝑥3𝑦2(𝑡).
 (7) 

The identity matrix of (7) is: 

(

𝑠𝛾1 + 𝑝1 − ℓ1 −℘1 −𝑥1
−𝑥2 𝑠𝛾2 + 𝑝2 − ℓ2 −℘2

−℘3 −𝑥3 𝑠𝛾3 + 𝑝3 − ℓ2
), 

under the condition that 𝜎1 = 𝜎2 = 𝜎3 = 0, system (6) is asymptotically stable if all the roots of 𝑑𝑒𝑡( 𝑆) = 0 satisfy the 

conditions of Lemma 1. 

Situation 2𝜎1 > 0, 𝜎2 = 𝜎3 = 0 

If 𝜎1 > 0, 𝜎2 = 𝜎3 = 0 , then (6) becomes a single time delay system (8) as follows  

 (

𝐷𝛾1𝑦1(𝑡) = −𝑝1𝑦1(𝑡) + ℓ1𝑦1(𝑡 − 𝜎1) + ℘1𝑦2(𝑡) + 𝑥1𝑦3(𝑡),

𝐷𝛾2𝑦2(𝑡) = −𝑝2𝑦2(𝑡) + ℓ2𝑦2(𝑡 − 𝜎1) + ℘2𝑦3(𝑡) + 𝑥2𝑦1(𝑡),

𝐷𝛾3𝑦3(𝑡) = −𝑝3𝑦3(𝑡) + ℓ3𝑦3(𝑡 − 𝜎1) + ℘3𝑦1(𝑡) + 𝑥3𝑦2(𝑡),
 (8) 

The identity matrix of single time delay system (8) is 

(

𝑠𝛾1 + 𝑝1 − ℓ1𝑒
−𝑠𝜎1 −℘1 −𝑥1

−𝑥2 𝑠𝛾2 + 𝑝2 − ℓ2𝑒
−𝑠𝜎1 −℘2

−℘3 −𝑥3 𝑠𝛾3 + 𝑝3 − ℓ3𝑒
−𝑠𝜎1

). 

The characteristic equation of system (8) is  

 A0(𝑠) + A1(𝑠)𝑒
−𝑠𝜎1 + A2(𝑠)𝑒

−2𝑠𝜎1 + A3(𝑠)𝑒
−3𝑠𝜎1 = 0, (9) 

Of these,  

 

A0(𝑠) = 𝑠𝛾1+𝛾2+𝛾3 + 𝑝3𝑠
𝛾1+𝛾2 + 𝑝2𝑠

𝛾1+𝛾3 + 𝑝1𝑠
𝛾2+𝛾3     

   +𝑝2𝑝3𝑠
𝛾1 + 𝑝1𝑝3𝑠

𝛾2 + 𝑝1𝑝2𝑠
𝛾3 + 𝑝1𝑝2𝑝3

 −℘1℘2℘3 − 𝑥1𝑥2𝑥3                                     

 −℘3𝑥1𝑠
𝛾2 − ℘3𝑝2𝑥1 − ℘1𝑥2𝑠

𝛾3                

 −℘1𝑝3𝑥2 − ℘2𝑥3𝑠
𝛾1 − ℘2𝑝1𝑥3                    

 

 

A1(𝑠) = −ℓ3𝑠
𝛾1+𝛾2 − ℓ2𝑠

𝛾1+𝛾3 − ℓ1𝑠
𝛾2+𝛾3                        

  −(𝑝2ℓ1 + 𝑝3ℓ2)𝑠
𝛾1 − (𝑝1ℓ3 + 𝑝3ℓ1)𝑠

𝛾2   

 −(𝑝1ℓ2 + 𝑝2ℓ1)𝑠
𝛾3                                        

 −𝑝1𝑝2ℓ3 + 𝑝1𝑝3ℓ2 + 𝑝2𝑝3ℓ1                     

    −℘3ℓ2𝑥1 − ℘1ℓ3𝑥2 − ℘1𝑝2ℓ3 − ℘2ℓ1𝑥3 

 

A2(𝑠) = ℓ2ℓ3𝑠
𝛾1 + ℓ1ℓ3𝑠

𝛾2 + ℓ1ℓ2𝑠
𝛾3        

 +𝑝3ℓ1ℓ2 + 𝑝2ℓ1ℓ3 + 𝑝1ℓ2ℓ3
 

 A3(𝑠) = −ℓ1ℓ2ℓ3. 

Wang [50] formulate an expression for the bifurcation point of a characteristic equation containing any order 

transcendental function utilizing the eigenvalue distribution method. 
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Multiply both sides of the equation (9) by 𝑒𝑠𝜎1 and 𝑒2𝑠𝜎1  

 {
A0(𝑠)𝑒

𝑠𝜎1 + A1(𝑠) + A2(𝑠)𝑒
−𝑠𝜎1 + A3(𝑠)𝑒

−2𝑠𝜎1 = 0,

A0(𝑠)𝑒
2𝑠𝜎1 + A1(𝑠)𝑒

𝑠𝜎1 + A2(𝑠) + A3(𝑠)𝑒
−𝑠𝜎1 = 0.

 (10) 

According to the condition for a Hopf bifurcation in the system from reference [51], we set 𝑠 =

𝜔 (𝑐𝑜𝑠
𝜋

2
+ 𝑖 𝑠𝑖𝑛

𝜋

2
) ,  (𝜔 > 0), and insert 𝑠 into (10). By Euler’s formula, we have  

 𝑠𝑞 = (𝜔𝑖)𝑞 = 𝜔
𝑞
𝑒𝑖𝑞𝜋/2 = 𝜔

𝑞
[ 𝑐𝑜𝑠 (

𝑞𝜋

2
) + 𝑖 𝑠𝑖𝑛 (

𝑞𝜋

2
)]. 

here, 𝜔, 𝑞 ∈ 𝑅. Therefore, the real and imaginary parts of 𝑠𝑞 are given respectively by  

 𝜔
𝑞
𝑐𝑜𝑠 (

𝑞𝜋

2
)  and 𝜔

𝑞
𝑠𝑖𝑛 (

𝑞𝜋

2
). 

For brevity, we let 𝐴𝑖
𝑅,  𝐴𝑖

𝐼 denote the real and imaginary parts of 𝐴𝑖(𝑠), (𝑖 = 0,1,2,3), respectively, which can then 

be obtained. 

 

{
 
 

 
 
ℭ11 𝑐𝑜𝑠 𝜔 𝜎1 + ℭ12 𝑠𝑖𝑛 𝜔 𝜎1 + ℭ13 𝑐𝑜𝑠 2𝜔𝜎1 + ℭ14 𝑠𝑖𝑛 2𝜔𝜎1 = −A1

𝑅 ,

ℭ21 𝑐𝑜𝑠 𝜔 𝜎1 + ℭ22 𝑠𝑖𝑛 𝜔 𝜎1 + ℭ23 𝑐𝑜𝑠 2𝜔𝜎1 + ℭ24 𝑠𝑖𝑛 2𝜔𝜎1 = −A1
𝐼 ,

ℭ31 𝑐𝑜𝑠 𝜔 𝜎1 + ℭ32 𝑠𝑖𝑛 𝜔 𝜎1 + ℭ33 𝑐𝑜𝑠 2𝜔𝜎1 + ℭ34 𝑠𝑖𝑛 2𝜔𝜎1 = −A2
𝑅 ,

ℭ41 𝑐𝑜𝑠 𝜔 𝜎1 + ℭ42 𝑠𝑖𝑛 𝜔 𝜎1 + ℭ43 𝑐𝑜𝑠 2𝜔𝜎1 + ℭ44 𝑠𝑖𝑛 2𝜔𝜎1 = −A2
𝐼 ,

 (11) 

here  

 

{
 
 

 
 

ℭ11 = A0
𝑅 + A2

𝑅,   ℭ12 = A2
𝐼 − A0

𝐼 ,   ℭ13 = A3
𝑅 ,   ℭ14 = A3

𝐼 ,    

ℭ21 = A0
𝐼 + A2

𝐼 ,   ℭ22 = A0
𝑅 − A2

𝑅,   ℭ23 = A3
𝐼 ,   ℭ24 = −A3

𝑅 ,

ℭ31 = A1
𝑅 + A3

𝑅 ,   ℭ32 = A3
𝐼 − A1

𝐼 ,   ℭ33 = A0
𝑅,   ℭ34 = −A0

𝐼 ,

ℭ41 = A1
𝐼 + A3

𝐼 ,   ℭ42 = A1
𝑅 − A3

𝑅,   ℭ43 = A0
𝐼 ,   ℭ44 = A0

𝑅.   

 

The determinant of coefficient of equations (11) can be expressed as follows: 

C =
|
|

ℭ11 ℭ12 ℭ13 ℭ14
ℭ21 ℭ22 ℭ23 ℭ24
ℭ31 ℭ32 ℭ33 ℭ34
ℭ41 ℭ42 ℭ43 ℭ44

|
|
. 

To ensure the existence and uniqueness of solutions to system (8), the coefficient matrix in equation (11) should 

be non-singular. 

To further establish the bifurcation point with respect to 𝜎1, the expressions for 𝑐𝑜𝑠 𝜔 𝜎1 and 𝑠𝑖𝑛 𝜔 𝜎1 can be 

computed using Cramer’s law  

 {
𝑐𝑜𝑠(𝜔𝜎1) =

ℭ1

ℭ
= Ψ1(𝜔),

𝑠𝑖𝑛(𝜔𝜎1) =
ℭ2

ℭ
= Ψ2(𝜔)

 (12) 

in 

ℭ1 =
|

|

−A1
𝑅 ℭ12 ℭ13 ℭ14

−A1
𝐼 ℭ22 ℭ23 ℭ24

−A2
𝑅 ℭ32 ℭ33 ℭ34

−A2
𝐼 ℭ42 ℭ43 ℭ44

|

|
, ℭ2 =

|

|

ℭ11 −A1
𝑅 ℭ13 ℭ14

ℭ21 −A1
𝐼 ℭ23 ℭ24

ℭ31 −A2
𝑅 ℭ33 ℭ34

ℭ41 −A2
𝐼 ℭ43 ℭ44

|

|
, 
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From equation (12) it is clear that 

 Ψ1
2
(𝜔) + Ψ2

2
(𝜔) = 1 (13) 

Hypothesis 2 There are positive real roots in equation (13). 

From the first equation in the system of equations (12), we can see that  

 𝜎1𝑘 =
1

𝜔
[𝑎𝑟𝑐𝑐𝑜𝑠(Ψ1(𝜔)) + 2𝑘𝜋],  𝑘 = 0,1,2,⋯ (14) 

Define the first bifurcation point of system (8) as 

 𝜎10 = 𝑚𝑖𝑛{ 𝜎10, 𝜎11, … , 𝜎1𝑘, … } =
1

𝜔
𝑎𝑟𝑐𝑐𝑜𝑠(Ψ1(𝜔)) 

Hypothesis 3 
−𝐻𝜎1

𝑅𝐻𝑠
𝑅−𝐻𝜎1

𝐼𝐻𝑠
𝐼

(𝐻𝑠
𝑅)2+(𝐻𝑠

𝐼)2
≠ 0, where 𝐻𝜎1

𝑅, 𝐻𝜎1
𝐼 , 

𝐻𝑠
𝑅, 𝐻𝑠

𝐼are the real and imaginary parts of 𝐻𝜎1  and 𝐻𝑠 respectively, with 𝐻𝜎1 and 𝐻𝑠 described in the following 

equation (10). 

Lemma 3 𝑠(𝜎1) = 𝜇(𝜎1) + 𝑖𝜔(𝜎1) be a solution of equation(9) satisfying 𝜇(𝜎10) = 0 , 𝜔(𝜎10) = 𝜔0 near 𝜎1 = 𝜎10. 

Then the following transversality condition holds 

𝑅𝑒 [
𝑑𝑠

𝑑𝜎1
]|
(𝜔̄=𝜔0,𝜎1=𝜎10)

≠ 0 

Proof 

Let 𝐻(𝑠, 𝜎1) = A0(𝑠) + A1(𝑠)𝑒
−𝑠𝜎1 + A2(𝑠)𝑒

−2𝑠𝜎1 + A3(𝑠)𝑒
−3𝑠𝜎1. By the implicit function theorem, the equation is 

differentiable with respect to 𝜎1:  

 
𝑑𝑠

𝑑𝜎1
= −

𝐻𝜎1

𝐻𝑠
, (15) 

 

𝐻𝜎1 = −𝑠[A1(𝑠)𝑒
−𝑠𝜎1 + 2A2(𝑠)𝑒

−2𝑠𝜎1 + 3A3(𝑠)𝑒
−3𝑠𝜎1],

𝐻𝑠 = A0
′(𝑠) + [A1

′(𝑠) − 𝜎1A1(𝑠)]𝑒
−𝑠𝜎1                              

 +[A2
′(𝑠) − 2𝜎1A2(𝑠)]𝑒

−2𝑠𝜎1                                       

 +[A3
′(𝑠) − 3𝜎1A3(𝑠)]𝑒

−3𝑠𝜎1 .                                     

 

Based on equation (15), we can deduce  

     
𝑑𝑠

𝑑𝜎1
= −

𝐻𝜎1

𝐻𝑠
 

           = −
𝐻𝜎1

𝑅+𝑖𝐻𝜎1
𝐼

𝐻𝑠
𝑅+𝑖𝐻𝑠

𝐼  

             =
(−𝐻𝜎1

𝑅−𝑖𝐻𝜎1
𝐼)(𝐻𝑠

𝑅−𝑖𝐻𝑠
𝐼)

(𝐻𝑠
𝑅)2+(𝐻𝑠

𝐼)2
 

              =
−𝐻𝜎1

𝑅𝐻𝑠
𝑅−𝐻𝜎1

𝐼𝐻𝑠
𝐼

(𝐻𝑠
𝑅)2+(𝐻𝑠

𝐼)2
+ 𝑖

𝐻𝜎1
𝑅𝐻𝑠

𝐼−𝐻𝜎1
𝐼𝐻𝑠

𝑅

(𝐻𝑠
𝑅)2+(𝐻𝑠

𝐼)2
, 

therefore, 

𝑅𝑒 [
𝑑𝑠

𝑑𝜎1
]|
(𝜔̄=𝜔0,𝜎1=𝜎10)

=
−𝐻𝜎1

𝑅𝐻𝑠
𝑅−𝐻𝜎1

𝐼𝐻𝑠
𝐼

(𝐻𝑠
𝑅)2+(𝐻𝑠

𝐼)2
. 

Let 𝐴𝑖
′𝑅 and 𝐴𝑖

′𝐼 be the real and imaginary parts of 𝐴𝑖
′, and 𝐴𝑖

𝑅 and 𝐴𝑖
𝐼 be the real and imaginary parts of 𝐴𝑖, 
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respectively. 

 

𝐻𝜎1
𝑅 = −𝜔0[A1

𝑅 𝑠𝑖𝑛(𝜔0𝜎10) − A1
𝐼 𝑐𝑜𝑠(𝜔0𝜎10)       

 +2A2
𝑅 𝑠𝑖𝑛( 2𝜔0𝜎10) − 2A2

𝐼 𝑐𝑜𝑠( 2𝜔0𝜎10)  

 +3A3
𝑅 𝑠𝑖𝑛( 3𝜔0𝜎10) − 3A3

𝐼 𝑐𝑜𝑠( 3𝜔0𝜎10)]

 

 

𝐻𝜎1
𝐼 = −𝜔0[A1

𝑅 𝑐𝑜𝑠(𝜔0𝜎10) + A1
𝐼 𝑠𝑖𝑛(𝜔0𝜎10)    

 +2A2
𝑅 𝑐𝑜𝑠( 2𝜔0𝜎10) + 2A2

𝐼 𝑠𝑖𝑛( 2𝜔0𝜎10) 

  +3A3
𝑅 𝑐𝑜𝑠( 3𝜔0𝜎10) + 3A3

𝐼 𝑠𝑖𝑛( 3𝜔0𝜎10)]

  

 

𝐻𝑠
𝑅 = A0

′𝑅 + (A1
′𝑅 − 𝜎10A1

𝑅) 𝑐𝑜𝑠(𝜔0𝜎10)

 +(A1
′𝐼 − 𝜎10A1

𝐼 ) 𝑠𝑖𝑛(𝜔0𝜎10)      

 +(A2
′𝑅 − 2𝜎10A2

𝑅) 𝑐𝑜𝑠( 2𝜔0𝜎10)

 +(A2
′𝐼 − 2𝜎10A2

𝐼 ) 𝑠𝑖𝑛( 2𝜔0𝜎10) 

 +(A3
′𝑅 − 3𝜎10A3

𝑅) 𝑐𝑜𝑠( 3𝜔0𝜎10)

 +(A3
′𝐼 − 3𝜎10A3

𝐼 ) 𝑠𝑖𝑛( 3𝜔0𝜎10) 

 

 

𝐻𝑠
𝐼 = A0

′𝐼 + (A1
′𝐼 − 𝜎10A1

𝐼 ) 𝑐𝑜𝑠(𝜔0𝜎10)

 +(𝜎10A1
𝑅 − A1

′𝑅) 𝑠𝑖𝑛(𝜔0𝜎10)     

 +(A2
′𝐼 − 2𝜎10A2

𝐼 ) 𝑐𝑜𝑠( 2𝜔0𝜎10)

 +(2𝜎10A2
𝑅 − A2

′𝑅) 𝑠𝑖𝑛( 2𝜔0𝜎10)

 +(A3
′𝐼 − 3𝜎10A3

𝐼 ) 𝑐𝑜𝑠( 3𝜔0𝜎10)

 +(3𝜎10A3
𝑅 − A3

′𝑅) 𝑠𝑖𝑛( 3𝜔0𝜎10)

 

Given Hypothesis 3 and the applicability of Lemma 2, it follows that a Hopf bifurcation occurs at 𝜎1 = 𝜎10, where 

the stability range is [0, 𝜎10). 

Situation 3 𝜎2 > 0, 𝜎1 = 𝜎3 = 0 

If 𝜎2 > 0, 𝜎1 = 𝜎3 = 0, system (6) is transformed into a single time delay system (16) as follows  

 {

𝐷𝛾1𝑦1(𝑡) = −𝑝1𝑦1(𝑡) + ℓ1𝑦1(𝑡) + p1𝑦2(𝑡 − 𝜎2) + 𝑥1𝑦3(𝑡),

𝐷𝛾2𝑦2(𝑡) = −𝑝2𝑦2(𝑡) + ℓ2𝑦2(𝑡) + p2𝑦3(𝑡 − 𝜎2) + 𝑥2𝑦1(𝑡),

𝐷𝛾3𝑦3(𝑡) = −𝑝3𝑦3(𝑡) + ℓ3𝑦3(𝑡) + p3𝑦1(𝑡 − 𝜎2) + 𝑥3𝑦2(𝑡),
 (16) 

the identity matrix of single time delay system (16) is: 

(

𝑠𝛾1 + 𝑝1 − ℓ1 −℘1𝑒
−𝑠𝜎2 −𝑥1

−𝑥2 𝑠𝛾2 + 𝑝2 − ℓ2 −℘2𝑒
−𝑠𝜎2

−℘3𝑒
−𝑠𝜎2 −𝑥3 𝑠𝛾3 + 𝑝3 − ℓ3

). 

The characteristic equation of system (16) is as follows  

 B0(𝑠) + B1(𝑠)𝑒
−𝑠𝜎2 + B2(𝑠)𝑒

−2𝑠𝜎2 + B3(𝑠)𝑒
−3𝑠𝜎2 = 0, (17) 

Where  

 

B0(𝑠) = 𝑠𝛾1+𝛾2+𝛾3 + (𝑝3 − ℓ3)𝑠
𝛾1+𝛾2 + (𝑝2 − ℓ2)𝑠

𝛾1+𝛾3 + (𝑝1 − ℓ1)𝑠
𝛾2+𝛾3  

 +(𝑝2𝑝3 − 𝑝2ℓ3 − 𝑝3ℓ2 + ℓ2ℓ3)𝑠
𝛾1                          

 +(𝑝1𝑝3 − 𝑝1ℓ3 − 𝑝3ℓ1 + ℓ1ℓ3)𝑠
𝛾2                           

 +(𝑝1𝑝2 − 𝑝1ℓ2 − 𝑝2ℓ1 + ℓ1ℓ2)𝑠
𝛾3                           

 +𝑝1𝑝2𝑝3 − 𝑝1𝑝2ℓ3 − 𝑝1𝑝3ℓ2 + 𝑝1ℓ2ℓ3                  

 −𝑝2𝑝3ℓ1 + 𝑝2ℓ1ℓ3 + 𝑝3ℓ1ℓ2 − ℓ1ℓ2ℓ3 − 𝑥1𝑥2𝑥3

 

 
B1(𝑠) = −℘3𝑥1(𝑠

𝛾2 + 𝑝2 − ℘2) − ℘1𝑥2(𝑠
𝛾3 + 𝑝3 − ℓ3) 

 −℘2𝑥3(𝑠
𝛾1 + 𝑝1 − ℓ1)                                     
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 B2(𝑠) = 0,  B3(𝑠) = −℘1℘2℘3. 

Equation (17) is multiplied by 𝑒𝑠𝜎2 , 𝑒2𝑠𝜎2 on both sides  

 {
B0(𝑠)𝑒

𝑠𝜎2 + B1(𝑠) + B2(𝑠)𝑒
−𝑠𝜎2 + B3(𝑠)𝑒

−2𝑠𝜎2 = 0,

B0(𝑠)𝑒
2𝑠𝜎2 + B1(𝑠)𝑒

𝑠𝜎2 + B2(𝑠) + B3(𝑠)𝑒
−𝑠𝜎2 = 0.  (18) 

Let 𝑠 = 𝜔̂ (𝑐𝑜𝑠
𝜋

2
+ 𝑖 𝑠𝑖𝑛

𝜋

2
) ,  (𝜔̂ > 0) be the positive imaginary root of the system of equations (18). 

For simplicity, the real and imaginary parts of 𝐵𝑖(𝑠) (𝑖 = 0,1,2,3) are denoted by  

B𝑖
𝑅 and B𝑖

𝐼 , 

respectively. It can then be obtained that ... 

 

{
 
 

 
 Ξ11 𝑐𝑜𝑠 𝜔̂ 𝜎2 + Ξ12 𝑠𝑖𝑛 𝜔̂ 𝜎2 + Ξ13 𝑐𝑜𝑠 2 𝜔̂𝜎2 + Ξ14 𝑠𝑖𝑛 2 𝜔̂𝜎2 = −B1

𝑅,

Ξ21 𝑐𝑜𝑠 𝜔̂ 𝜎2 + Ξ22 𝑠𝑖𝑛 𝜔̂ 𝜎2 + Ξ23 𝑐𝑜𝑠 2 𝜔̂𝜎2 + Ξ24 𝑠𝑖𝑛 2 𝜔̂𝜎2 = −B1
𝐼 ,

Ξ31 𝑐𝑜𝑠 𝜔̂ 𝜎2 + Ξ32 𝑠𝑖𝑛 𝜔̂ 𝜎2 + Ξ33 𝑐𝑜𝑠 2 𝜔̂𝜎2 + Ξ34 𝑠𝑖𝑛 2 𝜔̂𝜎2 = −B2
𝑅 ,

Ξ41 𝑐𝑜𝑠 𝜔̂ 𝜎2 + Ξ42 𝑠𝑖𝑛 𝜔̂ 𝜎2 + Ξ43 𝑐𝑜𝑠 2 𝜔̂𝜎2 + Ξ44 𝑠𝑖𝑛 2 𝜔̂𝜎2 = −B2
𝐼 ,

 (19) 

here  

 

{
 
 

 
 

Ξ11 = B0
𝑅 + B2

𝑅 ,   Ξ12 = B2
𝐼 − B0

𝐼 ,   Ξ13 = B3
𝑅 ,   Ξ14 = B3

𝐼 ,

Ξ21 = B2
𝐼 + B0

𝐼 ,   Ξ22 = B0
𝑅 − B2

𝑅,   Ξ23 = B3
𝐼 ,   Ξ24 = −B3

𝑅 ,

Ξ31 = B1
𝑅 + B3

𝑅 ,   Ξ32 = B3
𝐼 − B1

𝐼 ,   Ξ33 = B0
𝑅 ,   Ξ34 = −B0

𝐼 ,

Ξ41 = B3
𝐼 + B1

𝐼 ,   Ξ42 = B1
𝑅 − B3

𝑅,   Ξ43 = B0
𝐼 ,   Ξ44 = B0

𝑅 .

 

Determinant of coefficient of equations (19) 

Ξ = |
|

Ξ11 Ξ12 Ξ13 Ξ14
Ξ21 Ξ22 Ξ23 Ξ24
Ξ31 Ξ32 Ξ33 Ξ34
Ξ41 Ξ42 Ξ43 Ξ44

|
|. 

To ensure the existence of a unique solution to the system of equations, it is desirable that the coefficient matrix 

of equations (19) be non-singular. 

Same as situation 2, using Cramer’s law  

 {

𝑐𝑜𝑠 𝜔̂ 𝜎2 =
Ξ1

Ξ
= Ψ̂1(𝜔̂),

𝑠𝑖𝑛 𝜔̂ 𝜎2 =
Ξ2

Ξ
= Ψ̂2(𝜔̂),

 (20) 

where 

 Ξ1 =
|

|

−B1
𝑅 Ξ12 Ξ13 Ξ14

−B1
𝐼 Ξ22 Ξ23 Ξ24

−B2
𝑅 Ξ32 Ξ33 Ξ34

−B2
𝐼 Ξ42 Ξ43 Ξ44

|

|
,  Ξ2 =

|

|

Ξ11 −B1
𝑅 Ξ13 Ξ14

Ξ21 −B1
𝐼 Ξ23 Ξ24

Ξ31 −B2
𝑅 Ξ33 Ξ34

Ξ41 −B2
𝐼 Ξ43 Ξ44

|

|
 

From equations (20) 

 Ψ̂1
2
(𝜔̂) + Ψ̂2

2
(𝜔̂) = 1. (21) 
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Hypothesis 4 Equation (21) has positive real roots. 

It follows from the first equation of equations (20) that  

  𝜎2𝑘̂ =
1

𝜔̂
[𝑎𝑟𝑐𝑐𝑜𝑠( Ψ̂1(𝜔̂) + 2𝑘𝜋], = 0,1,2,⋯ (22) 

Define the first bifurcation point 𝜎20̂ = 𝑚𝑖𝑛{𝜎20̂, ⋯ , 𝜎2𝑘̂, ⋯ } =
1

𝜔̂
𝑎𝑟𝑐𝑐𝑜𝑠( Ψ̂1(𝜔̂)) of the system (16). 

Situation 4 𝜎3 > 0, 𝜎1 = 𝜎2 = 0 

Provided that 𝜎3 > 0,while 𝜎1 = 𝜎2 = 0, system (6) is transformed into the single delay system (23) as follows  

 {

𝐷𝛾1𝑦1(𝑡) = −𝑝1𝑦1(𝑡) + ℓ1𝑦1(𝑡) + ℘1𝑦2(𝑡) + 𝑥1𝑦3(𝑡 − 𝜎3),

𝐷𝛾2𝑦2(𝑡) = −𝑝2𝑦2(𝑡) + ℓ2𝑦2(𝑡) + ℘2𝑦3(𝑡) + 𝑥2𝑦1(𝑡 − 𝜎3),

𝐷𝛾3𝑦3(𝑡) = −𝑝3𝑦3(𝑡) + ℓ3𝑦3(𝑡) + ℘3𝑦1(𝑡) + 𝑥3𝑦2(𝑡 − 𝜎3),
 

the identity matrix of single time delay system (23) is: 

(

𝑠𝛾1 + 𝑝1 − ℓ1 −℘1 −𝑥1𝑒
−𝑠𝜎3

−𝑥2𝑒
−𝑠𝜎3 𝑠𝛾2 + 𝑝2 − ℓ2 −℘2

−℘3 −𝑥3𝑒
−𝑠𝜎3 𝑠𝛾3 + 𝑝3 − ℓ3

). 

The characteristic equation of the system (23) is  

 C0(𝑠) + C1(𝑠)𝑒
−𝑠𝜎3 + C2(𝑠)𝑒

−2𝑠𝜎3 + C3(𝑠)𝑒
−3𝑠𝜎3 = 0, (24) 

where 

    C0(𝑠) = 𝑠
𝛾1+𝛾2+𝛾3 + (𝑝3 − ℓ3)𝑠

𝛾1+𝛾2 + (𝑝2 − ℓ2)𝑠
𝛾1+𝛾3  

    +(𝑝1 − ℓ1)𝑠
𝛾2+𝛾3 + (𝑝2𝑝3 − 𝑝2ℓ3 − ℓ2𝑝3 + ℓ2ℓ3)𝑠

𝛾1  

    +(𝑝1𝑝3 − 𝑝1ℓ3 − 𝑝3ℓ1 + ℓ1ℓ3)𝑠
𝛾2 + (𝑝1𝑝2 − 𝑝1ℓ2 − 𝑝2ℓ1 + ℓ1ℓ2)𝑠

𝛾3  

    +𝑝1𝑝2𝑝3 − 𝑝1𝑝2ℓ3 − 𝑝1𝑝3ℓ2 + 𝑝1ℓ2ℓ3 

    −𝑝2𝑝3ℓ1 + 𝑝2ℓ1ℓ3 + 𝑝3ℓ1ℓ2 − ℓ1ℓ2ℓ3 − ℘1℘2℘3 

    C1(𝑠) = −℘3𝑥1(𝑠
𝛾2 + 𝑝2 − ℓ2) − ℘1𝑥2(𝑠

𝛾3 + 𝑝3 − ℓ3) 

    −℘2𝑥3(𝑠
𝛾1 + 𝑝1 − ℓ1) 

    C2(𝑠) = 0 

    C3(𝑠) = −𝑥1𝑥2𝑥3 

Multiplying 𝑒𝑠𝜎3 and 𝑒2𝑠𝜎3 on both sides of equation (24) directly yields the following equation  

 {
C0(𝑠)𝑒

𝑠𝜎3 + C1(𝑠) + C2(𝑠)𝑒
−𝑠𝜎3 + C3(𝑠)𝑒

−2𝑠𝜎3 = 0,

C0(𝑠)𝑒
2𝑠𝜎3 + C1(𝑠)𝑒

𝑠𝜎3 + C2(𝑠) + C3(𝑠)𝑒
−𝑠𝜎3 = 0.  (25) 

Let 𝑠 = 𝜔̃(𝑐𝑜𝑠
𝜋

2
+ 𝑖 𝑠𝑖𝑛

𝜋

2
),  𝜔̃ > 0 be the positive imaginary solution to the system of equations (25). For simplicity, 

we denote the real and imaginary parts of 𝐶𝑖(𝑠) (𝑖 = 0,1,2,3) by 𝐶𝑖
𝑅(𝑠) and 𝐶𝑖

𝐼(𝑠), respectively. 
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(

 
 
 
 
 
 

F11 𝑐𝑜𝑠( 𝜔̃𝜎3) + F12 𝑠𝑖𝑛( 𝜔̃𝜎3) + F13 𝑐𝑜𝑠( 2𝜔̃𝜎3) + F14 𝑠𝑖𝑛( 2𝜔̃𝜎3) = −C1
𝑅 ,

F21 𝑐𝑜𝑠( 𝜔̃𝜎3) + F22 𝑠𝑖𝑛( 𝜔̂𝜎3) + F23 𝑐𝑜𝑠( 2𝜔̃𝜎3) + F24 𝑠𝑖𝑛( 2𝜔̃𝜎3) = −C1
𝐼 ,

F31 𝑐𝑜𝑠( 𝜔̃𝜎3) + F32 𝑠𝑖𝑛( 𝜔̂𝜎3) + F33 𝑐𝑜𝑠( 2𝜔̃𝜎3) + F34 𝑠𝑖𝑛( 2𝜔̃𝜎3) = −C2
𝑅,

F41 𝑐𝑜𝑠( 𝜔̃𝜎3) + F42 𝑠𝑖𝑛( 𝜔̃𝜎3) + F43 𝑐𝑜𝑠( 2𝜔̃𝜎3) + F44 𝑠𝑖𝑛( 2𝜔̃𝜎3) = −C2
𝐼 .

 (26) 

in here 

 

{
 
 

 
 

F11 = C0
𝑅 + C2

𝑅,   F12 = C2
𝐼 − C0

𝐼 ,   F13 = C3
𝑅 ,   F14 = C3

𝐼 ,     

F21 = C0
𝐼 + C2

𝐼 ,     F22 = C0
𝑅 − C2

𝑅 ,   F23 = C3
𝐼 ,   F24 = −C3

𝑅 ,

     F31 = C1
𝑅 + C3

𝑅 ,       F32 = C3
𝐼 − C1

𝐼 ,  F33 = C0
𝑅 ,   F34 = −C0

𝐼 ,   

F41 =  C1
𝐼 + C3

𝐼 ,   F42 = C1
𝑅 − C3

𝑅 ,   F43 = C0
𝐼 ,   F44 = C0

𝑅.  

 

determinant of coefficient of equations (26) 

 F = |

F11 F12 F13 F14
F21 F22 F23 F24
F31 F32 F33 F34
F41 F42 F43 F44

|. 

The existence of a unique solution to the system of equations requires that the coefficient matrix in equations 

(26) be non-singular. 

Note 1 𝐹1, 𝐹2expressions such as 𝛯1,𝛯2 use Cramer’s rule  

 {

𝑐𝑜𝑠 𝜔̃ 𝜎3 =
F1

F
= Ψ̃1(𝜔̃),

𝑠𝑖𝑛 𝜔̃ 𝜎3 =
F2

F
= Ψ̃2(𝜔̃),

 (27) 

from the system of equations (27)  

 Ψ̃1
2
(𝜔̃) + Ψ̃2

2
(𝜔̃) = 1. (28) 

Hypothesis 5 equation (28) has positive real roots 

From (27) 

 𝜎3𝑘̃ =
1

𝜔̃
[𝑎𝑟𝑐𝑐𝑜𝑠(Ψ̃1(𝜔̃)) + 2𝑘𝜋],   𝑘 = 0,1,2, … (29) 

Define the first bifurcation point of the system (23), 𝜎30̃ = 𝑚𝑖𝑛{ 𝜎30̃, 𝜎31̃, ⋯ , 𝜎3𝑘̃, ⋯ } =
1

𝜔̃
𝑎𝑟𝑐𝑐𝑜𝑠( Ψ̃1(𝜔̃)). 

The determination of the stability range for this situation is similar to the steps in Situation 2 and is omitted here. 

Situation 5𝜎1 ≥ 0, 𝜎2 ∈ (0, 𝜎20̂), 𝜎3 ∈ (0, 𝜎30̃) 

It should be noted that the connectivity adopted in this work is not arbitrarily constructed; rather, it is based on 

the prototypical structure of a three-neuron Hopfield network. In practical neural communication networks, both 

local feedback pathways and pathways originating from different sources often involve distinct transmission delays. 

Consequently, a topology composed of a self-connection delay plus two communication delays is reasonable. In this 

topology, 𝜎1 represents the intrinsic membrane delay arising from the neuron’s self-regulatory inhibitory 

mechanism, whereas 𝜎2 and 𝜎3 correspond to delays associated with signals originating from different sources and  
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traveling along two communication routes of potentially different distances or media, whose transmission 

characteristics and temporal scales are often inconsistent. 

Moreover, a three-node network constitutes the minimal structure capable of exhibiting multi-delay coupling 

effects, encompassing both local feedback and asymmetric coupling. This structure has thus been widely employed 

in studies of the stability and bifurcation mechanisms of delayed neural networks. The primary purpose of selecting 

this model is to investigate the cooperative effects among these three types of delays and to examine their impact 

on system stability, rather than to replicate a specific biological network. Furthermore, it has been shown that in 

three-node networks, differences in connection delays can significantly influence information transmission 

efficiency and overall network functioning; for instance, such effects have been observed in cortico-thalamo-cortical 

circuits [49]. 

When 𝜎1 ≥ 0, 𝜎2 ∈ (0, 𝜎20̂), 𝜎3 ∈ (0, 𝜎3𝑘̃), and 𝜎2 ≠ 𝜎3, 𝜎1 is treated as a bifurcation parameter in the analysis of 

bifurcation in system (6). 

The identity matrix associated with the linear system (6) is given by: 

(

𝑠𝛾1 + 𝑝1 − ℓ1𝑒
−𝑠𝜎1 −℘1𝑒

−𝑠𝜎2 −𝑥1𝑒
−𝑠𝜎3

−𝑥2𝑒
−𝑠𝜎3 𝑠𝛾2 + 𝑝2 − ℓ2𝑒

−𝑠𝜎1 −℘2𝑒
−𝑠𝜎2

−℘3𝑒
−𝑠𝜎2 −𝑥3𝑒

−𝑠𝜎3 𝑠𝛾3 + 𝑝3 − ℓ3𝑒
−𝑠𝜎1

). 

The characteristic equation of linear system (6) is  

 D0(𝑠) + D1(𝑠)𝑒
−𝑠𝜎1 + D2(𝑠)𝑒

−2𝑠𝜎1 + D3(𝑠)𝑒
−3𝑠𝜎1 = 0, (30) 

where 

    D0(𝑠) = 𝑠
𝛾1+𝛾2+𝛾3 + 𝑝3𝑠

𝛾1+𝛾2 + 𝑝2𝑠
𝛾1+𝛾3 + 𝑝1𝑠

𝛾2+𝛾3  

      +𝑝2𝑝3𝑠
𝛾1 + 𝑝1𝑝3𝑠

𝛾2 + 𝑝1𝑝2𝑠
𝛾3 + 𝑝1𝑝2𝑝3 

      −℘1℘2℘3𝑒
−3𝑠𝜎2 − 𝑥1𝑥2𝑥3𝑒

−3𝑠𝜎3  

      −(℘3𝑥1𝑠
𝛾2 +℘3𝑝2𝑥1)𝑒

−𝑠(𝜎2+𝜎3) 

      −(℘1𝑥2𝑠
𝛾3 +℘1𝑝3𝑥2)𝑒

−𝑠(𝜎2+𝜎3) 

      −(℘2𝑥3𝑠
𝛾1 + ℘2𝑝1𝑥3)𝑒

−𝑠(𝜎2+𝜎3), 

    D1(𝑠) = −ℓ3𝑠
𝛾1+𝛾2 − ℓ2𝑠

𝛾1+𝛾3 − ℓ1𝑠
𝛾2+𝛾3  

      −(𝑝2ℓ3 + 𝑝3ℓ2)𝑠
𝛾1 − (𝑝1ℓ3 + 𝑝3ℓ1)𝑠

𝛾2  

      −(𝑝1ℓ2 + 𝑝2ℓ1)𝑠
𝛾3 − 𝑝1𝑝3ℓ2 − 𝑝2𝑝3ℓ1 − 𝑝1𝑝2ℓ3 

      +(℘3ℓ2𝑥1 + ℘1ℓ3𝑥2 +℘2ℓ1𝑥3)𝑒
−𝑠(𝜎2+𝜎3), 

    D2(𝑠) = ℓ1ℓ2𝑠
𝛾3 + ℓ1ℓ3𝑠

𝛾2 + ℓ2ℓ3𝑠
𝛾1  

      +𝑝1ℓ2ℓ3 + 𝑝2ℓ1ℓ3 + 𝑝3ℓ1ℓ2, 

    D3(𝑠) = −ℓ1ℓ2ℓ3. 

Multiplying 𝑒𝑠𝜎1 and 𝑒2𝑠𝜎1 on both sides of equation (30), we get  

 {
D0(𝑠)𝑒

𝑠𝜎1 + D1(𝑠) + D2(𝑠)𝑒
−𝑠𝜎1 + D3(𝑠)𝑒

−2𝑠𝜎1 = 0,

D0(𝑠)𝑒
2𝑠𝜎1 + D1(𝑠)𝑒

𝑠𝜎1 + D2(𝑠) + D3(𝑠)𝑒
−𝑠𝜎1 = 0.  (31) 
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Let 𝑠 = 𝜔(𝑐𝑜𝑠
𝜋

2
+ 𝑖 𝑠𝑖𝑛

𝜋

2
)(𝜔 > 0) be a positive imaginary root of equations (31), and 𝐷𝑖

𝑅 and 𝐷𝑖
𝐼 be the real and 

virtual parts of 𝐷𝑖(𝑠)(𝑖 = 0,1,2,3), respectively. 

Now, separate the real part and virtual part  

 

{
 
 

 
 
P11 𝑐𝑜𝑠 𝜔 𝜎1 + P12 𝑠𝑖𝑛 𝜔 𝜎1 + P13 𝑐𝑜𝑠 2𝜔𝜎1 + P14 𝑠𝑖𝑛 2𝜔𝜎1 = −D1

𝑅 ,

P21 𝑐𝑜𝑠 𝜔 𝜎1 + P22 𝑠𝑖𝑛 𝜔 𝜎1 + P23 𝑐𝑜𝑠 2𝜔𝜎1 + P24 𝑠𝑖𝑛 2𝜔𝜎1 = −D1
𝐼 ,

P31 𝑐𝑜𝑠 𝜔 𝜎1 + P32 𝑠𝑖𝑛 𝜔 𝜎1 + P33 𝑐𝑜𝑠 2𝜔𝜎1 + P34 𝑠𝑖𝑛 2𝜔𝜎1 = −D2
𝑅 ,

P41 𝑐𝑜𝑠 𝜔 𝜎1 + P42 𝑠𝑖𝑛 𝜔 𝜎1 + P43 𝑐𝑜𝑠 2𝜔𝜎1 + P44 𝑠𝑖𝑛 2𝜔𝜎1 = −D2
𝐼 ,

 (32) 

here  

 

{
 
 

 
 

P11 = D0
𝑅 + D2

𝑅 ,   P12 = D2
𝐼 − D0

𝐼 ,   P13 = D3
𝑅 ,   P14 = D3

𝐼 ,   

P21 = D0
𝐼 + D2

𝐼 ,   P22 = D0
𝑅 − D2

𝑅 ,   P23 = D3
𝐼 ,   P24 = −D3

𝑅 ,

P31 = D1
𝑅 + D3

𝑅,   P32 = D3
𝐼 − D1

𝐼 ,  P33 = D0
𝑅,   P34 = −D0

𝐼 ,

P41 = D1
𝐼 + D3

𝐼 ,   P42 = D1
𝑅 − D3

𝑅 ,   P43 = D0
𝐼 ,   P44 = D0

𝑅.   

 

The characteristic equation of this part contains coefficients 𝐷0, 𝐷1, 𝐷2, 𝐷3, …, but these coefficients themselves 

include exponential terms related to other time delays. The computation is large, and we will perform numerical 

solutions in Numerical simulations. 

In order to verify Hopf’s bifurcation condition, the following hypothesis is proposed in this paper. 

Hypothesis 7 
G1𝜒1+G2𝜒2

𝜒1
2+𝜒2

2 ≠ 0, where G1, 𝜒1, G2, 𝜒2 is described by equation (37). 

Lemma 4 Let 𝑠(𝜎1) = 𝜇(𝜎1) + 𝑖𝜔(𝜎1) be a solution of equation (30) satisfying 𝜇(𝜎1
∗) = 0 , 𝜔(𝜎1

∗) = 𝜔0 near 𝜎1 =

𝜎1
∗. Then the following transversality condition holds 

𝑅𝑒 [
𝑑𝑠

𝑑𝜎1
]|
(𝜔=𝜔0,𝜎1=𝜎1

∗)

≠ 0 

Proof 

The real and imaginary parts of 𝐷𝑖
′(𝑠) can be expressed in terms of 𝐷𝑖

′𝑅 and 𝐷𝑖
′𝐼. According to the implicit function 

theorem, find the derivative of equation (30) with respect to 𝜎1  

 
𝑑𝑠

𝑑𝜎1
=

G(𝑠)

𝜒(𝑠)
= −

𝐹𝜎1

𝐹𝑠
, (33) 

of these,  

𝐹(𝜎1, 𝑠) = D0(𝑠) + D1(𝑠)𝑒
−𝑠𝜎1 + D2(𝑠)𝑒

−2𝑠𝜎1 + D3(𝑠)𝑒
−3𝑠𝜎1 ,

G(𝑠) = 𝑠[D1(𝑠)𝑒
−𝑠𝜎1 + 2D2(𝑠)𝑒

−2𝑠𝜎1 + 3D3(𝑠)𝑒
−3𝑠𝜎1],      

𝜒(𝑠) = D0
′(𝑠) + [D1

′(𝑠) − 𝜎1D1(𝑠)]𝑒
−𝑠𝜎1                                

 +[D2
′(𝑠) − 2𝜎1D2(𝑠)]𝑒

−2𝑠𝜎1                                    

 +[D3
′(𝑠) − 3𝜎1D3(𝑠)]𝑒

−3𝑠𝜎1 .                                  

 

From equation (37) it can be deduced that 

𝑅𝑒 [
𝑑𝑠

𝑑𝜎1
]| (𝜔 = 𝜔0, 𝜎1 = 𝜎1

∗)  =  
𝐺1𝑋1  +  𝐺2𝑋2  

𝑋1
 2  +  𝑋2

 2  

 



Wang and Jiang  Journal of Advances in Applied & Computational Mathematics, 12, 2025 

 

182 

G1 = 𝜔0(D1
𝑅 𝑠𝑖𝑛 𝜔0 𝜎1

∗ − D1
𝐼 𝑐𝑜𝑠 𝜔0 𝜎1

∗ + 2D2
𝑅 𝑠𝑖𝑛 2𝜔0𝜎1

∗          

  −2D2
𝐼 𝑐𝑜𝑠 2𝜔0𝜎1

∗ + 3D3
𝑅 𝑠𝑖𝑛 3𝜔0𝜎1

∗ − 3D3
𝐼 𝑐𝑜𝑠 3𝜔0𝜎1

∗),
 

G2 = 𝜔0(D1
𝑅 𝑐𝑜𝑠 𝜔0 𝜎1

∗ + D1
𝐼 𝑠𝑖𝑛 𝜔0 𝜎1

∗ + 2D2
𝑅 𝑐𝑜𝑠 2𝜔0𝜎1

∗         

 +2D2
𝐼 𝑠𝑖𝑛 2𝜔0𝜎1

∗ + 3D3
𝑅 𝑐𝑜𝑠 3𝜔0𝜎1

∗ + 3D3
𝑅 𝑠𝑖𝑛 3𝜔0𝜎1

∗),
 

𝜒1     = D0
′𝑅 + (D1

′𝑅 − 𝜎1
∗D1

𝑅) 𝑐𝑜𝑠(𝜔0𝜎1
∗) − (D1

′𝐼 − 𝜎1
∗D1

𝐼 ) 𝑠𝑖𝑛(𝜔0𝜎1
∗) 

       +(D2
′𝑅 − 2𝜎1

∗D2
𝑅) 𝑐𝑜𝑠( 2𝜔0𝜎1

∗) − (D2
′𝐼 − 2𝜎1

∗D2
𝐼 ) 𝑠𝑖𝑛( 2𝜔0𝜎1

∗)

        +(D3
′𝑅 − 3𝜎1

∗D3
𝑅) 𝑐𝑜𝑠( 3𝜔0𝜎1

∗) − (D3
′𝐼 − 3𝜎1

∗D3
𝐼 ) 𝑠𝑖𝑛( 3𝜔0𝜎1

∗),

 

𝜒2     = D0
′𝐼 + (D1

′𝑅 − 𝜎1
∗D1

𝑅) 𝑠𝑖𝑛(𝜔0𝜎1
∗) + (D1

′𝐼 − 𝜎1
∗D1

𝐼 ) 𝑐𝑜𝑠(𝜔0𝜎1
∗)   

         +(D2
′𝑅 − 2𝜎1

∗D2
𝑅) 𝑠𝑖𝑛( 2𝜔0𝜎1

∗) + (D2
′𝐼 − 2𝜎1

∗D2
𝐼 ) 𝑐𝑜𝑠( 2𝜔0𝜎1

∗)

          +(D3
′𝑅 − 3𝜎1

∗D3
𝑅) 𝑠𝑖𝑛( 3𝜔0𝜎1

∗) + (D3
′𝐼 − 3𝜎1

∗D3
𝐼 ) 𝑐𝑜𝑠( 3𝜔0𝜎1

∗).

 

By Hypothesis 7, the transversality condition holds, thus completing the proof of Lemma 4. 

We similarly prove the bifurcation points where the other two time delays give rise to bifurcations about Lemma 

3, and give the stability ranges corresponding to these two time delays. On this basis, the bifurcation point of the 

system about the last time delay when these two time delays are in the stability range is further proved using Lemma 

4. From this, we derive the following theorems. 

Theorem 1 If Hypotheses 1 to 7 hold, then the following results hold 

(1) If 𝜎2 ∈ [0, 𝜎20̂), 𝜎3 ∈ [0, 𝜎30̃), 𝜎1 ∈ [0, 𝜎1
∗) , the zero equilibrium point of system (5) is asymptotically stable. 

(2)  If 𝜎2 ∈ [0, 𝜎20̂), 𝜎3 ∈ [0, 𝜎30̃), and 𝜎1 > 𝜎1
∗, the zero equilibrium point of system (5) is unstable, and system (5) 

undergoes a Hopf bifurcation at 𝜎1 = 𝜎1
∗. 

Similarly situation 5 leads to situation 6 which leads to Theorem 2, and situation 7 which leads to Theorem 3. 

Theorem 2 Under satisfying all the hypotheses, the following result can be obtained 

(3)  If 𝜎1 ∈ [0, 𝜎10), 𝜎3 ∈ [0, 𝜎30̃), when 𝜎2 ∈ [0, 𝜎2
∗), the zero equilibrium point of system (5) is asymptotically stable. 

(4)  If 𝜎1 ∈ [0, 𝜎10), 𝜎3 ∈ [0, 𝜎30̃), when 𝜎2 ∈ [𝜎2
∗, +∞), the zero equilibrium point of system (5) is unstable and 

system (5) undergoes a Hopf bifurcation at 𝜎2 = 𝜎2
∗. 

Theorem 3 Under satisfying all the hypotheses, the following result can be obtained 

(5)  If 𝜎1 ∈ [0, 𝜎10), 𝜎2 ∈ [0, 𝜎20̂), when 𝜎3 ∈ [0, 𝜎3
∗), the zero equilibrium point of system (5) is asymptotically stable. 

(6)  If 𝜎1 ∈ [0, 𝜎10), 𝜎2 ∈ [0, 𝜎20̂), when 𝜎3 ∈ [𝜎3
∗, +∞), the zero equilibrium point of system (5) is unstable and 

system (5) undergoes a Hopf bifurcation at 𝜎3 = 𝜎3
∗.  

5. Numerical Simulations 

In order to verify the correctness of the results of the theoretical analysis in this paper, the system (4) is simulated 

numerically using the predictor-corrector scheme for systems of fractional order delay differential equations. 

In the case of multiple discrete delays 𝜎1, 𝜎2, 𝜎3 that are not integer multiples of each other, the delayed terms 

𝑦(𝑡 − 𝜎𝑗) generally do not fall on the computational grid points 𝑡𝑘 = 𝑘ℎ. In this work, we handle the delayed terms in 

the predictor–corrector method using linear interpolation. where 𝑡𝑚 and 𝑡𝑚+1 are the grid points satisfying 𝑡𝑚 ≤ 𝑡𝑘 −

𝜎𝑗 ≤ 𝑡𝑚+1. Where system (1) in 𝑡 ∈ [0, 𝑇] , assume that 𝑡 is divided into 𝑁,that is {𝑡𝑛 = 𝑛ℎ: 𝑛 = 𝑘 + 2,⋯ ,𝑁 + 𝑘} and 

satisfies ℎ = 𝑇/𝑁, 𝑘 = 𝑚𝑎𝑥[
𝜎1

ℎ
,
𝜎2

ℎ
,
𝜎3

ℎ
] , where 𝑦(𝑡𝑗 − 𝜎𝑖) = 𝑦(𝑗ℎ − 𝑘𝑖ℎ) = 𝑦(𝑡𝑗−𝑘𝑖),𝑗 ∈ 𝑍 and 𝑘 ≤ 𝑗 ≤ 𝑛 − 2. Denote 𝑦𝑛+1,𝑖 =

𝑦𝑖,𝑛(𝑡𝑛+1) as the approximate value of 𝑦𝑖 at 𝑡𝑛+1 in the system (5) using the predictor-corrector method,𝑖 = 1,2,3. 
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Firstly, according to (2), the system (5) is discretized and the discrete form is 

    𝑦𝑛+1,1 = 𝑦0,1 +
ℎ𝛾1

𝛾(𝛾1+2)
[−𝑝1𝑦𝑛+1,1

𝑝
 

      +𝜄1 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘1,1
𝑝

) + 𝜌1 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘2,1
𝑝

) 

      +𝜅1 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘3,1
𝑝

) + ∑ 𝑎𝑗,𝑛+1
𝑛
𝑗=0 (−𝑝1𝑦𝑗,1 

      +𝜄1 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘1,1) + 𝜌1 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘2,1) 

      +𝜅1 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘3,1))], 

    

𝑦𝑛+1,2 = 𝑦0,2 +
ℎ𝛾2

𝛾(𝛾2+2)
[−𝑝2𝑦𝑛+1,2

𝑝
+ 𝜄2 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘1,2

𝑝
)

 +𝜌2 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘2,2
𝑝

) + 𝜅2 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘3,2
𝑝

)   

 +∑ 𝑎𝑗,𝑛+1
𝑛
𝑗=0 (−𝑝2𝑦𝑗,2 + 𝜄2 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘1,2)       

 +𝜌2 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘2,2) + 𝜅2 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘3,2))],        

 

    

𝑦𝑛+1,3 = 𝑦0,3 +
ℎ𝛾3

𝛾(𝛾3+2)
[−𝑝3𝑦𝑛+1,3

𝑝
+ 𝜄3 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘1,3

𝑝
)

 +𝜌3 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘2,3
𝑝

) + 𝜅3 𝑡𝑎𝑛ℎ( 𝑦𝑛+1−𝑘3,3
𝑝

)  

 +∑ 𝑎𝑗,𝑛+1
𝑛
𝑗=0 (−𝑝3𝑦𝑗,3 + 𝜄3 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘1,3)      

 +𝜌3 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘2,3) + 𝜅3 𝑡𝑎𝑛ℎ( 𝑦𝑗−𝑘3,3))].       

   

The following three examples are discussed for simulation experiments on system (5). The examples chosen in 

this paper have several significant advantages to fully reflect the complexity and representativeness of the system. 

Firstly, in the choice of fractional order, we adopt three different orders, avoiding the monotonicity of the uniform 

order, making the model more suitable for the situation of inconsistent system memory effects in practice, and 

reflecting the flexibility and wide applicability of fractional order systems. 

Second, in the design of coefficients, we especially chose the settings of mixed positive and negative coefficients 

with various size distributions, which not only reflects the real structure of the coexistence of excitation and 

inhibition among neural networks but also increases the nonlinear complexity of the system. 

Third, in the initial value selection, we set all three initial values non-zero and different, which enhances the 

generality and persuasiveness of the system simulation. Finally, in the setting of time delay parameters, we 

demonstrate the effect on the other time delay and the stability and bifurcation behavior of the system by first 

introducing two different time delays and adjusting them within a certain range. In particular, in combination with 

the analysis of the change of the bifurcation point, we reveal the evolution mechanism of the system from stability 

to oscillation, highlighting the time delay sensitivity and regulation potential of fractional-order time delay neural 

networks. 

In summary, good stabilization or bifurcation behaviors are still observed under different parameter settings. 

5.1. Example 1 

In this example, the bifurcation problem of system (34) is investigated by discussing situation 5𝜎1 > 0,𝜎2 ∈ (0, 𝜎20̂), 

𝜎3 ∈ (0, 𝜎30̃) with 𝜎1 as the bifurcation parameter  

 

{
  
 

  
 
𝐷0.65𝑦1(𝑡) = −1.8𝑦1(𝑡) + 1.2 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎1))                         

 +2.1 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎2)) + 1.3 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎3)),

𝐷0.67𝑦2(𝑡) = −1.1𝑦2(𝑡) + 1.2 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎1))                         

 −0.9 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎2)) − 1.3 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎3)),

𝐷0.68𝑦3(𝑡) = −1.2𝑦3(𝑡) − 1.3 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎1))                          

 +0.9 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎2)) − 1.2 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎3)),

 (35) 
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In this system (39), The step size is ℎ = 0.1, its initial conditions we can set as (𝑦1(0), 𝑦2(0), 𝑦3(0)) = (0.01, −0.01,0.01), 

𝜎2 = 0.6, 𝜎3 = 0.9 . 

From the parameter settings, we know that the Hypotheses 1-7 are satisfied, and we can clearly figure out that 

𝜔 = 0.4315, according (30) 𝜎1
∗ = 1.6301, when 𝜎1 = 1.62 < 𝜎1

∗, the zero equilibrium point of the system (32) is 

asymptotically stable, as shown in Fig. (2) knowing that (1) of Theorem 1 holds, when 𝜎1 = 1.66 > 𝜎1
∗, the system 

loses its stability, and starts to oscillate, as shown in Fig. (4), and in Fig. (5), it is clearly and intuitively shown that 

when 𝜎1 = 𝜎1
∗, the bifurcation occurs, So as in Fig. (3) and Fig. (5) it can be seen that (2) of Theorem 1 holds. 

In Fig. (6), we can clearly see the effect of the time delays combination (𝜎2, 𝜎3) on 𝜎1
∗,when the communication 

delays 𝜎2 and 𝜎3 are both small (i.e., near the origin of the coordinate plane), the critical value 𝜎1
∗ is correspondingly 

large. As 𝜎2 and 𝜎3 increase, the critical value𝜎1
∗ decreases. This reveals a dynamic, mutually compensatory trade-

off between the two delays. which also tells us that 𝜎1
∗ is not only controlled by the parameter only; through Fig. (7), 

we can see that the stability interval of the fractional order neural network is longer than that of the integer order 

neural network, and the range of the adjustable time delay is wider in the stability interval. 

 

Figure 2: The time-series and phase diagrams of system (35), 𝜎2 = 0.6 , 𝜎3 = 0.9, 𝜎1 = 1.62 < 𝜎1
∗ = 1.6301. 

 

Figure 3: This set of figures shows three different orders 𝛾1 = 0.5, 𝛾2 = 0.6, 𝛾3 = 0.7. Compared with Example 1, although the 

orders are different, the resulting effects are similar and do not depend on a particular choice of the ending. 
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Figure 4: The time-series and phase diagrams of system (35),𝜎2 = 0.6,𝜎3 = 0.9,𝜎1 = 1.66 > 𝜎1
∗ = 1.6301. 

 

Figure 5: The system (35) bifurcation diagrams with respect to 𝜎1, 𝜎2 = 0.6, 𝜎3 = 0.9  

 

Figure 6: The three-dimensional plot of the effect of the combination of delays (𝜎2, 𝜎3) on 𝜎1
∗ in system (39). 

 

Figure 7: Comparison of the convergence of 𝛾1 = 0.65, 𝛾2 = 0.67, 𝛾3 = 0.68 with 𝛾1 = 1, 𝛾2 = 1, 𝛾3 = 1. 
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5.2. Example 2 

In this example, situation 6 𝜎2 > 0, 𝜎1 ∈ (0, 𝜎10), 𝜎3 ∈ (0, 𝜎30̃) are discussed to study the bifurcation of system (39) 

using 𝜎2 as the bifurcation parameter  

 

{
 
 
 

 
 
 
𝐷0.94𝑦1(𝑡) = 1.4𝑦1(𝑡) + 0.9 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎1)) − 0.9 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎2))

−1.3 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎3)),                                                          

𝐷0.95𝑦2(𝑡) = 1.1𝑦2(𝑡) − 0.9 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎1)) + 0.9 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎2))

−1.2 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎3)),                                                          

𝐷0.98𝑦3(𝑡) = 1.4𝑦3(𝑡) − 1 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎1)) − 0.8 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎2))    

−1.9 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎3)),                                                          

 (36) 

In this system (36),The step size is ℎ = 0.05, its initial conditions we can set as (𝑦1(0), 𝑦2(0), 𝑦3(0)) =

(0.05,0.01,0.02), 𝜎1 = 0.6, 𝜎3 = 1.2. 

Because all the hypotheses are satisfied, we can clearly work out that 𝜔 = 0.6994, since Situation 6 has been 

omitted, the calculation of 𝜎2
∗ is the same as that of 𝜎2

∗ to obtain 𝜎2
∗ = 4.3255, the zero equilibrium point of the 

system (36) is asymptotically stable when 𝜎2 = 4.3 < 𝜎2
∗, Theorem 2 (3) holds as shown in Fig. (8), and the system 

loses its stability and starts to oscillate when 𝜎2 = 4.8 > 𝜎2
∗, as shown in Fig. (9), and it is clearly and intuitively 

demonstrated that bifurcation occurs when 𝜎2 = 𝜎2
∗ in Fig. (10), as in Fig. (9) and Fig. (10) know that Theorem 2 (4) 

holds. 

In Fig. (11),as the self-connection delay 𝜎1 or the communication delay 𝜎3 increases, the critical delay 𝜎2
∗ exhibits 

a pronounced decreasing trend.The rates of change along the 𝜎1 axis and the 𝜎3 axis are found to be different. The 

surface may be steeper in the 𝜎1 direction than in the 𝜎3 direction. This indicates that, in this particular system, the 

critical communication delay 𝜎2
∗ is more sensitive to variations in the self-connection delay 𝜎1. 

By comparing the convergence of the fractional order neural network and the integer order neural network in 

Fig. (12), we can see that the integer order neural network oscillates a little bit more obviously than the fractional 

order.  

 

Figure 8: The time-series and phase diagrams of system (36),𝜎1 = 0.6,𝜎3 = 1.2,𝜎2 = 4.3 < 𝜎2
∗ = 4.3255. 
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Figure 9: The time-series and phase diagrams of system (36),𝜎1 = 0.6,𝜎3 = 1.2,𝜎2 = 4.8 > 𝜎2
∗ = 4.3255. 

 

Figure 10: The system (36) bifurcation diagrams with respect to 𝜎2,𝜎1 = 0.6,𝜎3 = 1.2. 

 

Figure 11: The three-dimensional plot of the effect of the combination of delays (𝜎1, 𝜎3) on 𝜎2
∗ in system (36). 

 

Figure 12: The comparison of the convergence of 𝛾1 = 0.94, 𝛾2 = 0.95, 𝛾3 = 0.98 with 𝛾1 = 1, 𝛾2 = 1, 𝛾3 = 1. 
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5.3. Example 3 

In this example, situation 7𝜎3 > 0 , 𝜎1 ∈ (0, 𝜎10) , 𝜎2 ∈ (0, 𝜎20̂) are discussed to study the bifurcation of system (36) 

with 𝜎3 as the bifurcation parameter 

 

{
 
 
 

 
 
 
𝐷0.92𝑦1(𝑡) = 0.5𝑦1(𝑡) − 0.7 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎1)) − 1 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎2))   

−1.2 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎3)),                                                         

𝐷0.91𝑦2(𝑡) = 0.4𝑦2(𝑡) − 0.5 𝑡𝑎𝑛ℎ( 𝑦2(𝑡 − 𝜎1)) + 0.5 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎2))

+1 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎3)),                                                            

𝐷0.97𝑦3(𝑡) = 0.6𝑦3(𝑡) − 0.5 𝑡𝑎𝑛ℎ( 𝑦3(𝑡 − 𝜎1)) − 0.8 𝑡𝑎𝑛ℎ( 𝑦1(𝑡 − 𝜎2))

−1 𝑡𝑎𝑛ℎ 𝑦2 (𝑡 − 𝜎3)),                                                              

 (37) 

In this system (37), whose initial conditions we can set as (𝑦1(0), 𝑦2(0), 𝑦3(0)) = (0.03, −0.03,0.03) , 𝜎1 = 1.8, 𝜎2 =

2.1,ℎ = 0.1. 

From all the above hypotheses, we can clearly work out 𝜔 = 1.3695,since Situation 7 has been omitted, the 

calculation of 𝜎3
∗ is the same as that of 𝜎1

∗ to obtain 𝜎3
∗ = 0.4310, when 𝜎3 = 0.43 < 𝜎3

∗, the zero equilibrium point 

of the system (40) is asymptotically stable, Theorem 3(5) holds as seen in Fig. (13), when 𝜎3 = 0.45 > 𝜎3
∗, the system 

loses its stability and starts to oscillate as shown in Fig. (14), and in Fig. (15) it is clearly visualised that the bifurcation 

occurs when 𝜎3 = 𝜎3
∗, Thus from Fig. (13) and Fig. (14), Theorem 3(6) holds. 

In Fig. (16) it can be clearly see the simultaneous increase of the self-connection delay 𝜎1 and the communication 

delay 𝜎2 can significantly suppress 𝜎3
∗ and in this example we also compare the stability of the fractional order 

neural networks with that of the integer order neural network. It is clear that the stability and dynamic performance 

of the fractional order neural network is better in Fig. (17). 

 

Figure 13: The time-series and phase diagrams of system (37), 𝜎1 = 1.8,𝜎2 = 2.1,𝜎3 = 0.43 < 𝜎3
∗ = 0.4310. 

 

Figure 14: The time-series and phase diagrams of system (37), 𝜎1 = 1.8,𝜎2 = 2.1,𝜎3 = 0.45 > 𝜎3
∗ = 0.4310. 
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Figure 15: The system (37) bifurcation diagrams with respect to 𝜎3,𝜎1 = 1.8,𝜎2 = 2.1. 

 

Figure 16: The three-dimensional plot of the effect of the combination of delays (𝜎1, 𝜎2) on 𝜎3
∗ in system (40). 

 

Figure 17: The comparison of the convergence of 𝛾1 = 0.92, 𝛾2 = 0.91, 𝛾3 = 0.97 with 𝛾1 = 1, 𝛾2 = 1, 𝛾3 = 1. 

6. Conclusion 

Delays are inherent in many real-world systems. In neuroscience, different types of delays directly affect the 

speed of information processing and cognitive functions; in communication networks, multi-delay factors 

determine the reliability, congestion level, and real-time performance of data transmission; in distributed control 

and robotic systems, mismatches between local and remote feedback delays may critically influence system stability 

and the success of cooperative tasks. Therefore, multi-delay effects are not merely theoretical constructs but 

fundamental factors shaping the behavior of biological and engineering networks. 

In this paper, we established and analyzed a fractional-order Hopfield neural network with three distinct delays: 

one self-connection delay and two communication delays. Because these delays interact nonlinearly, conventional 

delay-transformation techniques cannot be applied directly. To overcome this difficulty, we derived the 

characteristic equation containing three transcendental terms and developed a general strategy to solve for the 
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bifurcation points by combining structural properties of the equation with Cramer ’s rule. On this basis, an explicit 

Hopf bifurcation criterion was obtained, allowing us to determine the stability region of the system. 

The theoretical results demonstrate that when each delay remains below its critical value, the equilibrium point 

is asymptotically stable. Once any delay exceeds its threshold, the system undergoes Hopf bifurcation and 

transitions into periodic oscillations. Moreover, the coupling effects among the three delays significantly shift the 

bifurcation boundaries, indicating that system stability is jointly shaped by internal and communication delays 

rather than by a single delay parameter. Additionally, comparative analyses show that fractional-order neural 

networks possess larger stability regions and stronger oscillation-suppressing capabilities than their integer-order 

counterparts, confirming the beneficial role of fractional memory in delaying bifurcations and enhancing stability. 

From a numerical perspective, we employed an improved predictor–corrector method tailored for fractional 

multi-delay systems. This approach effectively captures the nonlocal memory of fractional derivatives while 

maintaining high numerical accuracy and stability, making it a reliable computational tool for studying complex 

fractional-order neural dynamics. The numerical simulations agree closely with the theoretical predictions, further 

validating the correctness and robustness of the proposed analysis framework. 

Beyond the specific model studied here, the analytical techniques and numerical methodology developed in this 

work have broad applicability. They can be extended to gene regulatory networks, multi-agent cooperative systems, 

neuromorphic circuits, and the stability analysis of modern power grids, where multiple types of delays and memory 

effects coexist. Therefore, this study not only advances the theoretical development of multi-delay fractional 

dynamical systems but also provides practical tools and insights for stability control, delay management, and 

performance optimization in complex networked systems. 
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