
Journal of Advances in Applied & Computational Mathematics, 2025, 193-216 

 

 

 

 

 

 

 

 

 

 

 
 

Published by Avanti Publishers 
Journal of Advances in Applied & 

Computational Mathematics 
ISSN (online): 2409-5761 

Normalized Solutions for Biharmonic Equation with Combined 

Pure-power and Saturable Nonlinearities 

Yue Ma and Ziheng Zhang *  

School of Mathematical Sciences, Tiangong University, Tianjin 300387, China 
 

 

ARTICLE INFO 

Article Type: Research Article 

Academic Editor: Emre Eroglu  

Keywords:  

Biharmonic equation 

Normalized solutions 

Saturable nonlinearity 

Pure-power nonlinearity 

Timeline: 

Received: October 27, 2025 

Accepted: December 05, 2025 

Published: December 28, 2025 

Citation: Ma Y, Zhang Z. Normalized solutions for 

biharmonic equation with combined pure-power and 

saturable nonlinearities. J Adv Appl Computat Math. 

2025; 12: 193-216. 

DOI: https://doi.org/10.15377/2409-5761.2025.12.12 

 

 

 

 

 

 

 

 

 

*Corresponding Author 
Email: zhzh@mail.bnu.edu.cn 

Tel: +(89) 15900357728 

 

ABSTRACT 

We investigate the existence of normalized solutions to the biharmonic equation with 

combined pure-power and saturable nonlinearities: 

{
 
 

 
 𝛥2𝑢 + 𝜆𝑢 = |𝑢|𝑝−2𝑢 + 𝜇

𝑔 + |𝑢|2

1 + 𝑔 + |𝑢|2
𝑢 in R𝑁,

∫ |𝑢|2𝑑𝑥 = 𝑐
𝑅𝑁

,

 

where 5 ≤ 𝑁 ≤ 7, 2 < 𝑝 < 4∗: =
2𝑁

𝑁−4
, 𝜇 > 0 is a parameter, 𝜆 ∈ 𝑅 arises as a Lagrange 

multiplier associated with the 𝐿2-constraint, and −1 < 𝑔 < 0 is a constant. By 

employing variational methods and analyzing the problem on the Pohozaev manifold, 

we establish the existence of ground state solutions in the 𝐿2-subcritical regime and 

mountain-pass type solutions in the 𝐿2-supercritical regime. 
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1. Introduction 

In this paper, we consider the existence of normalized solutions for the following biharmonic problem with a 

saturable perturbation 

 {
𝛥2𝑢 + 𝜆𝑢 = |𝑢|𝑝−2𝑢 + 𝜇

𝑔+|𝑢|2

1+𝑔+|𝑢|2
𝑢 in  R𝑁 ,

∫ |𝑢|2𝑑𝑥 = 𝑐
𝑅𝑁

,
 (1.1) 

where 5 ≤ 𝑁 ≤ 7, 2 < 𝑝 < 4∗, 𝜇 > 0 is a parameter, 𝜆 ∈ 𝑅 appears as a Lagrange multiplier associated with the 𝐿2-

constraint, and −1 < 𝑔 < 0 is a constant. This equation originates from the field of nonlinear optics, where it models 

the propagation of laser beams in bulk media with higher-order dispersion effects. The biharmonic operator 𝛥2 

accounts for fourth-order dispersion, which corrects the paraxial approximation error in traditional nonlinear 

Schrödinger equation (NLS) and suppresses the finite-time blow-up of solutions, see [1, 2]. The 𝐿2-norm constraint 

∫ |𝑢|2𝑑𝑥
𝑅𝑁

= 𝑐 corresponds to the conservation of beam power, a key physical quantity in optical propagation, 

making the study of “normalized solutions" (solutions satisfying this constraint) physically meaningful. The saturable 

nonlinear term 𝜇
𝑔+|𝑢|2

1+𝑔+|𝑢|2
𝑢 accurately describes the refractive index response of real optical materials, as the induced 

change saturates at high intensities, thereby preventing unphysical blow-up. Unlike power-type nonlinearities, its 

growth is bounded as the field intensity increases, avoiding unphysical infinite refractive index variations [3]. 

When the saturable term is omitted (𝜇 = 0), problem (1.1) reduces to the biharmonic Schrödinger equation with 

pure-power nonlinearity: 

 {
𝛥2𝑢 + 𝜆𝑢 = |𝑢|𝑝−2𝑢,  𝑥 ∈ 𝑅𝑁 ,

∫ |𝑢|2𝑑𝑥
𝑅𝑁

= 𝑐.
 (1.2) 

This simplified model has been extensively studied in recent years, with progress being made across different 

regimes of the exponent 𝑝. In the 𝐿2-subcritical case (2 < 𝑝 < 2 +
8

𝑁
), Bellazzini and Visciglia [4] established 

foundational results. Under appropriate conditions on the spatial boundedness of the nonlinear coefficient, they 

proved the existence of ground state normalized solutions and demonstrated the orbital stability of minimizers. 

Their work utilized variational methods in the context of constrained minimization problems. For the 𝐿2-critical case 

(𝑝 = 2 +
8

𝑁
), Phan [5] extended these results by incorporating an external potential, showing that ground state 

solutions exist when the attraction strength parameter lies within a specific interval. This work highlighted the 

delicate balance required for existence in the critical case and the significant influence of external potentials on the 

solution structure. The 𝐿2-supercritical case (2 +
8

𝑁
< 𝑝 < 4∗) presents additional challenges due to the lack of 

compactness and the unboundedness of the energy functional from below on the constraint manifold. Liu and 

Zhang [6] made substantial progress in this direction by verifying the Palais-Smale condition at the mountain-pass 

level and proving that for sufficiently large 𝜇, radially symmetric non-negative normalized solutions exist. Their 

analysis also revealed that the energy of these solutions tends to zero as 𝑐 → +∞, providing important qualitative 

information about the solution behavior. Further generalizations were pursued by Zhang et al. [7], who considered 

non-autonomous cases with spatially varying power nonlinearities of the form ℎ(𝜀𝑥)|𝑢|𝑝−2𝑢. They demonstrated 

that when the scaling parameter 𝜀 is sufficiently small, the number of normalized solutions is at least equal to the 

number of global maxima of the function ℎ(𝑥). This result established an interesting connection between the spatial 

structure of the nonlinearity and the multiplicity of solutions. Although these works collectively provide a 

comprehensive theoretical framework for biharmonic equation with pure-power nonlinearities, they inherently 

cannot capture the saturation effects that are characteristic of real optical materials. 

Before going to our concerns, we mention some results related to saturable nonlinearity due to its physical 

relevance and mathematical interest. In 2017, Lin et al. [8] proved the existence of normalized ground state solutions 

for the following problem 
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 {
−𝛥𝑢 + 𝜆𝑢 = 𝜇

𝐼(𝑥)+|𝑢|2

1+𝐼(𝑥)+|𝑢|2
𝑢,  𝑥 ∈ 𝑅𝑁 ,

∫ |𝑢|2𝑑𝑥
𝑅𝑁

= 𝑐,
 (1.3) 

when 𝐼(𝑥) ≠ 0 and 𝜇 > 0 is sufficiently large. In 2020, Wang and Wang [9] proved that, if 𝐼(𝑥) is a radially symmetric 

function, there exist multiple bump normalized solutions for problem (1.3), which are concentrated at the maximal 

points of 𝐼(𝑥). The investigation of fourth order equations with saturable nonlinearities was undertaken by Han [3]. 

More precisely, for 𝑁 ≥ 2 and sufficiently large 𝜇, he not only established radial ground state normalized solutions 

to the following problem 

 {
𝛥2𝑢 − 𝛥𝑢 + 𝜆𝑢 = 𝜇

𝐼(𝑥)+𝑢2

1+𝐼(𝑥)+𝑢2
𝑢,

∫ |𝑢|2𝑑𝑥
𝑅𝑁

= 𝑐,
 (1.4) 

but also derived explicit bounds for both the ground state energy and the Lagrange multiplier. However, it is worth 

pointing out that problem (1.4) dose not take into account the influence of the pure-power nonlinearities on the 

existence of normalized solutions. 

Moreover, recent advances in approximation theory and iterative algorithms, such as generalized Stancu-Schurer 

operators [10], viscosity-based iterative methods for nonlinear analysis [11], and fractional integral-type operators 

preserving shape properties [12], provide valuable insights and potential numerical tools for future discretization 

and computational studies of the problem considered here. Although the present work focuses on theoretical 

existence results, these approximation techniques offer promising avenues for subsequent numerical 

investigations. 

From a physical perspective, the exponent 𝑝 in the pure-power term |𝑢|𝑝−2𝑢 governs the strength of the nonlinear 

Kerr effect. The different regimes of 𝑝 correspond to distinct physical scenarios in beam propagation. 𝐿2-subcritical 

case (2 < 𝑝 < 2 +
8

𝑁
): the nonlinearity is relatively weak compared to the dispersive effects. Ground state solutions 

obtained via minimization typically correspond to stable, low-power beam profiles. 𝐿2-critical case (𝑝 = 2 +
8

𝑁
): this 

represents a threshold where the focusing nonlinearity and the dispersion are in a precise balance. The existence 

of solutions becomes delicate and often depends sensitively on parameters like the prescribed power 𝑐. 𝐿2-

supercritical case (2 + 8/𝑁 < 𝑝 < 4∗): the nonlinearity is dominant. This regime is associated with higher beam 

powers where strong focusing can lead to complex beam structures and instability, necessitating more advanced 

mathematical tools like the mountain-pass theorem on constraint manifolds to find solutions. 

Motivated by the above discussion, the purpose of this paper is to present reasonable assumptions on 𝑐, 𝑝 and 

𝑔 to guarantee the existence of normalized solutions of problem (1.1). As usual, solutions of problem (1.1) can be 

obtained as critical points of the energy functional 𝐽: 𝐻2(𝑅𝑁) → 𝑅 defined by 

 𝐽(𝑢):=
1

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
1

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ (|𝑢|2 − 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
))

𝑅𝑁
𝑑𝑥 (1.5) 

on the constraint 

 𝑆(𝑐): = {𝑢 ∈ 𝐻2(𝑅𝑁)| ∫ |𝑢|2𝑑𝑥
𝑅𝑁

= 𝑐}. (1.6) 

Here, 𝐻2(𝑅𝑁) is the Sobolev space 

 𝐻2(𝑅𝑁) = {𝑢 ∈ 𝐿2(𝑅𝑁): |𝛥𝑢 ∈ 𝐿2(𝑅𝑁)}, 

which is equipped with the following norm 

 ‖𝑢‖𝐻2(𝑅𝑁): = (∫ |𝑢|2𝑑𝑥
𝑅𝑁

+ ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

)
1

2. 
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Note that 𝐽 is a well-defined and 𝐶1 functional on 𝑆(𝑐) with its Fréchet derivative 

 ⟨𝐽′(𝑢), 𝑣⟩ = ∫ 𝛥𝑢
𝑅𝑁

⋅ 𝛥𝑣𝑑𝑥 − ∫ |𝑢|𝑝−2𝑢𝑣𝑑𝑥
𝑅𝑁

− 𝜇 ∫
𝑔+|𝑢|2

1+𝑔+|𝑢|2𝑅𝑁
𝑢𝑣𝑑𝑥 

for any 𝑢, 𝑣 ∈ 𝐻2(𝑅𝑁). Thus, one may consider the following minimization problem 

 
)(inf:=)(

)(

uJc
cSu


 (1.7) 

to get normalized ground states of problem (1.1). Here, we say that 𝑢 is a ground state of problem (1.1) if it is a 

solution to problem (1.1) having minimal energy among all the solutions, namely, 

 𝐽|𝑆(𝑐)′(𝑢) = 0 𝑎𝑛𝑑 𝐽(𝑢) = 𝑖𝑛𝑓{ 𝐽(𝑣)|𝐽|𝑆(𝑐)′(𝑣) = 0  𝑎𝑛𝑑  𝑣 ∈ 𝑆(𝑐)}. 

Theorem 1 Let 5 ≤ 𝑁 ≤ 7, 𝜇 > 0 and −1 < 𝑔 < 0. The following statements hold: 

• If 2 < 𝑝 < 𝑝:= 2 +
8

𝑁
 and 𝑐 > 0, the infimum defined in (1.7) is achieved by some 𝑤 ∈ 𝑆(𝑐), which is a ground 

state of problem (1.1) with the associated Lagrange multiplier 𝜆̄ >
𝜇𝑔

1+𝑔
. 

• If 𝑝 < 𝑝 < 4∗, there exists 𝑐̄ > 0 such that for every 𝑐 < 𝑐̄, problem (1.1) has a solution(𝑤, 𝜆̄) ∈ 𝐻𝑟
2(𝑅𝑁) × 𝑅+. In 

particular, we have 

 𝜆̄ > 𝐾2𝑐
8−4𝑝

𝑁𝑝−2𝑁−8 −
𝜇

1+𝑔
(
𝑝

𝑝−2
− 𝑔), 

where 

 𝐾2: = (
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
) (

8(𝑁+4)(1+𝑔)
𝑝̄
2−2𝜇𝑩𝑝̄𝑁

2𝐶𝑁,𝑝̄
𝑝̄

𝑐
4
𝑁)

(1+𝑔)
𝑝̄
2𝑁(𝑁𝑝−2𝑁)

)

8

𝑁𝑝−2𝑁−8

> 0. 

This paper is organized as follows. In section 2. we present some preliminary results used to prove our main 

results. In section 3, we give the detailed proof of Theorem 1.1, divided into two parts: the subcritical case 2 < 𝑝 < 𝑝̄ 

and the supercritical case 𝑝̄ < 𝑝 < 4∗, where variational methods and minimax techniques are employed to eatablish 

the existence of normalized solutions. 

2. Preliminaries 

In this section, we recall and present several important inequalities and results that will be frequently used 

throughout the paper. 

Lemma 2 (Gagliardo-Nirenberg inequality [13, Section 3]) For every 𝑁 ≥ 5, there exists a constant 𝐶𝑁,𝑡 

depending on 𝑁 and 𝑡 such that 

 ‖𝑢‖𝑡 ≤ 𝐶𝑁,𝑡‖𝛥𝑢‖2
𝛾𝑡‖𝑢‖2

1−𝛾𝑡 ,  ∀𝑢 ∈ 𝐻2(𝑅𝑁), (2.1) 

where 𝑡 ∈ (2, 4∗] and 𝛾𝑡: =
𝑁

2
(
1

2
−

1

𝑡
). 

Lemma 3 For any 𝑎 > 0, the following inequalities hold: 

 𝑙𝑛 (1 +
𝑠

𝑎
) −

𝑠

𝑎+𝑠
≥ 0,  ∀𝑠 ≥ 0 

and 

 𝑙𝑛( 1 + 𝑠) < 𝑠,  ∀𝑠 > 0. 
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Proof. Define ℎ(𝑠): = 𝑙𝑛( 1 +
𝑠

𝑎
) −

𝑠

𝑎+𝑠
, ∀𝑠 ≥ 0. Compute its derivative 

 ℎ′(𝑠) =
1

𝑎+𝑠
−

𝑎

(𝑎+𝑠)2
=

𝑠

(𝑎+𝑠)2
≥ 0, ∀𝑠 ≥ 0, 

which means that ℎ(𝑠) is non-decreasing on 𝑠 ≥ 0. Since ℎ(0) = 0, it gives that ℎ(𝑠) ≥ ℎ(0) = 0 for all 𝑠 ≥ 0. That is, 

the first inequality holds. 

Define 𝑔(𝑠): = 𝑙𝑛( 1 + 𝑠) − 𝑠, ∀𝑠 > 0. Compute its derivative 

 𝑔′(𝑠) =
1

1+𝑠
− 1 = −

𝑠

1+𝑠
< 0, ∀𝑠 > 0. 

Since 𝑔(0) = 0 and 𝑔(𝑠) is strictly decreasing, it follows that 𝑔(𝑠) < 𝑔(0) = 0 for all 𝑠 > 0, which proves the second 

inequality. 

Lemma 4 ([4, Proposition 5.2]) Let {𝑢𝑛} be a sequence bounded in 𝐻2(𝑅𝑁) such that 

 

0,=||suplim
2

)(
1


















→

dxun
yBNy

n
R  

where 𝐵1(𝑦) denotes the ball of radius 1 centered at 𝑦. Then 𝑢𝑛 → 0 in 𝐿𝑠(𝑅𝑁) for 2 < 𝑠 < 4∗. 

Lemma 5 ( Generalized Lebesgue Dominated Convergence Theorem [14, Theorem 2.22]) Suppose 𝛺 is a 

domain in 𝑅𝑁, {𝑢𝑛}𝑛=1
∞  and 𝑢 are measurable functions in 𝛺 such that 𝑢𝑛 → 𝑢 a.e. in 𝛺. Then 𝑢𝑛 → 𝑢 in 𝐿1(𝛺) if and 

only if {𝜙𝑛}𝑛=1
∞ , 𝜙 ∈ 𝐿1(𝛺) exist such that 𝜙𝑛 → 𝜙 a.e. in 𝛺, |𝑢𝑛| ≤ 𝜙𝑛 a.e. in 𝛺 for each 𝑛, and 𝜙𝑛 → 𝜙 in 𝐿1(𝛺). 

We now demonstrate two essential estimates on the saturable nonlinearity. 

Lemma 6 If 𝑁 ≥ 5 and 2 < 𝑞 < 4. Then, the following inequality holds 

 𝑠2 − 𝑙𝑛 (1 +
𝑠2

1+𝑔
) ≤

𝑔

1+𝑔
𝑠2 +

𝑨𝑞

(1+𝑔)
𝑞
2

𝑠𝑞 ,  ∀𝑠 ≥ 0, 

where 𝑨𝑞 is given by 

 𝑨𝑞: =
(𝑞−2)

𝑞−2
2 (4−𝑞)

4−𝑞
2

𝑞
. (2.2) 

Proof. Let 

 𝑓(𝑠):=
𝑨𝑞

(1+𝑔)
𝑞
2

𝑠𝑞 −
1

1+𝑔
𝑠2 + 𝑙𝑛 (1 +

𝑠2

1+𝑔
) ,  ∀𝑠 ≥ 0. 

Clearly, 𝑓(0) = 0 and a direct calculation shows that 

 

𝑓′(𝑠) =
𝑞𝑨𝑞

(1+𝑔)
𝑞
2

𝑠𝑞−1 −
2

1+𝑔
𝑠 +

2𝑠

1+𝑔+𝑠2

= 𝑠 (
𝑞𝑨𝑞

(1+𝑔)
𝑞
2

𝑠𝑞−2 +
2

1+𝑔+𝑠2
−

2

1+𝑔
) ,  ∀𝑠 ≥ 0.

 

To obtain the desired inequality, it is sufficient to show that 𝑓′(𝑠) ≥ 0 for all 𝑠 ≥ 0. 

For this purpose, set 𝑡: =
𝑠2

1+𝑔
. Then, 𝑓 ′(𝑠) ≥ 0 is equivalent to 

 𝑨𝑞 ≥
1

𝑞

2𝑡

1+𝑡
𝑡
2−𝑞

2 ,  ∀𝑡 ≥ 0. 
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Utilizing the monotonicity of 
1

𝑞

2𝑡

1+𝑡
𝑡
2−𝑞

2  with respect to 𝑡 ≥ 0, we see that its maximum value is exactly 𝑨𝑞. That is, 

we reach the conclusion. 

Lemma 7 If 𝑁 ≥ 5 and 2 < 𝑞 < 4. Then, the following inequality holds 

 
𝑔+𝑠2

1+𝑔+𝑠2
𝑠2 ≤

𝑔

1+𝑔
𝑠2 +

𝑩𝑞

(1+𝑔)
𝑞
2

𝑠𝑞 ,  ∀𝑠 ≥ 0, 

where 𝑩𝑞 is given by 

 𝑩𝑞: =
2
𝑞+6
2 (𝑞−2)

𝑞−2
4 (√𝑞+14−3√𝑞−2)

4−𝑞
2

𝑞(√𝑞+14−√𝑞−2)3
. (2.3) 

Proof. Let 

 𝑘(𝑠): =
𝑩𝑞

(1+𝑔)
𝑞
2

𝑠𝑞 −
1

1+𝑔
𝑠2 +

𝑠2

1+𝑔+𝑠2
,  ∀𝑠 ≥ 0. 

Clearly, 𝑘(0) = 0 and a direct calculation shows that 

 

𝑘′(𝑠) =
𝑞𝑩𝑞

(1+𝑔)
𝑞
2

𝑠𝑞−1 −
2

1+𝑔
𝑠 +

2𝑠(1+𝑔)

(1+𝑔+𝑠2)2
                           

          = 𝑠 (
𝑞𝑩𝑞

(1+𝑔)
𝑞
2

𝑠𝑞−2 +
2(1+𝑔)

(1+𝑔+𝑠2)2
−

2

1+𝑔
) ,  ∀𝑠 ≥ 0.

 

We aim to show that 𝑘′(𝑠) ≥ 0 for all 𝑠 ≥ 0, which implies 𝑘(𝑠) ≥ 0, and hence the desired inequality. 

Set 𝑡: =
𝑠2

1+𝑔
. Then, 𝑓 ′(𝑠) ≥ 0 is equivalent to 

 𝑩𝑞 ≥
1

𝑞

2(𝑡+2)𝑡
4−𝑞
2

(1+𝑡)2
,  ∀𝑡 ≥ 0. 

Based on some direct analysis, we know that the maximum value of 
2(𝑡+2)𝑡

4−𝑞
2

(1+𝑡)2
 is precisely 𝑩𝑞. As a consequence, 

the lemma is proved. 

Lemma 8 ([8, Lemma 5.2]) Suppose that ℎ(𝑥) = 𝑥 − 𝑙𝑛( 1 + 𝑥), 𝑥 ∈ [0,+∞). For given 𝛼 > 0, 𝛽 > 0, and 𝑡 ∈ (0,1), if 

|𝑥 − 𝑦| ≥ 𝛼 for 0 ≤ 𝑥 ≤ 𝛽 and 0 ≤ 𝑦 < +∞, then there exists 𝜉 > 0 such that 

 ℎ(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡ℎ(𝑥) + (1 − 𝑡)ℎ(𝑦) − 𝜉. 

Lemma 9 ([15, Theorem 1.2]) Let 𝑢 ∈ 𝐻2(𝑅𝑁) be a weak solution to the equation 

 𝛥2𝑢 + 𝜆𝑢 = |𝑢|𝑝−2𝑢 + 𝜇
𝑔+|𝑢|2

1+𝑔+|𝑢|2
𝑢. (2.4) 

Then, 𝑢 satisfies the Pohozaev identity 

 
𝑁−4

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

+
𝑁(𝜆−𝜇)

2
∫ |𝑢|2𝑑𝑥
𝑅𝑁

=
𝑁

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

2
∫ 𝑙𝑛
𝑅𝑁

(1 +
|𝑢|2

1+𝑔
) 𝑑𝑥 . 

Furthermore, it holds that 

 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

4𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

=
𝜇𝑁

4
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥. (2.5) 

Following the idea of Soave [16], we introduce a constraint manifold 𝑀(𝑐) that contains all the critical points of 
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the functional 𝐽 restricted to 𝑆(𝑐). For each 𝑢 ∈ 𝐻2(𝑅𝑁)\{0} and 𝑡 > 0, denote by 

 𝑢𝑡(𝑥): = 𝑡
𝑁

2𝑢(𝑡𝑥), ∀𝑥 ∈ 𝑅𝑁 . 

A direct calculation gives that 

 ‖𝑢𝑡‖2
2 = ‖𝑢‖2

2,  ∫ |𝛥𝑢𝑡|2𝑑𝑥
𝑅𝑁

= 𝑡4 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

,  ∫ |𝑢𝑡|𝑝𝑑𝑥
𝑅𝑁

= 𝑡
𝑁𝑝−2𝑁

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

 

and 

 ∫ 𝑙𝑛 (1 +
|𝑢𝑡|2

1+𝑔
)

𝑅𝑁
𝑑𝑥 =

1

𝑡𝑁
∫ 𝑙𝑛 (1 +

𝑡𝑁|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥. 

Define the fibering map 𝑡 ∈ (0,∞) → 𝑓𝑢(𝑡): = 𝐽(𝑢
𝑡) as follows 

 𝑓𝑢(𝑡) =
𝑡4

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑡
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ |𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇

2𝑡𝑁
∫ 𝑙𝑛
𝑅𝑁

(1 +
𝑡𝑁|𝑢|2

1+𝑔
) 𝑑𝑥. 

Calculating its first and second derivatives, we have 

 
𝑓𝑢
′(𝑡) = 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
−

𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁

2
−1
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

          

−
𝜇𝑁

2𝑡𝑁+1
∫ 𝑙𝑛
𝑅𝑁

(1 +
𝑡𝑁|𝑢|2

1+𝑔
) 𝑑𝑥 +

𝜇𝑁

2𝑡
∫

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2𝑅𝑁
𝑑𝑥

 (2.6) 

and 

 

𝑓𝑢
′′(𝑡) = 6𝑡2 ∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
−

(𝑁𝑝−2𝑁)(𝑁𝑝−2𝑁−2)

4𝑝
𝑡
𝑁𝑝−2𝑁−4

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁(𝑁+1)

2𝑡𝑁+2
∫ 𝑙𝑛( 1 +

𝑡𝑁|𝑢|2

1+𝑔
)𝑑𝑥

𝑅𝑁
−

𝜇𝑁2

2𝑡2
∫

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2
𝑑𝑥

𝑅𝑁
   

−
𝜇𝑁

2𝑡2
∫

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2
𝑑𝑥

𝑅𝑁
−

𝜇𝑁2𝑡𝑁−2

2
∫

|𝑢|4

(1+𝑔+𝑡𝑁|𝑢|2)2
𝑑𝑥

𝑅𝑁
.      

 

Meanwhile, considering the Pohozaev functional 

 𝑄(𝑢): = ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

4𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

4
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥, 

we see that 

 
𝑄(𝑢𝑡) = ∫ |𝛥𝑢𝑡|2𝑑𝑥

𝑅𝑁
−

𝑁𝑝−2𝑁

4𝑝
∫ |𝑢𝑡|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

4
∫ (𝑙𝑛 (1 +

|𝑢𝑡|2

1+𝑔
) −

|𝑢𝑡|2

1+𝑔+|𝑢𝑡|2
)

𝑅𝑁
𝑑𝑥                                   

            = 𝑡4 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

4𝑝
𝑡
𝑁𝑝−2𝑁

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

4𝑡𝑁
∫ 𝑙𝑛 (1 +

𝑡𝑁|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥 +

𝜇𝑁

4
∫

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2
𝑑𝑥

𝑅𝑁
.
 (2.7) 

Obviously, (2.6) and (2.7) state that 

 
2𝑄(𝑢𝑡)

𝑡
= 𝑓𝑢

′(𝑡) =
𝑑

𝑑𝑡
𝐽(𝑢𝑡). (2.8) 

In particular, 𝑄(𝑢) = 0 corresponds to the Pohozaev identity (2.5). Hence, we can introduce the following subset 

of 𝑆(𝑐) 

 𝑀(𝑐): = {𝑢 ∈ 𝑆(𝑐): 𝑄(𝑢) = 0} = {𝑢 ∈ 𝑆(𝑐): 𝑓𝑢
′(1) = 0}. 

Moreover, from (2.8), we also recognize that, for any 𝑢 ∈ 𝑆(𝑐), 𝑢𝑡(𝑥): = 𝑡
𝑁

2𝑢(𝑡𝑥) belongs to 𝑀(𝑐) if and only if 𝑡 ∈

𝑅+ is a critical point of the fibering map 𝑓𝑢(𝑡), namely 𝑓𝑢
′(𝑡) = 0. To proceed furthermore, we should split 𝑀(𝑐) into 

three parts corresponding to local maxima, local minima and points of inflection, that is, 
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𝑀+(𝑐): = {𝑢 ∈ 𝑆(𝑐)|𝑓𝑢
′(1) = 0, 𝑓𝑢

′′(1) > 0},

𝑀0(𝑐): = {𝑢 ∈ 𝑆(𝑐)|𝑓𝑢
′(1) = 0, 𝑓𝑢

′′(1) = 0},

𝑀−(𝑐): = {𝑢 ∈ 𝑆(𝑐)|𝑓𝑢
′(1) = 0, 𝑓𝑢

′′(1) < 0}.

 

Actually, for each 𝑢 ∈ 𝑀(𝑐), we know that 

 

𝑓𝑢
′′(1) = 6∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
−

(𝑁𝑝−2𝑁)(𝑁𝑝−2𝑁−2)

4𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁(𝑁+1)

2
∫ 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥                  

−
𝜇𝑁(𝑁+1)

2
∫

|𝑢|2

1+𝑔+|𝑢|2
𝑑𝑥

𝑅𝑁
−

𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2
𝑑𝑥                                                          

𝑅𝑁
          

            = 6 (
𝑁𝑝−2𝑁

4𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁

4
∫ 𝑙𝑛
𝑅𝑁

(1 +
|𝑢|2

1+𝑔
)−

𝜇𝑁

4
∫

|𝑢|2

1+𝑔+|𝑢|2
𝑑𝑥

𝑅𝑁
)                                       

−
(𝑁𝑝−2𝑁)(𝑁𝑝−2𝑁−2)

4𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁(𝑁+1)

2
∫ 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥                                           

−
𝜇𝑁(𝑁+1)

2
∫

|𝑢|2

1+𝑔+|𝑢|2
𝑑𝑥

𝑅𝑁
−

𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2
𝑑𝑥

𝑅𝑁
                                                                  

            = −
(𝑁𝑝−2𝑁)(𝑁𝑝−2𝑁−8)

4𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁(𝑁+4)

2
∫ 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥                                            

−
𝜇𝑁(𝑁+4)

2
∫

|𝑢|2

1+𝑔+|𝑢|2
𝑑𝑥

𝑅𝑁
−

𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2
𝑑𝑥

𝑅𝑁
                                                                  

            = −(𝑁𝑝 − 2𝑁 − 8) ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇𝑁(𝑁𝑝−2𝑁−8)

4
(∫ 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) 𝑑𝑥

𝑅𝑁
− ∫

|𝑢|2

1+𝑔+|𝑢|2𝑅𝑁
𝑑𝑥)

+
𝜇𝑁(𝑁+4)

2
(∫ 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) 𝑑𝑥

𝑅𝑁
− ∫

|𝑢|2

1+𝑔+|𝑢|2
𝑑𝑥

𝑅𝑁
) −

𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2
𝑑𝑥                    

𝑅𝑁

            = −(𝑁𝑝 − 2𝑁 − 8)∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇𝑁2𝑝

4
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥                           

−
𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2𝑅𝑁
𝑑𝑥                                                                                                                   

            = (2𝑁 + 8)∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

− 𝑁𝑝 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇𝑁2𝑝

4
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥

−
𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2𝑅𝑁
𝑑𝑥                                                                                                                   

            = (2𝑁 + 8) ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−𝑁𝑝(∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝜇𝑁

4
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥)

−
𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2𝑅𝑁
𝑑𝑥                                                                                                                  

            = (2𝑁 + 8) ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁(𝑁𝑝−2𝑁)

4
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2𝑅𝑁
𝑑𝑥.                      

 (2.9) 

3. Proof of Theorem 1 

3.1. 𝟐 < 𝒑 < 𝒑̄ 

Lemma 10 Assume that 2 < 𝑝 < 𝑝̄, 𝜇 > 0, 𝑔 > −1 and 𝑐 > 0. Then, 𝐽 is bounded from below and coercive on 𝑆(𝑐). 

Proof. For any 𝑢 ∈ 𝑆(𝑐), in view of (2.1), we see that 

 
𝐽(𝑢) =

1

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
1

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ |𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇

2
∫ 𝑙𝑛( 1 +

|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥

≥
1

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
1

𝑝
𝐶𝑁,𝑝
𝑝
(∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

)
𝑁(𝑝−2)

8 𝑐
2𝑁−𝑝(𝑁−4)

8 −
𝜇𝑐

2
.                  

 

When 2 < 𝑝 < 𝑝̄, we have 
𝑁(𝑝−2)

8
< 1, which implies that 𝐽 is coercive and bounded from below on 𝑆(𝑐). 

Now we are ready to prove Theorem 1 (i). 

Let {𝑢𝑛} ⊂ 𝑆(𝑐) be a minimizing sequence for 𝜎(𝑐). Then, {𝑢𝑛} is bounded in 𝐻2(𝑅𝑁) by Lemma 10. First of all, we 

claim that 
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0.>||suplim:= 2

)(
1

dxun
yBNy

n



→

R



 (3.1) 

Assume on the contrary that 𝜂 = 0. Lemma 4 infers that ‖𝑢𝑛‖𝑠 → 0 as 𝑛 → ∞ for 2 < 𝑠 < 4∗. Together with Lemma 

6 with 2 < 𝑞 < 4, it yields that 

 

𝜎(𝑐) + 𝑜(1) = 𝐽(𝑢𝑛)                                                                                                                    

=
1

2
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
1

𝑝
∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ (|𝑢𝑛|

2 − 𝑙𝑛 (1 +
|𝑢𝑛|

2

1+𝑔(𝑥)
))

𝑅𝑁
𝑑𝑥

=
1

2
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑔

2(1+𝑔)
∫ |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑨𝑞

2(1+𝑔)
𝑞
2
∫ |𝑢𝑛|

𝑞𝑑𝑥
𝑅𝑁

+ 𝑜(1)      

≥ −
𝜇𝑔𝑐

2(1+𝑔)
+ 𝑜(1).                                                                                                

 

That is to say, 𝜎 ≥ −
𝜇𝑔𝑐

2(1+𝑔)
. 

Fixing 𝑢 ∈ 𝑆(𝑐) and using Lemma 3, we have 

 

𝜎(𝑐) ≤ 𝐽(𝑢𝑡) =
𝑡4

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑡
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑐

2
+

𝜇

2𝑡𝑁
∫ 𝑙𝑛
𝑅𝑁

(1 +
𝑡𝑁|𝑢|2

1+𝑔
) 𝑑𝑥

<
𝑡4

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑡
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑐

2
+

𝜇

2
∫

|𝑢|2

1+𝑔
𝑑𝑥

𝑅𝑁
                        

=
𝑡4

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑡
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑐

2
(1 −

1

1+𝑔
).                               

 (3.2) 

Since 2 < 𝑝 < 𝑝̄, the above inequality implies that 

 𝜎(𝑐) < −
𝜇𝑔𝑐

2(1+𝑔)
, (3.3) 

which leads to an obvious contradiction. Thus, (3.1) holds. 

According to (3.1), we can choose {𝑦𝑛} ⊂ 𝑅
𝑁 to guarantee that 

 ∫ |𝑢𝑛|
2𝑑𝑥

𝐵1(𝑦𝑛)
≥

𝜂

2
. (3.4) 

Let {𝑤𝑛(𝑥): = 𝑢𝑛(𝑥 + 𝑦𝑛)}, it gives that 

 ∫ |𝛥𝑤𝑛|
2𝑑𝑥

𝑅𝑁
= ∫ |𝛥𝑢𝑛|

2𝑑𝑥,
𝑅𝑁

 ∫ |𝑤𝑛|
𝑝𝑑𝑥

𝑅𝑁
= ∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

, 

and 

 ∫ (|𝑤𝑛|
2 − 𝑙𝑛 (1 +

|𝑤𝑛|
2

1+𝑔
))

𝑅𝑁
𝑑𝑥 = ∫ (|𝑢𝑛|

2 − 𝑙𝑛 (1 +
|𝑢𝑛|

2

1+𝑔
))

𝑅𝑁
𝑑𝑥. 

Therefore, {𝑤𝑛} is also a bounded minimizing sequence for 𝜎(𝑐) on 𝑆(𝑐) and 

 
.

2
||lim
2

(0)
1




→

dxwn
Bn  

Hence, we can assume that 𝑤𝑛 ⇀ 𝑤 in 𝐻2(𝑅𝑁), 𝑤𝑛 → 𝑤 ≠ 0 in 𝐿2(𝐵1(0)) and 𝑤𝑛(𝑥) → 𝑤(𝑥) a.e. on 𝐵1(0). On the 

basis of Egoroff’s theorem, we can find a constant 𝛿 > 0 such that 

 𝑤𝑛(𝑥) → 𝑤(𝑥) uniformly in 𝐸 and 𝑚𝑒𝑎𝑠(𝐸) > 0, (3.5) 

where 𝐸 ⊂ {𝑥: |𝑤(𝑥)| ≥ 𝛿, 𝑥 ∈ 𝐵1(0)} ⊂ 𝐵1(0). 

Next, we prove that ‖𝑤‖2
2 = 𝑐. Assume on the contrary that 𝜌:= ‖𝑤‖2

2 ∈ (0, 𝑐). Let 
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 𝑤̃: =
𝑤

√1+𝑔
 and 𝑣̃𝑛: =

𝑤𝑛−𝑤

√1+𝑔
, 

then, from (3.5), it brings that 

 𝑤̃2 =
𝑤2

1+𝑔
≥

𝛿2

1+𝑔
> 0 in 𝐸, (3.6) 

and 

 𝑣̃𝑛
2 =

(𝑤𝑛−𝑤)
2

1+𝑔
→ 0 in 𝐸. (3.7) 

As a direct application of Lemma 8, we can find a constant 𝜉 > 0 such that 

 ∫ ℎ (
𝜌

𝑐

(√𝑐𝑤̃)2

𝑃𝑤𝑃2
2 +

𝑐−𝜌

𝑐

(√𝑐𝑣̃𝑛)
2

𝑃𝑤𝑛−𝑤𝑃2
2)𝐸
𝑑𝑥 ≤ −𝜉 +

𝜌

𝑐
∫ ℎ (

(√𝑐𝑤̃)2

𝑃𝑤𝑃2
2 ) 𝑑𝑥𝐸

+
𝑐−𝜌

𝑐
∫ ℎ (

(√𝑐𝑣̃𝑛)
2

𝑃𝑤𝑛−𝑤𝑃2
2) 𝑑𝑥𝐸

. (3.8) 

Meanwhile, observe that 

 ‖𝑤𝑛‖𝑝
𝑝
= ‖𝑤𝑛 − 𝑤‖𝑝

𝑝
+ ‖𝑤‖𝑝

𝑝
+ 𝑜𝑛(1) (3.9) 

and 

 ∫
|𝑤𝑛|

2

1+𝑔
𝑑𝑥

𝑅𝑁
= ∫ |𝑤̃|2

𝑅𝑁
+ |𝑣̃𝑛|

2𝑑𝑥 + 𝑜(1), 

there holds that 

𝜎(𝑐) =  𝐽(𝑤𝑛) + 𝑜(1)  

=
1

2
∫ |𝛥𝑤𝑛|

2𝑑𝑥
𝑅𝑁

−
1

𝑝
∫ |𝑤𝑛|

𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ (|𝑤𝑛|

2 − 𝑙𝑛 (1 +
|𝑤𝑛|

2

1+𝑔
))

𝑅𝑁
𝑑𝑥 + 𝑜(1)  

=
𝜌

2𝑐
∫ |𝛥 (

√𝑐𝑤

𝑃𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

+
𝑐−𝜌

2𝑐
∫ |𝛥 (

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

  

       −
1

𝑝
(
𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐𝑤

𝑃𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

−
1

𝑝
(
𝑐−𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

  

       −
𝜇𝑔

2
∫

|𝑤𝑛|
2

1+𝑔
𝑑𝑥

𝑅𝑁
−
𝜇

2
∫ (

|𝑤𝑛|
2

1+𝑔
− 𝑙𝑛 (1 +

|𝑤𝑛|
2

1+𝑔
))

𝑅𝑁
𝑑𝑥 + 𝑜(1)  

=
𝜌

2𝑐
∫ |𝛥 (

√𝑐𝑤

𝑃𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

+
𝑐−𝜌

2𝑐
∫ |𝛥 (

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

  

       −
1

𝑝
(
𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐𝑤

𝑃𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

−
1

𝑝
(
𝑐−𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

  

       −
𝜇𝑔

2
∫

|𝑤𝑛|
2

1+𝑔
𝑑𝑥

𝑅𝑁
−
𝜇

2
∫ ℎ (

|𝑤𝑛|
2

1+𝑔
) 𝑑𝑥

𝑅𝑁
+ 𝑜(1)  

=
𝜌

2𝑐
∫ |𝛥 (

√𝑐𝑤

𝑃𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

+
𝑐−𝜌

2𝑐
∫ |𝛥 (

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

  

      −
1

𝑝
(
𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐𝑤

𝑃𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

−
1

𝑝
(
𝑐−𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

  

     −
𝜇𝑔

2
∫

|𝑤𝑛|
2

1+𝑔
𝑑𝑥

𝑅𝑁
−

𝜇

2
∫ ℎ (

𝜌

𝑐
(
(√𝑐|𝑤̃|)2

𝑃𝑤𝑃2
2 ) +

𝑐−𝜌

𝑐

(√𝑐|𝑣̃𝑛|)
2

𝑃𝑤𝑛−𝑤𝑃2
2)𝑅𝑁
𝑑𝑥 + 𝑜(1)  

=
𝜌

2𝑐
∫ |𝛥 (

√𝑐𝑤

𝑃𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

+
𝑐−𝜌

2𝑐
∫ |𝛥 (

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

  

     −
1

𝑝
(
𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐𝑤

𝑃𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

−
1

𝑝
(
𝑐−𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

  

     −
𝜇

2
∫ ℎ (

𝜌

𝑐

(√𝑐|𝑤̃|)2

𝑃𝑤𝑃2
2 + (

𝑐−𝜌

𝑐
)
(√𝑐|𝑣̃𝑛|)

2

𝑃𝑤𝑛−𝑤𝑃2
2) 𝑑𝑥𝑅𝑁

  

     −
𝜇𝑔

2
∫ (|𝑤̃|2 + |𝑣̃𝑛|

2)𝑑𝑥
𝑅𝑁

+ 𝑜(1)  

≥
𝜌

2𝑐
∫ |𝛥 (

√𝑐𝑤

𝑃𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

+
𝑐−𝜌

2𝑐
∫ |𝛥 (

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
2

𝑑𝑥
𝑅𝑁

  

     −
1

𝑝
(
𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐𝑤

𝑃𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁

−
1

𝑝
(
𝑐−𝜌

𝑐
)

𝑝

2
∫ |(

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
)|
𝑝

𝑑𝑥
𝑅𝑁
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     +
𝜇𝜉

2
−

𝜇

2
(
𝜌

𝑐
∫ ℎ (

(√𝑐𝑤̃)2

𝑃𝑤𝑃2
2 ) 𝑑𝑥𝐸

+
𝑐−𝜌

𝑐
∫ ℎ (

(√𝑐𝑣̃𝑛)
2

𝑃𝑤𝑛−𝑤𝑃2
2) 𝑑𝑥𝐸

)  

     −
𝜇𝑔

2
∫ (|𝑤̃|2 + |𝑣̃𝑛|

2)
𝑅𝑁

𝑑𝑥 + 𝑜(1)  

≥
𝜌

𝑐
𝐽 (

√𝑐𝑤

𝑃𝑤𝑃2
) +

𝑐−𝜌

𝑐
𝐽 (

√𝑐(𝑤𝑛−𝑤)

𝑃𝑤𝑛−𝑤𝑃2
) +

𝜇𝜉

2
+ 𝑜(1)  

≥
𝜌

𝑐
𝜎(𝑐) +

𝑐−𝜌

𝑐
𝜎(𝑐) +

𝜇𝜉

2
+ 𝑜(1)  

≥ 𝜎(𝑐) +
𝜇𝜉

2
+ 𝑜(1),  

which is a contradiction. That is, 𝑤𝑛 → 𝑤 in 𝐿2(𝑅𝑁). Hence, combining with Lemma 2 and Lemma 5, we derive that 

 

dx
g

w
wdx

g

w
w

N

n
nN

n 






















+
+−
























+
+− 

→ 1

||
1ln||=

1

||
1ln||lim

2
2

2
2

RR

 (3.10) 

and 

 
dxwdxw p

N

p

nN
n

||=||lim 
→ RR  (3.11) 

for 2 < 𝑝 ≤ 𝑝̄. Moreover, due to 𝑤𝑛 ⇀ 𝑤 in 𝐻2(𝑅𝑁), we see that 

 
.||liminf|| 22 dxwdxw nN

n
N

 
→ RR  (3.12) 

Consequently, it follows from (3.10)-(3.12) that 

 ),(

1

||
1ln||

2
||

1
||

2

1

1

||
1ln||

2
||

1
||

2

1
lim=

)(lim=)(

2
22

2
22

c

dx
g

w
wdxw

p
dxw

dx
g

w
wdxw

p
dxw

wJc

N

p

NN

n
nN

p

nNnN
n

n
n


































+
+−−−






































+
+−−−




→

→

RRR

RRR

 

which indicates that 𝜎(𝑐) is achieved at 𝑤 ≠ 0 and ‖𝑤𝑛 − 𝑤‖𝐻2 → 0 as 𝑛 → ∞. 

Since 𝑤 is a minimizer of 𝐽 restricted to 𝑆(𝑐), there exists a Lagrange multiplier 𝜆̄ ∈ 𝑅 such that 

 

𝜆̄𝑐 = −∫ |𝛥𝑤|2𝑑𝑥
𝑅𝑁

+ ∫ |𝑤|𝑝𝑑𝑥
𝑅𝑁

+ 𝜇 ∫
𝑔+|𝑤|2

1+𝑔+|𝑤|2
|𝑤|2𝑑𝑥

𝑅𝑁
                                                                                

= −2𝜎(𝑐) −
2

𝑝
∫ |𝑤|𝑝𝑑𝑥
𝑅𝑁

− 𝜇 ∫ (|𝑤|2 − 𝑙𝑛 (1 +
|𝑤|2

1+𝑔
)) 𝑑𝑥

𝑅𝑁
+ ∫ |𝑤|𝑝𝑑𝑥

𝑅𝑁
+ 𝜇 ∫

𝑔+|𝑤|2

1+𝑔+|𝑤|2
|𝑤|2𝑑𝑥

𝑅𝑁

= −2𝜎(𝑐) −
2

𝑝
∫ |𝑤|𝑝𝑑𝑥
𝑅𝑁

− 𝜇 ∫ (|𝑤|2 − 𝑙𝑛 (1 +
|𝑤|2

1+𝑔
)) 𝑑𝑥

𝑅𝑁
+ ∫ |𝑤|𝑝𝑑𝑥

𝑅𝑁
                                             

+𝜇 ∫ |𝑤|2𝑑𝑥
𝑅𝑁

− 𝜇 ∫
|𝑤|2

1+𝑔+|𝑤|2
𝑑𝑥

𝑅𝑁
                                                                                                                  

= −2𝜎(𝑐) +
𝑝−2

𝑝
∫ |𝑤|𝑝𝑑𝑥
𝑅𝑁

+ 𝜇 ∫ (𝑙𝑛 (1 +
|𝑤|2

1+𝑔
) −

|𝑤|2

1+𝑔+|𝑤|2
) 𝑑𝑥

𝑅𝑁
                                                            

> −2𝜎(𝑐),                                                                                                                                                                   

 

where we have used Lemma 3 in the last inequality. This indicates that 𝜆̄ >
𝜇𝑔

1+𝑔
 by (3.3). The proof is completed. 

3.2. 𝒑̄ < 𝒑 < 𝟒∗ 

In this subsection, we consider the case of 𝑝̄ < 𝑝 < 4∗. For this situation, 𝐽 is unbounded from below on 𝑆(𝑐), and 

it is impossible to look for a global minimizer on 𝑆(𝑐). To achieve our purpose, we shall use the Pohozaev manifold 

𝑀(𝑐) defined in Section 2 to find critical points of 𝐽. 
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Next, we firstly give a general minimax theorem to establish the existence of a Palais-Smale sequence. 

Definition 11 ([17, Definition 3.1]) Let 𝛩 be a closed subset of 𝑋. We shall say that a class 𝐹 of compact subsets 

of 𝑋 is a homotopy-stable family with closed boundary 𝛩 provided 

• every set in 𝐹 contains 𝛩; 

• for any set 𝐻 ∈ 𝐹 and any 𝜂 ∈ 𝐶([0,1] × 𝑋; 𝑋) satisfying 𝜂(𝑠, 𝑥) = 𝑥 for all (𝑠, 𝑥) ∈ ({0} × 𝑋) ∪ ([0,1] × 𝛩), we have 

that 𝜂({1} × 𝐻) ∈ 𝐹. 

Lemma 12 ( [17, Theorem 3.2]) Let ϕ be a 𝐶1-functional on a complete connected 𝐶1-Finsler manifold 𝑋 (without 

boundary) and consider a homotopy stable family 𝐹 of compact subsets of 𝑋 with a closed boundary 𝛩. Set 

 
),(maxinf:=),(:= ucc

HuH


F

F
 

and suppose that 

 𝑠𝑢𝑝 𝜙 (𝛩) < 𝑐. 

Then, for any sequence of sets {𝐻𝑛} in 𝐹 such that c
n

Hn =suplim → , there exists a sequence {𝑢𝑛} in 𝑋 such 

that 

• lim𝑛→∞ 𝜑(𝑢𝑛) = 𝑐; 

• lim𝑛→∞‖𝑑𝜑(𝑢𝑛)‖ = 0; 

• lim𝑛→∞ 𝑑𝑖𝑠𝑡(𝑢𝑛, 𝐻𝑛) = 0. 

Moreover, if 𝑑ϕ is uniformly continuous, then 𝑢𝑛 can be chosen to be in 𝐻𝑛 for each 𝑛. 

Lemma 13 Assume that 𝑝̄ < 𝑝 < 4∗, −1 < 𝑔 < 0 and let {𝑢𝑛} ⊂ 𝑀−(𝑐) ∩ 𝐻𝑟
2(𝑅𝑁) be a bounded Palais-Smale 

sequence for 𝐽 restricted to 𝑆(𝑐) at level 𝛽. In addition, denote by 

 𝑐0: = (
4(𝑁+4)(1+𝑔)

𝑝̄
2

𝜇𝑩𝑝̄𝑁
2𝐶𝑁,𝑝̄

𝑝̄ )

𝑁

4

, (3.13) 

 𝛬𝑐: = (
2(4(𝑁+4)(1+𝑔)

𝑝̄
2−𝜇𝑩𝑝̄𝑁

2𝐶𝑁,𝑝̄
𝑝̄

𝑐
4
𝑁)

𝑐
2𝑁−𝑝(𝑁−4)

8 𝐶𝑁,𝑝
𝑝

(1+𝑔)
𝑝̄
2𝑁(𝑁𝑝−2𝑁)

)

8

𝑁𝑝−2𝑁−8

, (3.14) 

 𝑐1: =
(1+𝑔)(2𝑁−𝑝(𝑁−4))𝛬𝑐

2𝜇𝑁−𝜇𝑔(𝑁𝑝−2𝑁)
 

and suppose that the following conditions hold 

 𝛽 >
𝜇|𝑔|𝑐

2(1+𝑔)
 𝑎𝑛𝑑 0 < 𝑐 < 𝑚𝑖𝑛{ 𝑐0, 𝑐1}. 

Then, up to a subsequence, 𝑢𝑛 → 𝑢0 strongly in 𝐻2(𝑅𝑁) and 𝑢0 ∈ 𝑆(𝑐) is a solution of problem (1.1) for some 𝜆̄ > 0. 

Proof. Since {𝑢𝑛} ⊂ 𝑀−(𝑐) is bounded and the embedding 𝐻𝑟
2(𝑅𝑁) ↪ 𝐿𝑠(𝑅𝑁) (𝑁 ≥ 5) is compact for 𝑠 ∈ (2, 4∗), there 

exists 𝑢0 ∈ 𝐻𝑟
2(𝑅𝑁) such that 𝑢𝑛 ⇀ 𝑢0 weakly in 𝐻𝑟

2(𝑅𝑁), 𝑢𝑛 → 𝑢0 strongly in 𝐿𝑠(𝑅𝑁) for 𝑠 ∈ (2, 4∗), and a.e. in 𝑅𝑁 . By the 

Lagrange multiplier rule, there exists 𝜆𝑛 ∈ 𝑅 such that for every 𝜙 ∈ 𝐻2(𝑅𝑁), 
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 ∫ (𝛥𝑢𝑛𝛥𝜙 + 𝜆𝑛𝑢𝑛𝜙)𝑑𝑥𝑅𝑁
− ∫ |𝑢𝑛|

𝑝−2𝑢𝑛𝜙𝑑𝑥𝑅𝑁
− 𝜇 ∫

𝑔+|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2 𝑢𝑛𝜙𝑑𝑥𝑅𝑁

= 𝑜(1)‖𝜙‖, (3.15) 

where 𝑜(1) → 0 as 𝑛 → ∞. In other words, 𝑢𝑛 solves 

 𝛥2𝑢𝑛 + 𝜆𝑛𝑢𝑛 = |𝑢𝑛|
𝑝−2𝑢𝑛 + 𝜇

𝑔+|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2 𝑢𝑛 + 𝑜(1). (3.16) 

In particular, one has 

 𝜆𝑛𝑐 = −∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
+ ∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

+ 𝜇 ∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝑜(1). (3.17) 

Then, noting that 

 |𝜇 ∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |𝑢𝑛|

2𝑑𝑥|
𝑅𝑁

≤ |𝜇 ∫ |𝑢𝑛|
2𝑑𝑥| = |𝜇|𝑐

𝑅𝑁
 (3.18) 

and using the Gagliardo-Nirenberg inequality, we see that {𝜆𝑛} is bounded, since {𝑢𝑛} ⊂ 𝑀−(𝑐) is bounded. So, we 

are able to assume that 𝜆𝑛 → 𝜆̄ ∈ 𝑅 as 𝑛 → ∞. 

In the following, we shall determine the sign of 𝜆̄. In fact, Lemma 7 brings that 

 

𝑠4

(1+𝑔+𝑠2)2
≤

𝑠4

(1+𝑔+𝑠2)(1+𝑔)
             

=
𝑔+𝑠2

1+𝑔+𝑠2
𝑠2 −

𝑔

1+𝑔
𝑠2   

≤
𝑩𝑞

(1+𝑔)
𝑞
2

𝑠𝑞 ,  ∀𝑠 ≥ 0,

 (3.19) 

where 2 < 𝑞 < 4. Then, for {𝑢𝑛} ⊂ 𝑀
−(𝑐) ∩ 𝐻𝑟

2(𝑅𝑁), thanks to (2.9), (3.19) and Lemma 2, we infer that 

 

∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
≤

𝑁(𝑁𝑝−2𝑁)

8(𝑁+4)
∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁2

4(𝑁+4)
∫

|𝑢𝑛|
4

(1+𝑔+|𝑢𝑛|
2)2
𝑑𝑥

𝑅𝑁

                          ≤
𝑁(𝑁𝑝−2𝑁)

8(𝑁+4)
∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁2

4(𝑁+4)
∫

𝑩𝑞

(1+𝑔)
𝑞
2

|𝑢𝑛|
𝑞𝑑𝑥

𝑅𝑁

                          <
𝐶𝑁,𝑝
𝑝

𝑁(𝑁𝑝−2𝑁)

8(𝑁+4)
𝑐
2𝑁−𝑝(𝑁−4)

8 (∫ |𝛥𝑢𝑛|
2

𝑅𝑁
𝑑𝑥)

𝑁𝑝−2𝑁

8         

+
𝜇𝑩𝑞𝑁

2𝐶𝑁,𝑞
𝑞

4(𝑁+4)(1+𝑔)
𝑞
2

𝑐
4𝑞−𝑁(𝑞−2)

8 (∫ |𝛥𝑢𝑛|
2

𝑅𝑁
𝑑𝑥)

𝑁𝑞−2𝑁

8 .     

 

In the sequel, choose 𝑞 = 2 +
8

𝑁
= 𝑝̄. Then, the above inequality becomes 

 ∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
<

𝐶𝑁,𝑝
𝑝

𝑁(𝑁𝑝−2𝑁)

8(𝑁+4)
𝑐
2𝑁−𝑝(𝑁−4)

8 (∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
)
𝑁𝑝−2𝑁

8 +
𝜇𝑩𝑝̄𝑁

2𝐶𝑁,𝑝̄
𝑝̄

4(𝑁+4)(1+𝑔)
𝑝̄
2

𝑐
4

𝑁 ∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
.  

On the assumption of 0 < 𝑐 < 𝑐0, it immediately signifies that 

 ∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
> 𝛬𝑐 > 0. (3.20) 

Therefore, taking into account that 𝑄(𝑢𝑛) = 0, Lemma 3 and (3.20), we deduce that 
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𝜆𝑛𝑐 = −∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
+ ∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

+ 𝜇 ∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                

        = −∫ |𝛥𝑢𝑛|
2𝑑𝑥

𝑅𝑁
+

4𝑝

𝑁𝑝−2𝑁
(∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁

4
∫ (𝑙𝑛 (1 +

|𝑢𝑛|
2

1+𝑔
) −

|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2)𝑅𝑁
𝑑𝑥)

+𝜇 ∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                                                                          

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫ (𝑙𝑛 (1 +

|𝑢𝑛|
2

1+𝑔
) −

|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2)𝑅𝑁
𝑑𝑥                         

+𝜇 ∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                                                                           

       >
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫ (

|𝑢𝑛|
2

1+𝑔
−

|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2)𝑅𝑁
𝑑𝑥                                         

+𝜇 ∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                                                                           

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫

|𝑢𝑛|
4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)
𝑑𝑥

𝑅𝑁
                                                

+𝜇 ∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                                                                           

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫

|𝑢𝑛|
4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)
𝑑𝑥

𝑅𝑁
                                                 

+𝜇 ∫
(1+𝑔)(𝑔|𝑢𝑛|

2+|𝑢𝑛|
4)

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)
𝑑𝑥

𝑅𝑁
+ 𝑜(1)                                                                                     

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫

|𝑢𝑛|
4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)
𝑑𝑥

𝑅𝑁
                                                 

+𝜇 ∫
𝑔|𝑢𝑛|

2+|𝑢𝑛|
4+𝑔2|𝑢𝑛|

2+𝑔|𝑢𝑛|
4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)

𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                                                      

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫

|𝑢𝑛|
4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)
𝑑𝑥                                                 

𝑅𝑁

+𝜇 ∫
𝑔|𝑢𝑛|

2(1+𝑔+|𝑢𝑛|
2)+|𝑢𝑛|

4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)

𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                                                             

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫

|𝑢𝑛|
4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)
𝑑𝑥                                                 

𝑅𝑁

+
𝜇𝑔

1+𝑔
∫ |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝜇 ∫
|𝑢𝑛|

4

(1+𝑔)(1+𝑔+|𝑢𝑛|
2)
𝑑𝑥

𝑅𝑁
+ 𝑜(1)                                                    

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+
𝜇𝑔

1+𝑔
∫ |𝑢𝑛|

2𝑑𝑥                       
𝑅𝑁

                                                 

−
2𝜇𝑁

(1+𝑔)(𝑁𝑝−2𝑁)
∫

|𝑢𝑛|
4

1+𝑔+|𝑢𝑛|
2 𝑑𝑥𝑅𝑁

+ 𝑜(1)                                                                             

       ≥
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
𝛬𝑐 +

𝜇𝑔

1+𝑔
𝑐 −

2𝜇𝑁

(1+𝑔)(𝑁𝑝−2𝑁)
𝑐 + 𝑜(1),                                                                 

 

which implies that 

 𝜆̄ ≥
2𝑁−𝑝(𝑁−4)

𝑐(𝑁𝑝−2𝑁)
𝛬𝑐 +

𝜇𝑔

1+𝑔
−

2𝜇𝑁

(1+𝑔)(𝑁𝑝−2𝑁)
. 

Furthermore, taking advantage of the assumption 0 < 𝑐 < 𝑐1, there holds that 

 𝜆̄ ≥
2𝑁−𝑝(𝑁−4)

𝑐(𝑁𝑝−2𝑁)
𝛬𝑐 +

𝜇𝑔

1+𝑔
−

2𝜇𝑁

(1+𝑔)(𝑁𝑝−2𝑁)
> 0. 

Next, we claim that 𝑢0 ≠ 0. Assume on the contrary. Then, by compact embedding of 𝐻𝑟
2(𝑅𝑁) ↪ 𝐿𝑠(𝑅𝑁) with 2 <

𝑠 < 4∗ (𝑁 ≥ 5), we have ∫ |𝑢𝑛|
𝑝𝑑𝑥

𝑅𝑁
= 𝑜(1). Subsequently, with the help of 𝑄(𝑢𝑛) = 0 and Lemma 3, it yields that 
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𝛽 + 𝑜(1) = 𝐽(𝑢𝑛)                                                                                                                                          

                  =
1

2
∫ |𝛥𝑢𝑛|

2𝑑𝑥
𝑅𝑁

−
1

𝑝
∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ (|𝑢𝑛|

2
𝑅𝑁

− 𝑙𝑛( 1 +
|𝑢𝑛|

2

1+𝑔
))𝑑𝑥                            

                  =
1

2
(
𝑁𝑝−2𝑁

4𝑝
∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁

4
∫ (𝑙𝑛 (1 +

|𝑢𝑛|
2

1+𝑔
) −

|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2)𝑅𝑁
𝑑𝑥)                                  

−
1

𝑝
∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ (|𝑢𝑛|

2 − 𝑙𝑛 (1 +
|𝑢𝑛|

2

1+𝑔
))

𝑅𝑁
𝑑𝑥                                                       

                  =
𝑁𝑝−2𝑁−8

8𝑝
∫ |𝑢𝑛|

𝑝𝑑𝑥
𝑅𝑁

+
𝜇𝑁

8
∫ (𝑙𝑛 (1 +

|𝑢𝑛|
2

1+𝑔
) −

|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2)𝑅𝑁
𝑑𝑥                                     

−
𝜇

2
∫ (|𝑢𝑛|

2 − 𝑙𝑛 (1 +
|𝑢𝑛|

2

1+𝑔
))

𝑅𝑁
𝑑𝑥                                                                                     

                  ≤ −
𝜇

2
∫ (|𝑢𝑛|

2 −
|𝑢𝑛|

2

1+𝑔
) 𝑑𝑥

𝑅𝑁
+

𝜇𝑁

8
∫ (

1

1+𝑔
−

1

1+𝑔+|𝑢𝑛|
2) |𝑢𝑛|

2𝑑𝑥
𝑅𝑁

+ 𝑜(1)                      

                  = −
𝜇

2
∫ (|𝑢𝑛|

2 −
|𝑢𝑛|

2

1+𝑔
) 𝑑𝑥

𝑅𝑁
+

𝜇𝑁

8
∫ (

1+𝑔−𝑔

1+𝑔
−

1+𝑔+|𝑢𝑛|
2−(𝑔+|𝑢𝑛|

2)

1+𝑔+|𝑢𝑛|
2 )

𝑅𝑁
|𝑢𝑛|

2𝑑𝑥 + 𝑜(1)

                  = −
𝜇𝑔𝑐

2(1+𝑔)
+

𝜇𝑁

8
∫ (

𝑔+|𝑢𝑛|
2

1+𝑔+|𝑢𝑛|
2 −

𝑔

1+𝑔
)

𝑅𝑁
|𝑢𝑛|

2𝑑𝑥 + 𝑜(1)                                                      

                  ≤ −
𝜇𝑔𝑐

2(1+𝑔)
+

𝜇𝑩𝑞𝑁

8(1+𝑔)
𝑞
2
∫ |𝑢𝑛|

𝑞𝑑𝑥
𝑅𝑁

+ 𝑜(1)                                                                               

                  = −
𝜇𝑔𝑐

2(1+𝑔)
+ 𝑜(1),                                                                                                                      

 

where we have used Lemma 7 with 2 < 𝑞 < 4. Clearly, this leads to a contradiction with 𝛽 >
𝜇|𝑔|𝑐

2(1+𝑔)
, and so 𝑢0 ≠ 0. 

Finally, let us prove that 𝑢𝑛 → 𝑢0 in 𝐻2(𝑅𝑁). Since 𝑢𝑛 → 𝑢0 in 𝐻𝑟
2(𝑅𝑁) and 𝜆𝑛 → 𝜆̄ > 0 as 𝑛 → ∞, by (3.15), one has 

 ∫ (𝛥𝑢0𝛥𝜙 + 𝜆̄𝑢0𝜙)𝑑𝑥𝑅𝑁
− ∫ |𝑢0|

𝑝−2𝑢0𝜙𝑑𝑥𝑅𝑁
− 𝜇 ∫

𝑔+|𝑢0|
2

1+𝑔+|𝑢0|
2 𝑢0𝜙𝑑𝑥𝑅𝑁

= 0,  ∀𝜙 ∈ 𝐻𝑟
2(𝑅𝑁). (3.21) 

Taking 𝜙:= 𝑢𝑛 − 𝑢0 in (3.15) and (3.21), and subtracting, we arrive at 

 
𝑜(1) = ∫ (|𝛥(𝑢𝑛 − 𝑢0)|

2
𝑅𝑁

+ 𝜆̄|𝑢𝑛 − 𝑢0|
2)𝑑𝑥 − ∫ (|𝑢𝑛|

𝑝−2|𝑢𝑛| − |𝑢0|
𝑝−2|𝑢0|)𝑅𝑁

(𝑢𝑛 − 𝑢0)𝑑𝑥

−𝜇 ∫ (
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 𝑢𝑛 −

𝑔+|𝑢0|
2

1+𝑔+|𝑢0|
2 𝑢0)𝑅𝑁

(𝑢𝑛 − 𝑢0)𝑑𝑥.                                                                 
 (3.22) 

Observe that 

 ∫ (|𝑢𝑛|
𝑝−2|𝑢𝑛|𝑅𝑁

− |𝑢0|
𝑝−2|𝑢0|)(𝑢𝑛 − 𝑢0)𝑑𝑥 = 𝑜(1), (3.23) 

to finish the proof, it suffices to demonstrate that 

 ∫ (
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 𝑢𝑛 −

𝑔+|𝑢0|
2

1+𝑔+|𝑢0|
2 𝑢0)𝑅𝑁

(𝑢𝑛 − 𝑢0)𝑑𝑥 = 𝑜(1). (3.24) 

In fact, by the Hölder’s inequality, we have 

 

|∫
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 𝑢𝑛𝑅𝑁

(𝑢𝑛 − 𝑢0)𝑑𝑥|                                       

≤ (∫ |𝑢𝑛 − 𝑢0|
𝑝

𝑅𝑁
𝑑𝑥)

1

𝑝 (∫ |
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 𝑢𝑛|

𝑞
𝑅𝑁

𝑑𝑥)

1

𝑞
     

≤ (∫ |𝑢𝑛 − 𝑢0|
𝑝

𝑅𝑁
𝑑𝑥)

1

𝑝 (∫ |
𝑔+|𝑢𝑛|

2

1+𝑔+|𝑢𝑛|
2 |
𝑞|𝑢𝑛|

𝑞
𝑅𝑁

𝑑𝑥)

1

𝑞

≤
1

1+𝑔
(∫ |𝑢𝑛 − 𝑢0|

𝑝
𝑅𝑁

𝑑𝑥)
1

𝑝(∫ |𝑢𝑛|
2𝑞|𝑢𝑛|

𝑞
𝑅𝑁

𝑑𝑥)
1

𝑞     

=
1

1+𝑔
(∫ |𝑢𝑛 − 𝑢0|

𝑝
𝑅𝑁

𝑑𝑥)
1

𝑝(∫ |𝑢𝑛|
3𝑞

𝑅𝑁
𝑑𝑥)

1

𝑞              

≤ 𝐶̃(∫ |𝑢𝑛 − 𝑢0|
𝑝

𝑅𝑁
𝑑𝑥)

1

𝑝                                                

→ 0,                                                                                     

 (3.25) 
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where 𝑚𝑎𝑥{ 2,
2𝑁

12−𝑁
} < 𝑝 < 4∗. Similarly, we also have 

 

|∫
𝑔+|𝑢0|

2

1+𝑔+|𝑢0|
2 𝑢𝑛𝑅𝑁

(𝑢𝑛 − 𝑢0)𝑑𝑥|                                                          

≤ (∫ |𝑢𝑛 − 𝑢0|
𝑝

𝑅𝑁
𝑑𝑥)

1

𝑝 (∫ |
𝑔+|𝑢0|

2

1+𝑔+|𝑢0|
2 𝑢𝑛|

𝑞
𝑅𝑁

𝑑𝑥)

1

𝑞
                         

≤ (∫ |𝑢𝑛 − 𝑢0|
𝑝

𝑅𝑁
𝑑𝑥)

1

𝑝 (∫ |
𝑔+|𝑢0|

2

1+𝑔+|𝑢0|
2 |
𝑞|𝑢𝑛|

𝑞
𝑅𝑁

𝑑𝑥)

1

𝑞
                    

≤
1

1+𝑔
(∫ |𝑢𝑛 − 𝑢0|

𝑝
𝑅𝑁

𝑑𝑥)
1

𝑝(∫ |𝑢0|
2𝑞|𝑢𝑛|

𝑞
𝑅𝑁

𝑑𝑥)
1

𝑞                         

≤
1

1+𝑔
(∫ |𝑢𝑛 − 𝑢0|

𝑝
𝑅𝑁

𝑑𝑥)
1

𝑝(∫ |𝑢0|
3𝑞𝑑

𝑅𝑁
𝑥)

2

3𝑞(∫ |𝑢𝑛|
3

𝑅𝑁
𝑞𝑑𝑥)

1

3𝑞

≤ 𝐶̃(∫ |𝑢𝑛 − 𝑢0|
𝑝

𝑅𝑁
𝑑𝑥)

1

𝑝                                                                     

→ 0,                                                                                                           

 (3.26) 

where 𝑚𝑎𝑥{ 2,
2𝑁

12−𝑁
} < 𝑝 < 4∗. Together with (3.25) and (3.26) guarantee that (3.24 holds. As a consequence, it follows 

from (3.22)-(3.24) that 

 ∫ (|𝛥(𝑢𝑛 − 𝑢0)|
2

𝑅𝑁
+ 𝜆̄|𝑢𝑛 − 𝑢0|

2)𝑑𝑥 = 𝑜(1), 

which implies that 𝑢𝑛 → 𝑢0 in 𝐻2(𝑅𝑁), since 𝜆̄ > 0. This concludes the proof. 

Lemma 14 Assume that 𝑝̄ < 𝑝 < 4∗. Then, 𝐽 is coercive and bounded from below on 𝑀(𝑐) for all 𝑐 > 0. 

Furthermore, there exists a constant 𝑐2 > 0 such that for 0 < 𝑐 < 𝑐2, 𝐽 is bounded from below by a positive constant 

on 𝑀−(𝑐). 

Proof. For each 𝑢 ∈ 𝑀(𝑐), taking advantage of Lemma 3, we see that 

 

𝐽(𝑢) =
1

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
1

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ (|𝑢|2 − 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
)) 𝑑𝑥                           

𝑅𝑁

         =
1

2
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
4

𝑁𝑝−2𝑁
∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇𝑁

𝑁𝑝−2𝑁
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥

−
𝜇

2
∫ (|𝑢|2 − 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
))

𝑅𝑁
𝑑𝑥                                                                                   

         = (
1

2
−

4

𝑁𝑝−2𝑁
) ∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
+

𝜇𝑁

𝑁𝑝−2𝑁
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥                   

−
𝜇

2
∫

𝑔+|𝑢|2

1+𝑔+|𝑢|2
|𝑢|2𝑑𝑥

𝑅𝑁
−

𝜇

2
∫

1

1+𝑔+|𝑢|2
|𝑢|2𝑑𝑥

𝑅𝑁
+

𝜇

2
∫ 𝑙𝑛 (1 +

|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥             

         = (
1

2
−

4

𝑁𝑝−2𝑁
) ∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
+

𝜇𝑁

𝑁𝑝−2𝑁
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥                   

+
𝜇

2
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥 −

𝜇

2
∫

𝑔+|𝑢|2

1+𝑔+|𝑢|2
|𝑢|2

𝑅𝑁
𝑑𝑥                               

         = (
1

2
−

4

𝑁𝑝−2𝑁
) ∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
−

𝜇

2
∫

𝑔+|𝑢|2

1+𝑔+|𝑢|2
|𝑢|2𝑑𝑥

𝑅𝑁
                                                   

+𝜇 (
1

2
+

𝑁

𝑁𝑝−2𝑁
) ∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥                                                  

         ≥ (
1

2
−

4

𝑁𝑝−2𝑁
) ∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
−

𝜇

2
∫ |𝑢|2𝑑𝑥                                                                 
𝑅𝑁

         = (
1

2
−

4

𝑁𝑝−2𝑁
) ∫ |𝛥𝑢|2𝑑𝑥

𝑅𝑁
−

𝜇𝑐

2
,                                                                                   

 (3.27) 

which states that 𝐽 is bounded from below and coercive on 𝑀(𝑐). 

When 𝑢 ∈ 𝑀−(𝑐), following the argument in Lemma 13, we infer that 

 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

> 𝛬𝑐 > 0 𝑓 𝑜𝑟 0 < 𝑐 < 𝑐0, 

where 𝛬𝑐 and 𝑐0 are the same as in (3.20) and (3.13), respectively. Choose 
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 𝑐2: = (
4(𝑁+4)

𝐶𝑁,𝑝
𝑝

𝑁(𝑁𝑝−2𝑁)
)

2

𝑝−2
(
𝜇(𝑁𝑝−2𝑁)

𝑁𝑝−2𝑁−8
)
−
𝑁𝑝−2𝑁−8

4(𝑝−2)
, 

a direct calculation brings that 

 𝐽(𝑢) >
𝜇|𝑔|𝑐

2(1+𝑔)
 𝑓𝑜𝑟 0 < 𝑐 < 𝑐2. (3.28) 

Lemma 15 Assume that 𝑝̄ < 𝑝 < 4∗. Then, 𝑀0(𝑐) = ∅ for 0 < 𝑐 < 𝑐0. 

Proof. Suppose on the contrary and fix some 𝑢 ∈ 𝑀0(𝑐). Similar to the argument of Lemma 13, we deduce that 

 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

≥ (
2(4(𝑁+4)(1+𝑔)

𝑝̄
2−𝜇𝑩𝑝̄𝑁

2𝐶𝑁,𝑝̄
𝑝̄

𝑐
4
𝑁)

𝑐
2𝑁−𝑝(𝑁−4)

8 𝐶𝑁,𝑝
𝑝

(1+𝑔)
𝑝̄
2𝑁(𝑁𝑝−2𝑁)

)

8

𝑁𝑝−2𝑁−8

→ +∞ as  𝑐 → 0. (3.29) 

Moreover, by (2.9) and Lemma 3, there holds that 

 

(𝑁𝑝 − 2𝑁 − 8) ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

=
𝜇𝑁2𝑝

4
∫ (𝑙𝑛 (1 +

|𝑢|2

1+𝑔
) −

|𝑢|2

1+𝑔+|𝑢|2
)

𝑅𝑁
𝑑𝑥 −

𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2
𝑑𝑥

𝑅𝑁

≤
𝜇𝑁2𝑝

4
∫ (

|𝑢|2

1+𝑔
−

|𝑢|2

1+𝑔+|𝑢|2
) 𝑑𝑥

𝑅𝑁
−

𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2
𝑑𝑥

𝑅𝑁
                

=
𝜇𝑁2𝑝

4
∫

|𝑢|4

(1+𝑔)(1+𝑔+|𝑢|2
)𝑑𝑥

𝑅𝑁
−

𝜇𝑁2

2
∫

|𝑢|4

(1+𝑔+|𝑢|2)2
𝑑𝑥                    

𝑅𝑁

≤
𝜇𝑁2𝑝

4(1+𝑔)
∫

|𝑢|4

1+𝑔+|𝑢|2
𝑑𝑥                                                                         

𝑅𝑁

≤
𝜇𝑁2𝑝𝑐

4(1+𝑔)
,                                                                                                    

 

which means that 

 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

≤
𝜇𝑁2𝑝𝑐

4(𝑁𝑝−2𝑁−8)(1+𝑔)
→ 0 𝑎𝑠  𝑐 → 0. (3.30) 

Obviously, (3.29) and (3.30) lead to a contradiction. We finish the proof. 

According to Lemma 15, it holds 𝑀(𝑐) = 𝑀+(𝑐) ∪ 𝑀−(𝑐), which is a natural constraint manifold. Next, let us prove 

that the submanifold 𝑀−(𝑐) is nonempty. 

Lemma 16 Assume that 𝑝̄ < 𝑝 < 4∗. Then, for any 𝑢 ∈ 𝑆(𝑐), there exists a constant 𝑡𝑢
− > 0 such that 𝑢𝑡𝑢

−
∈ 𝑀−(𝑐). 

In particular, 𝑡𝑢
− is a local maximum point of 𝑓𝑢(𝑡). 

Proof. By Lemma 3, a direct calculation shows that 

 

𝑓𝑢′(𝑡) = 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

2𝑡𝑁+1
∫ 𝑙𝑛 (1 +

𝑡𝑁|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥                

+
𝜇𝑁

2𝑡
∫

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2
𝑑𝑥

𝑅𝑁
                                                                                                                   

             ≥ 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

2𝑡
∫

|𝑢|2

1+𝑔
𝑑𝑥

𝑅𝑁
+

𝜇𝑁

2𝑡
∫

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2
𝑑𝑥

𝑅𝑁

             = 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

2𝑡
∫ (

|𝑢|2

1+𝑔
−

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2
)

𝑅𝑁
𝑑𝑥             

             = 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁

2
∫

𝑡𝑁−1|𝑢|4

(1+𝑔)(1+𝑔+𝑡𝑁|𝑢|2)𝑅𝑁
𝑑𝑥                 

             ≥ 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇𝑁𝑡𝑁−1

2(1+𝑔)2
∫ |𝑢|4
𝑅𝑁

𝑑𝑥.                              

 (3.31) 

Since 𝑝 > 𝑝̄, it is clear that 𝑓𝑢′(𝑡) > 0 for 𝑡 > 0 small enough by (3.31). 

In addition, it follows from Lemma 3 again that 
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𝑓𝑢′(𝑡) = 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

            

−
𝜇𝑁

2𝑡𝑁+1
∫ 𝑙𝑛 (1 +

𝑡𝑁|𝑢|2

1+𝑔
) 𝑑𝑥

𝑅𝑁
+

𝜇𝑁

2𝑡
∫

|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2𝑅𝑁
𝑑𝑥

             = 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝
𝑅𝑁

𝑑𝑥           

−
𝜇𝑁

2𝑡𝑁+1
∫ (𝑙𝑛 (1 +

𝑡𝑁|𝑢|2

1+𝑔
) −

𝑡𝑁|𝑢|2

1+𝑔+𝑡𝑁|𝑢|2
)

𝑅𝑁
𝑑𝑥             

             ≤ 2𝑡3 ∫ |𝛥𝑢|2𝑑𝑥
𝑅𝑁

−
𝑁𝑝−2𝑁

2𝑝
𝑡
𝑁𝑝−2𝑁−2

2 ∫ |𝑢|𝑝
𝑅𝑁

𝑑𝑥.          

 

Since 𝑝 > 𝑝̄, the above inequality ensures that 𝑓𝑢
′(𝑡) < 0 for 𝑡 > 0 large enough. Note that, for 𝑢 ∈ 𝑆(𝑐) and 𝑡 > 0, 

𝑢𝑡 ∈ 𝑀(𝑐) if and only if 𝑓𝑢′(𝑡) = 0. Therefore, there exists a constant 𝑡𝑢
− > 0 such that 𝑓𝑢

′(𝑡𝑢
−) = 0 and 𝑓𝑢

′′(𝑡𝑢
−) < 0, which 

means that 𝑢𝑡𝑢
−
∈ 𝑀−(𝑐) and 𝑡𝑢

− is a local maximum point of 𝑓𝑢(𝑡). 

From now on, we define 

 𝑆𝑟(𝑐): = 𝑆(𝑐) ∩ 𝐻𝑟
2(𝑅𝑁),  𝑀𝑟(𝑐): = 𝑀(𝑐) ∩ 𝐻𝑟

2(𝑅𝑁) and 𝑀𝑟
−(𝑐): = 𝑀−(𝑐) ∩ 𝐻𝑟

2(𝑅𝑁). (3.32) 

By virtue of Lemmas 14 and 16, one has 

 

0.>)(inf)(inf:=)(
)()(

uJuJcm
cuc

r
u

r
−−

− 
MM  

To apply Lemma 12 to construct a Palais-Smale sequence {𝑢𝑛} ⊂ 𝑀𝑟
−(𝑐) for 𝐽 restricted to 𝑆(𝑐), we introduce the 

following lemma. 

Lemma 17 The map 𝑢 ∈ 𝑆𝑟(𝑐) ↦ 𝑡𝑢
− ∈ 𝑅 is of class 𝐶1. 

Proof. Consider the 𝐶1-function 𝜑: (0,∞) × 𝑆𝑟(𝑐) → 𝑅 defined by 𝜑(𝑡, 𝑢) = 𝑓𝑢
′(𝑡). Since 𝜑(𝑡𝑢

−, 𝑢) = 0, 𝜕𝑡𝜑(𝑡𝑢
−, 𝑢) =

𝑓 ′𝑢
′
𝑢

−

, the proof is completed by using the implicit function theorem. 

Now we define the functional 𝐺−: 𝑆𝑟(𝑐) → 𝑅 by 𝐺−(𝑢): = 𝐽(𝑢𝑡𝑢
−
). Clearly, it follows from Lemma 17 that the 

functional 𝐺− is of class 𝐶1. We also need the following result. 

Lemma 18 The map 𝛹: 𝑇𝑢𝑆𝑟(𝑐) → 𝑇𝑢𝑡𝑢
−𝑆𝑟(𝑐) defined by 𝜓 → 𝜓𝑡𝑢

−
 is isomorphism, where 𝑇𝑢𝑆𝑟(𝑐) denotes the 

tangent space to 𝑆𝑟(𝑐) at u. 

Proof. Let 𝜓 ∈ 𝑇𝑢𝑆𝑟(𝑐). Then, we have 

 ∫ 𝑢𝑡𝑢
−
(𝑥)𝜓𝑡𝑢

−
(𝑥)𝑑𝑥

𝑅𝑁
= ∫ (𝑡𝑢

−)
𝑁

2𝑢(𝑡𝑢
−𝑥)(𝑡𝑢

−)
𝑁

2𝜓(𝑡𝑢
−𝑥)𝑑𝑥

𝑅𝑁
= ∫ 𝑢(𝑦)𝜓(𝑦)𝑑𝑦

𝑅𝑁
= 0, 

which implies that 𝜓𝑡𝑢
−
∈ 𝑇𝑢𝑡𝑢

−𝑆𝑟(𝑐). Thus, the map 𝛹 is well defined. 

For ∀𝜓1, 𝜓2 ∈ 𝑇𝑢𝑆𝑟(𝑐) and ∀𝑘 ∈ 𝑅, it holds that 

 𝛹(𝜓1 + 𝜓2) = (𝜓1 + 𝜓2)
𝑡𝑢− = (𝑡𝑢

−)
𝑁

2(𝜓1(𝑡𝑢
−𝑥) + 𝜓2(𝑡𝑢

−𝑥)) = 𝜓1
𝑡𝑢
−

+ 𝜓2
𝑡𝑢
−

= 𝛹(𝜓1) + 𝛹(𝜓2) 

and 

 𝛹(𝑘𝜓1) = (𝑘𝜓1)
𝑡𝑢
−
= 𝑘𝜓1

𝑡𝑢
−

= 𝑘𝛹(𝜓1). 

This shows that the map 𝛹 is linear. Finally, let us check that the map 𝛹 is a bijection. For ∀𝜓1, 𝜓2 ∈ 𝑇𝑢𝑆𝑟(𝑐) with 

𝜓1 ≠ 𝜓2, since 𝑡𝑢
− > 0, we see that 

 𝛹(𝜓1) = (𝑡𝑢
−)

𝑁

2𝜓1(𝑡𝑢
−𝑥) ≠ (𝑡𝑢

−)
𝑁

2𝜓2(𝑡𝑢
−𝑥) = 𝛹(𝜓2). 
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Moreover, let 𝜒 ∈ 𝑇𝑢𝑡𝑢
−𝑆𝑟(𝑐) and define 

 𝜓(𝑥): = (𝑡𝑢
−)−

𝑁

2𝜒(
𝑥

𝑡𝑢
). 

Then, it gives that 

 ∫ 𝜓(𝑥)𝑢(𝑥)𝑑𝑥
𝑅𝑁

= ∫ (𝑡𝑢
−)−

𝑁

2𝜒(
𝑥

𝑡𝑢
−)𝑢(𝑥)𝑑𝑥𝑅𝑁

= ∫ 𝜒(𝑦)(𝑡𝑢
−)

𝑁

2𝑢(𝑡𝑢
−𝑦)𝑑𝑦

𝑅𝑁
= ∫ 𝜒(𝑦)𝑢𝑡𝑢

−
(𝑦)𝑑𝑦

𝑅𝑁
= 0, 

which means that 𝜓 ∈ 𝑇𝑢𝑆𝑟(𝑐). Moreover, 𝛹(𝜓) = (𝑡𝑢)
𝑁

2𝜓(𝑡𝑢𝑥) = (𝑡𝑢)
𝑁

2(𝑡𝑢)
−
𝑁

2𝜒(𝑥) = 𝜒. Hence, 𝛹 is a bijection. 

Lemma 19 It holds that (𝐺−)′(𝑢)[𝜓] = 𝐽′(𝑢𝑡𝑢
−
)[𝜓𝑡𝑢

−
] for any u ∈ 𝑆𝑟(𝑐) and 𝜓 ∈ 𝑇𝑢𝑆𝑟(𝑐). 

Proof. Let 𝑢 ∈ 𝑆𝑟(𝑐) and 𝜓 ∈ 𝑇𝑢𝑆𝑟(𝑐). Recall that 𝐺−(𝑢) = 𝐽(𝑢𝑡𝑢
−
), where 𝑡𝑢

− > 0 is the constant guaranteed by 

Lemma 16 such that 𝑢𝑡𝑢
−
∈ 𝑀𝑟

−(𝑐), and the scaling transformation 𝑣𝑡(𝑥) = 𝑡
𝑁

2𝑣(𝑡𝑥) preserves the 𝐿2-norm (i.e., ‖𝑣𝑡‖2
2 =

‖𝑣‖2
2 for all 𝑡 > 0 and 𝑣 ∈ 𝐻2(𝑅𝑁). Moreover, by Lemma 17, the mapping 𝑢 ↦ 𝑡𝑢

− is of class 𝐶1 on 𝑆𝑟(𝑐). 

For small |ℎ| > 0, set 𝑢ℎ = 𝑢 + ℎϕ and 𝑡ℎ
−: = 𝑡𝑢ℎ

− . Since 𝑡𝑢
− is continuous in 𝑢, we have 𝑡ℎ

− → 𝑡𝑢
− as ℎ → 0. The G𝑎̂teaux 

derivative of 𝐺− at 𝑢 along 𝜓 is defined as  

 
.

)()(
lim=))(()(

0 h

uJuJ
uG

u
t

h
t

h

h

−−

→

− −
 

 

By the fact that 𝑡𝑢
− is the local maximum point of the function 𝐽(𝑢𝑡), we have 

 𝐽((𝑢 + ℎ𝜙)𝑡ℎ
−
) − 𝐽(𝑢𝑡𝑢

−
) 

 ≤ 𝐽((𝑢 + ℎ𝜙)𝑡ℎ
−
) − 𝐽(𝑢𝑡ℎ

−
) 

 =
1

2
(𝑡ℎ
−)4 ∫ [|𝛥(𝑢 + ℎ𝜙)|2 − |𝛥𝑢|2]

𝑅𝑁
𝑑𝑥 

  −
(𝑡ℎ
−)
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢 + ℎ𝜙|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ |𝑢 + ℎ𝜙|2𝑑𝑥
𝑅𝑁

+
𝜇

2(𝑡ℎ
−)𝑁

∫ 𝑙𝑛
𝑅𝑁

(1 +
(𝑡ℎ
−)𝑁|𝑢+ℎ𝜙|2

1+𝑔
) 𝑑𝑥 

  −[
(𝑡ℎ
−)
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ |𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇

2(𝑡ℎ
−)𝑁

∫ 𝑙𝑛 (1 +
(𝑡ℎ
−)𝑁|𝑢|2

1+𝑔
) 𝑑𝑥

𝑅𝑁
]. 

Similarly, 

 𝐽((𝑢 + ℎ𝜙)𝑡ℎ
−
) − 𝐽(𝑢𝑡𝑢

−
) 

 ≥ 𝐽((𝑢 + ℎ𝜙)𝑡𝑢
−
) − 𝐽(𝑢𝑡𝑢

−
) 

 =
1

2
(𝑡𝑢
−)4 ∫ [|𝛥(𝑢 + ℎ𝜙)|2 − |𝛥𝑢|2]

𝑅𝑁
𝑑𝑥 

  −
(𝑡𝑢
−)
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢 + ℎ𝜙|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ |𝑢 + ℎ𝜙|2𝑑𝑥
𝑅𝑁

+
𝜇

2(𝑡𝑢
−)𝑁

∫ 𝑙𝑛 (1 +
(𝑡𝑢
−)𝑁|𝑢+ℎ𝜙|2

1+𝑔
)

𝑅𝑁
𝑑𝑥 

  −[
(𝑡𝑢
−)
𝑁𝑝−2𝑁

2

𝑝
∫ |𝑢|𝑝𝑑𝑥
𝑅𝑁

−
𝜇

2
∫ |𝑢|2𝑑𝑥
𝑅𝑁

+
𝜇

2(𝑡𝑢
−)𝑁

∫ 𝑙𝑛 (1 +
(𝑡𝑢
−)𝑁|𝑢|2

1+𝑔
)

𝑅𝑁
𝑑𝑥]. 

Since −−
→ uhh tt =lim 0

, from the two inequalities above and utilizing the mean value theorem, it follows that 

  

(ϕ) 
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 lim
ℎ→0

𝐺−(𝑢+ℎ𝜙)−𝐺−(𝑢)

ℎ
= (𝑡𝑢

−)4 ∫ 𝛥𝑢𝛥𝜙𝑑𝑥 − (𝑡𝑢
−)

𝑁𝑝−2𝑁

2
𝑅𝑁

∫ |𝑢|𝑝−2𝑢𝜙𝑑𝑥
𝑅𝑁

− 𝜇 ∫
𝑔+|𝑡𝑢

−|𝑁|𝑢|2

1+𝑔+|𝑡𝑢
−|𝑁 |𝑢|2

𝑢𝜙𝑑𝑥.
𝑅𝑁

 

Note that the Gâteaux derivative of 𝐺− is bounded linear in 𝜙 and continuous in 𝑢. Therefore, 𝐺− is of class 𝐶1. 

In particular, by changing variables in the integrals, we have 

 (𝐺−)′(𝑢)[𝜙] = ∫ 𝛥𝑢𝑡𝑢
−
𝛥𝜙𝑡𝑢

−
𝑑𝑥

𝑅𝑁
− ∫ |𝑢𝑡𝑢

−
|𝑝−2𝑢𝑡𝑢

−
𝜙𝑡𝑢

−
𝑑𝑥

𝑅𝑁
− 𝜇 ∫

𝑔+|𝑢𝑡𝑢
−
|2

1+𝑔+|𝑢𝑡𝑢
−
|2
𝑢𝑡𝑢

−
𝜙𝑡𝑢

−
𝑑𝑥

𝑅𝑁
 

 = 𝐽′(𝑢𝑡𝑢
−
)[𝜙𝑡𝑢

−
]. 

The proof is complete. 

Lemma 20 Assume that 𝑝̄ < 𝑝 < 4∗ holds. Let 𝐹 be a homotopy stable family of compact subsets of 𝑆𝑟(𝑐) with 

closed boundary 𝛩 and let 

 
).(maxinf:= uGe

HuH

−



−

F
F

 

Suppose that 𝛩 is contained in a connected component of 𝑀𝑟
−(𝑐) and that 𝑚𝑎𝑥{ 𝑠𝑢𝑝 𝐺− (𝛩),0} < 𝑒𝐹

− < ∞. Then, 

there exists a Palais-Smale sequence {𝑢𝑛} ⊂ 𝑀𝑟
−(𝑐) for 𝐽 restricted to 𝑆𝑟(𝑐) at the level 𝑒𝐹

−. 

Proof. First of all, take {𝐷𝑛} ⊂ 𝐹 such that 
n

euG
n
Du

1
<)(max +−−

 F
 and define the map 𝜂: [0,1] × 𝑆(𝑐) → 𝑆(𝑐) by 

𝜂(𝑠, 𝑢) = 𝑢1−𝑠+𝑠𝑡𝑢
−
. Since 𝑡𝑢

− = 1 for any 𝑢 ∈ 𝑀𝑟
−(𝑐) and 𝛩 ⊂ 𝑀𝑟

−(𝑐), we have 

 𝜂(𝑠, 𝑢) = 𝑢 for (𝑠, 𝑢) ∈ ({0} × 𝑆𝑟(𝑐)) ∪ ([0,1] × 𝛩). 

By the definition of 𝐹, it follows that 

 𝑨𝑛: = 𝜂({1} × 𝐷𝑛) = {𝑢
𝑡𝑢
−
: 𝑢 ∈ 𝐷𝑛} ∈ 𝐹. 

Clearly, 𝑨𝑛 ⊂ 𝑀𝑟
−(𝑐) for all 𝑛 ∈ 𝑁. For any 𝑣 ∈ 𝑨𝑛, we have 𝑣:= 𝑢𝑡𝑢

−
 for some 𝑢 ∈ 𝐷𝑛 . Then, 𝐺−(𝑢) = 𝐽(𝑢𝑡𝑢

−
) = 𝐽(𝑣) =

𝐺−(𝑣), which shows that 

 
).(max=)(max uGuG

n
Au

n
Du

−



−

  

Thus, {𝑨𝑛} ⊂ 𝑀𝑟
−(𝑐) is an another minimizing sequence of 𝑒𝐹

−. By Lemma 12, we obtain a Palais-Smale sequence 

{𝑣𝑛} for 𝐺− on 𝑆𝑟(𝑐) at the level 𝑒𝐹
− satisfying 𝑑𝑖𝑠𝑡(𝑣𝑛 , 𝑨𝑛) → 0 as 𝑛 → ∞. For each 𝑣𝑛 ∈ 𝑆𝑟(𝑐), there exists a constant 

𝑡𝑣𝑛
− > 0 such that 𝑢𝑛: = 𝑣𝑛

𝑡𝑣𝑛
−

∈ 𝑀𝑟
−(𝑐). 

Next, we claim that there exists a constant 𝐶0 > 0 such that 

 
1

𝐶0
≤ (𝑡𝑣𝑛

− )2 ≤ 𝐶0 for  𝑛 ∈ N. (3.33) 

Indeed, we observe that 

 (𝑡𝑣𝑛
− )4 =

∫ |𝛥𝑣𝑛
𝑡𝑣𝑛
−

|2
𝑅𝑁

𝑑𝑥

∫ |𝛥𝑣𝑛|
2

𝑅𝑁
𝑑𝑥
. 

Since 𝐽(𝑣𝑛
𝑡𝑣𝑛
−

) = 𝐺−(𝑣𝑛) → 𝑒𝐹
−, it follows from Lemma 14 that there exists a constant 𝑀0 > 0 such that 

 
1

𝑀0
≤ ∫ |𝛥𝑣𝑛

𝑡𝑣𝑛
−

|2
𝑅𝑁

𝑑𝑥 ≤ 𝑀0. (3.34) 
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Moreover, since {𝑨𝑛} ⊂ 𝑀𝑟
−(𝑐) is a minimizing sequence for 𝑒𝐹

− and 𝐽 is coercive on 𝑀−(𝑐), we know that {𝑨𝑛} is 

uniformly bounded in 𝐻2(𝑅𝑁). Note that 𝑑𝑖𝑠𝑡(𝑣𝑛, 𝑨𝑛) → 0 as 𝑛 → ∞, so 𝑠𝑢𝑝𝑛‖𝑣𝑛‖𝐻2 < ∞. Meanwhile, since 𝑨𝑛 is 

compact for each 𝑛 ∈ 𝑁, there exists a 𝑣̄𝑛 ∈ 𝑨𝑛 such that 𝑑𝑖𝑠𝑡(𝑣𝑛, 𝑨𝑛) = ‖𝑣̄𝑛 − 𝑣𝑛‖𝐻2. By Lemma 14, there exists a 

constant 𝛿 > 0 such that ∫ |𝛥𝑣̄𝑛|
2𝑑𝑥

𝑅𝑁
≥ 𝛿 for all 𝑛. Since ‖𝑣̄𝑛 − 𝑣𝑛‖𝐻2 → 0, we have ‖𝛥𝑣̄𝑛 − 𝛥𝑣𝑛‖𝐿2 → 0. Thus, for 

sufficiently large 𝑛, 

 ∫ |𝛥𝑣𝑛|
2𝑑𝑥

𝑅𝑁
≥ ∫ |𝛥𝑣̄𝑛|

2𝑑𝑥
𝑅𝑁

− ∫ |𝛥(𝑣𝑛 − 𝑣̄𝑛)|
2𝑑𝑥

𝑅𝑁
≥

𝛿

2
. (3.35) 

Combining (3.34) and (3.35), we conclude that (3.33) holds. 

In what follows, we show that {𝑢𝑛} ⊂ 𝑀𝑟
−(𝑐) is a Palais-Smale sequence for 𝐽 on 𝑆𝑟(𝑐) at the level 𝑒𝐹

−. Denote the 

norm on the tangent space 𝑇𝑢𝑛𝑆𝑟(𝑐) by ‖⋅‖ and the dual norm on 𝑇𝑢𝑛
∗ 𝑆𝑟(𝑐) by ‖⋅‖∗. Then, 

 ‖𝐽′(𝑢𝑛)‖∗ = sup
𝛹∈𝑇𝑢𝑛𝑆𝑟(𝑐)‖𝛹‖≤1

|〈𝐽′(𝑢𝑛), 𝛹〉| = sup
𝛹∈𝑇𝑢𝑛𝑆𝑟(𝑐)‖𝛹‖≤1

|〈𝐽′(𝑢𝑛), (𝛹
−𝑡𝑣𝑛

−
)𝑡𝑣𝑛
−
〉|. (3.36) 

By Lemma 18, the map 𝛹:𝑇𝑣𝑛𝑆𝑟(𝑐) → 𝑇
𝑣𝑛
𝑡𝑣𝑛
− 𝑆𝑟(𝑐) defined by 𝜓 → 𝜓𝑡𝑣𝑛

−
 is isomorphism. Moreover, Lemma 19 implies 

that ⟨(𝐺−)′(𝑣𝑛), 𝜓
−𝑡𝑣𝑛

−
⟩ = ⟨𝐽′(𝑢𝑛), 𝜓⟩. Hence, we obtain from (3.36) that 

 ‖𝐽′(𝑢𝑛)‖∗ = sup
𝛹∈𝑇𝑢𝑛𝑆𝑟(𝑐)‖𝛹‖≤1

|〈𝐽′(𝑢𝑛), 𝛹〉| = sup
𝛹∈𝑇𝑢𝑛𝑆𝑟(𝑐)‖𝛹‖≤1

|〈(𝐺−)′, (𝑣𝑛), 𝛹
−𝑡𝑣𝑛

−
〉|. (3.37) 

By (3.33), we know that ||𝜓−𝑡𝑣𝑛
−
|| ≤ 𝐶||𝜓|| ≤ 𝐶 for some constant 𝐶 > 0. Consequently, owing to ‖(𝐺−)′(𝑣𝑛)‖∗ → 0 

as 𝑛 → ∞, it immediately follows from (3.37) that ‖𝐽′(𝑢𝑛)‖∗ → 0. That is to say, {𝑢𝑛} ⊂ 𝑀𝑟
−(𝑐) is a Palais-Smale sequence 

for 𝐽 on 𝑆𝑟(𝑐) at the level 𝑒𝐹
−. 

Lemma 21 Assume that 𝑝̄ < 𝑝 < 4∗. Then, there exists a Palais-Smale sequence {𝑢𝑛} ⊂ 𝑀𝑟
−(𝑐) for 𝐽 restricted to 

𝑆𝑟(𝑐) at the level 𝑚𝑟
−(𝑐) >

𝜇|𝑔|𝑐

2(1+𝑔)
. 

Proof. Based on Lemma 20, we choose the set 𝐹 of all singletons belonging to 𝑆𝑟(𝑐) and 𝛩 = ∅, which is clearly a 

homotopy stable family of compact subsets of 𝑆𝑟(𝑐) (without boundary). Note that 

 

),(=)(inf=)(inf=)(maxinf=
)()(

cmuJuGuGe r
c

r
uc

r
SuHuH

−

−

−



−



−

MF
F

 

the lemma follows directly from Lemma 20. 

Now we are in the position to finish the proof of Theorem 1 (ii). By Lemma 21, there exists a Palais-Smale 

sequence {𝑢𝑛} ⊂ 𝑀𝑟
−(𝑐) for 𝐽 restricted to 𝑆(𝑐) at level 𝑚𝑟

−(𝑐) >
𝜇|𝑔|𝑐

2(1+𝑔)
, which is bounded in 𝐻𝑟

2(𝑅𝑁) via Lemma 14. So, 

for 𝑝̄ < 𝑝 < 4∗, according to Lemma 13, when 

 0 < 𝑐 < 𝑐̄:= 𝑚𝑖𝑛{ 𝑐0, 𝑐1, 𝑐2}, 

problem (1.1) admits a radially symmetric solution 𝑤 satisfying 𝐽(𝑤) = 𝑚𝑟
−(𝑐) >

𝜇|𝑔|𝑐

2(1+𝑔)
 for some 𝜆̄ > 0. 

Moreover, since 𝑄(𝑤) = 0, by (3.20) and Lemma 3, one has 
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𝜆̄𝑐 =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
∫ |𝛥𝑤|2𝑑𝑥
𝑅𝑁

+ 𝜇 ∫
𝑔+|𝑤|2

1+𝑔+|𝑤|2
|𝑤|2𝑑𝑥                                      

𝑅𝑁

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫ (𝑙𝑛 (1 +

|𝑤|2

1+𝑔
) −

|𝑤|2

1+𝑔+|𝑤|2
)

𝑅𝑁
𝑑𝑥                                                

       >
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
𝛬𝑐 + 𝜇 ∫ |𝑤|2𝑑𝑥

𝑅𝑁
− 𝜇 ∫

1

1+𝑔+|𝑤|2
|𝑤|2

𝑅𝑁
𝑑𝑥                          

−
𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫ (𝑙𝑛 (1 +

|𝑤|2

1+𝑔
) −

|𝑤|2

1+𝑔+|𝑤|2
)

𝑅𝑁
𝑑𝑥                                                 

       >
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
𝛬𝑐 + 𝜇𝑐 −

𝜇𝑐

1+𝑔
−

𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫ (𝑙𝑛 (1 +

|𝑤|2

1+𝑔
) −

|𝑤|2

1+𝑔+|𝑤|2
)

𝑅𝑁
𝑑𝑥

       >
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
𝛬𝑐 +

𝜇𝑔𝑐

1+𝑔
−

𝜇𝑁𝑝

𝑁𝑝−2𝑁
∫ (

|𝑤|2

1+𝑔
−

|𝑤|2

1+𝑔+|𝑤|2
)

𝑅𝑁
𝑑𝑥                           

       =
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
𝛬𝑐 +

𝜇𝑔𝑐

1+𝑔
−

𝜇𝑁𝑝

(𝑁𝑝−2𝑁)(1+𝑔)
∫

|𝑤|4

1+𝑔+|𝑤|2𝑅𝑁
𝑑𝑥                               

       >
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
𝛬𝑐 +

𝜇𝑔𝑐

1+𝑔
−

𝜇𝑁𝑝𝑐

(𝑁𝑝−2𝑁)(1+𝑔)
                                                            

       = 𝐾2𝑐
−
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁−8 −
𝜇𝑐

1+𝑔
(

𝑁𝑝

𝑁𝑝−2𝑁
− 𝑔)                                                             

       = 𝐾2𝑐
−
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁−8 −
𝜇𝑐

1+𝑔
(
𝑝

𝑝−2
− 𝑔),                                                                 

 (3.38) 

where 

 𝐾2 = (
2𝑁−𝑝(𝑁−4)

𝑁𝑝−2𝑁
) (

8(𝑁+4)(1+𝑔)
𝑝̄
2−2𝜇𝑩𝑝̄𝑁

2𝐶𝑁,𝑝̄
𝑝̄

𝑐
4
𝑁

(1+𝑔)
𝑝̄
2𝑁(𝑁𝑝−2𝑁)

)

8

𝑁𝑝−2𝑁−8

. 

This indicates that 

 𝜆̄ > 𝐾2𝑐
8−4𝑝

𝑁𝑝−2𝑁−8 −
𝜇

1+𝑔
(
𝑝

𝑝−2
− 𝑔). 

4. Appendix 

Derivation of 𝑨𝒒: Let 𝑔(𝑡): =
2𝑡

1+𝑡
𝑡
2−𝑞

2 , it gives that 

 

𝑙𝑛 𝑔 (𝑡) = 𝑙𝑛( 2𝑡) +
2−𝑞

2
𝑙𝑛 𝑡 − 𝑙𝑛( 1 + 𝑡),

𝑔′(𝑡)

𝑔(𝑡)
      =

1

𝑡
+

2−𝑞

2𝑡
−

1

1+𝑡
=

4−𝑞

2𝑡
−

1

1+𝑡
,       

𝑡𝑚𝑎𝑥      =
4−𝑞

𝑞−2
.                                                

 

Hence, one has 

 𝑔(𝑡𝑚𝑎𝑥) =
2𝑡

1+𝑡
𝑡
2−𝑞

2 =

2(4−𝑞)

𝑞−2

1+
4−𝑞

𝑞−2

(
4−𝑞

𝑞−2
)
2−𝑞

2 = (4 − 𝑞)(
4−𝑞

𝑞−2
)
2−𝑞

2 , 

which brings that 

 𝑨𝑞 =
1

𝑞
𝑚𝑎𝑥 𝑔 (𝑡) =

4−𝑞

𝑞
(
4−𝑞

𝑞−2
)
2−𝑞

2 =
(4−𝑞)

4−𝑞
2

𝑞(𝑞−2)
2−𝑞
2

=
(𝑞−2)

𝑞−2
2 (4−𝑞)

4−𝑞
2

𝑞
. 

Derivation of 𝑩𝒒: Considering ℎ(𝑡): =
2(𝑡+2)𝑡

4−𝑞
2

(1+𝑡)2
, we see that 
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𝑙𝑛 ℎ (𝑡) = 𝑙𝑛 2 (𝑡 + 2) +
4−𝑞

2
𝑙𝑛 𝑡 − 2 𝑙𝑛( 1 + 𝑡),

ℎ′(𝑡)

ℎ(𝑡)
      =

1

2+𝑡
+

4−𝑞

2
⋅
1

𝑡
−

2

1+𝑡
.                                 

Letting ℎ′(𝑡) = 0, we deduce that (𝑞 − 2)𝑡2 + 3(𝑞 − 2)𝑡 + 2(𝑞 − 4) = 0, which yields that 

 

𝑡 =
−3(𝑞−2)±√9(𝑞−2)2−8(𝑞−2)(𝑞−4)

2(𝑞−2)

   =
−3(𝑞−2)±√(𝑞−2)(9(𝑞−2)−8(𝑞−4))

2(𝑞−2)

   =
−3√𝑞−2±√9(𝑞−2)−8(𝑞−4)                

2√𝑞−2

   =
−3√𝑞−2±√9𝑞−18−8𝑞+32

2√𝑞−2
             

   =
−3√𝑞−2±√𝑞+14

2√𝑞−2
.                          

 

Substituting 𝑡𝑚𝑎𝑥
√𝑞+14−3√𝑞−2

2√𝑞−2
 into ℎ(𝑡), there holds that 

    

ℎ𝑚𝑎𝑥   =
(
√𝑞+14−3√𝑞−2

2√𝑞−2
+2)(

√𝑞+14−3√𝑞−2

2√𝑞−2
)
4−𝑞
2

(1+
√𝑞+14−3√𝑞−2

2√𝑞−2
)2

                                     

             =
(
√𝑞+14−3√𝑞−2+4√𝑞−2

2√𝑞−2
)(
√𝑞+14−3√𝑞−2

2√𝑞−2
)
4−𝑞
2

(
2√𝑞−2+√𝑞+14−3√𝑞−2

2√𝑞−2
)2

                              

             =
(
√𝑞+14+√𝑞−2

2√𝑞−2
)(
√𝑞+14−3√𝑞−2

2√𝑞−2
)
4−𝑞
2

(
√𝑞+14−√𝑞−2

2√𝑞−2
)2

                                           

             =
(√𝑞+14+√𝑞−2)(2√𝑞−2)−1(√𝑞+14−3√𝑞−2)

4−𝑞
2 (2√𝑞−2)

−
4−𝑞
2

(√𝑞+14−√𝑞−2)2(2√𝑞−2)−2

             =
(√𝑞+14+√𝑞−2)(2√𝑞−2)

𝑞−2
2 (√𝑞+14−3√𝑞−2)

4−𝑞
2

(√𝑞+14−√𝑞−2)2
                   

             =
2
𝑞−2
2 (𝑞−2)

𝑞−2
4 (√𝑞+14+√𝑞−2)(√𝑞+14−3√𝑞−2)

4−𝑞
2

(√𝑞+14−√𝑞−2)2
                

             =
2
𝑞−2
2 (𝑞−2)

𝑞−2
4 (𝑞+14−𝑞+2)(√𝑞+14−3√𝑞−2)

4−𝑞
2

(√𝑞+14−√𝑞−2)3
                     

             =
2
𝑞+6
2 (𝑞−2)

𝑞−2
4 (√𝑞+14−3√𝑞−2)

4−𝑞
2

(√𝑞+14−√𝑞−2)3
.                                       

 

As a consequence, we obtain that 

 𝑩𝑞 =
1

𝑞
𝑚𝑎𝑥 ℎ (𝑡) =

2
𝑞+6
2 (𝑞−2)

𝑞−2
4 (√𝑞+14−3√𝑞−2)

4−𝑞
2

𝑞(√𝑞+14−√𝑞−2)3
. 
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