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ABSTRACT 

In this paper, the distinction and connection between a new approach introduced in 

[29] and the traditional method presented in [1] for some semi-fuzzy linear systems 

are discussed. Firstly, the consistency of some primary algebraic operations between 

the 𝛼-center and 𝛼–radius of a fuzzy number 𝑥̃ and the 𝛼-levels of a fuzzy number 𝑥̃ is 

analyzed. Secondly, the equivalence property of the computing model and the strong 

fuzzy solution in recent paper [29] by discussing the proposed method twenty-eight 

years ago [1] are considered. Then, the dual fuzzy linear systems are also investigated 

in a similar way. Finally, two classical and well known examples are given to show the 

validity of the new method in which the idea and approach can be applied to simplifying 

calculation of any semi-fuzzy linear systems. 
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1. Introduction 

In the past decades fuzzy linear systems have been paid more attention by some scholars. In 1998, Friedman et 

al. [1] proposed a general model for solving an 𝑛 × 𝑛 fuzzy linear systems based on triangular fuzzy numbers by an 

embedding approach [2]. Substantial work has been done on handling various advanced fuzzy linear systems, such 

as dual fuzzy linear systems (DFLS), general fuzzy linear systems (GFLS), full fuzzy linear systems (FFLS), dual full 

fuzzy linear systems (DFFLS) and general dual fuzzy linear systems (GDFLS) [3-10]. Recently, new theories and 

methods for fuzzy linear systems and fuzzy numbers matrix appeared in the literature [11-26]. Meanwhile, fuzzy 

integro-differential equations also play an important role in fields such as control theory, electrical circuits, and 

signal processing, and significant progress has been made in their numerical solution methods, such as the 

reproductive kernel algorithm [27, 28]. 

In this paper, some distinctions and connections between a new approach introduced in [29] and the traditional 

method presented in [1] for solving two classes of semi-fuzzy linear systems are discussed. We analyze some 

primary algebraic operations between the 𝛼 -center and 𝛼 -radius of a fuzzy number 𝑥̃ and the 𝛼 -levels of a fuzzy 

number 𝑥̃ at first. Based on this, we investigate the equivalence of the computing model and the strong fuzzy 

solution in the recent paper [29] by discussing the proposed method twenty-eight years ago [1]. Then, we consider 

the dual fuzzy linear systems in a similar way. Finally, we show the validity of the new method by solving two classical 

and well known examples in which the idea and approach can be applied to simplifying calculation of any semi-

fuzzy linear systems. 

In Section 2, some definitions and results on fuzzy numbers and fuzzy linear systems are presented. In Section 

3, the equivalence property of the computing model and the strong fuzzy solution in recent paper [29] by discussing 

the proposed method twenty-four years ago [1] are considered. The dual fuzzy linear systems are also considered 

in a similar way in Section 4. Some illustrating numerical examples are given in Section 5. Finally, the conclusion and 

future research directions are presented in Section 6. 

2. Preliminaries 

There are several basic definitions for the concept of fuzzy numbers (see [30-32]). 

Definition 2.1. 𝐴 fuzzy number is a fuzzy set like 𝑢: 𝑅 → 𝐼 = [0,1] which satisfies: 

(1) 𝑢 is upper semi-continuous, 

(2) 𝑢 is fuzzy convex, i.e. 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ 𝑚𝑖𝑛{ 𝑢(𝑥), 𝑢(𝑦)} for all 𝑥, 𝑦 ∈ 𝑅, 𝜆 ∈ [0,1], 

(3) 𝑢 is normal, i.e. there exists 𝑥0 ∈ 𝑅 such that 𝑢(𝑥0) = 1, 

(4) supp𝑢 = {𝑥 ∈ 𝑅|𝑢(𝑥) > 0} is the support of the 𝑢, and its closure cl(supp𝑢) is compact. 

Let 𝐸1 be the set of all fuzzy numbers on 𝑅. 

Definition 2.2. A fuzzy number 𝑢̃ in parametric form is a pair (𝑢(𝑟), 𝑢(𝑟)) of functions 𝑢(𝑟), 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1, which 

satisfies the requirements: 

(1) 𝑢(𝑟) is a bounded monotonic increasing left continuous function, 

(2) 𝑢(𝑟) is a bounded monotonic decreasing right continuous function, 

(3) 𝑢(𝑟) ≤ 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1. 

For example, the fuzzy number (2 + 𝑟, 5 − 2𝑟) is shown in Fig. (1). A crisp number 𝑥 is simply represented by 

(𝑢(𝑟), 𝑢(𝑟)) = (𝑥, 𝑥), 0 ≤ 𝑟 ≤ 1.  
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Figure 1: A fuzzy number. 

Definition 2.3. Let 𝑥̃ = (𝑥(𝑟), 𝑥(𝑟)), 𝑦̃𝑥̃ = (𝑦(𝑟), 𝑦(𝑟)) ∈ 𝐸1, 0 ≤ 𝑟 ≤ 1 and 𝑘 ∈ 𝑅. Then 

(1) 𝑥̃ = 𝑦̃ iff 𝑥(𝑟) = 𝑦(𝑟) and 𝑥(𝑟) = 𝑦(𝑟), 

(2) 𝑥̃ + 𝑦̃ = (𝑥(𝑟) + 𝑦(𝑟), 𝑥(𝑟) + 𝑦(𝑟)), 

(3) 𝑥̃ − 𝑦̃ = (𝑥(𝑟) − 𝑦(𝑟), 𝑥(𝑟) − 𝑦(𝑟)), 

(4) 𝑘𝑥̃ = {
(𝑘𝑥(𝑟), 𝑘𝑥(𝑟)), 𝑘 ≥ 0,

(𝑘𝑥(𝑟), 𝑘𝑥(𝑟)), 𝑘 < 0.
 

Now we recall the following two concepts [29]. 

Definition 2.4. The 𝑟 -center of the fuzzy number 𝑥̃ is denoted by 𝑥𝐶(𝑟) and it is defined as 

 𝑥𝐶(𝑟) =
𝑥(𝑟)+𝑥(𝑟)

2
, 𝑟 ∈ [0,1]. (2.1) 

The 𝑟 -radius of the fuzzy number 𝑥̃ is denoted by 𝑥𝑅(𝑟) and it is defined as 

 𝑥𝑅(𝑟) =
𝑥(𝑟)−𝑥(𝑟)

2
, 𝑟 ∈ [0,1]. (2.2) 

Remark 2.5. The 𝑟 -center and 𝑟 -radius of an arbitrary fuzzy number are crisp real functions of 𝑟. Also  

 [𝑥̃]𝑟 = [𝑥(𝑟), 𝑥(𝑟)] = [𝑥𝐶(𝑟) − 𝑥𝑅(𝑟), 𝑥𝐶(𝑟) + 𝑥𝑅(𝑟)], 𝑟 ∈ [0,1]. (2.3) 

Obviously, two fuzzy numbers 𝑥̃ and 𝑦̃ are equal, if and only if 𝑥𝐶(𝑟) = 𝑦𝐶(𝑟) and 𝑥𝑅(𝑟) = 𝑦𝑅(𝑟), for every 𝑟 ∈ [0,1]. 

For the fuzzy number 𝑥̃, if for any 𝑟 ∈ [0,1], 𝑥𝑅(𝑟) = 0, then it can be easily concluded that 𝑥̃ is a crisp real number. 

Remark 2.6. Let 𝑥̃ and 𝑦̃ to be two fuzzy numbers. Since  

𝑥̃ + 𝑦̃ = [𝑥(𝑟) + 𝑦(𝑟), 𝑥(𝑟) + 𝑥(𝑟)] = [𝑥𝐶(𝑟) + 𝑦𝐶(𝑟) − 𝑥𝑅(𝑟) − 𝑦𝑅(𝑟), 𝑥𝐶(𝑟) + 𝑦𝐶(𝑟) + 𝑥𝑅(𝑟) + 𝑦𝑅(𝑟)], 𝑟 ∈ [0,1], 

the 𝑟 -center and the 𝑟 -radius of the sun 𝑚̃ = 𝑥̃ + 𝑦̃ are  

 𝑚𝐶(𝑟) = 𝑥𝐶(𝑟) + 𝑦𝐶(𝑟),𝑚𝑅(𝑟) = 𝑥𝑅(𝑟) + 𝑦𝑅(𝑟), 𝑟 ∈ [0,1]. (2.4) 

Remark 2.7. Let 𝜆 to be a crisp real number. Since  

[𝜆𝑥̃]𝑟 = 𝜆[𝑥̃]𝑟 = {
[𝜆𝑥(𝑟), 𝜆𝑥(𝑟)] = [𝜆𝑥𝐶(𝑟) − 𝜆𝑥𝑅(𝑟), 𝜆𝑥𝐶(𝑟) + 𝜆𝑥𝑅(𝑟)],              𝜆 ≥ 0,

[𝜆𝑥(𝑟), 𝜆𝑥(𝑟)] = [𝜆𝑥𝐶(𝑟) − (−𝜆𝑥𝑅(𝑟)), 𝜆𝑥𝐶(𝑟) + (−𝜆𝑥𝑅(𝑟))], 𝜆 < 0,
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the 𝑟 -center and the 𝑟 -radius of the product 𝑛̃ = 𝜆𝑥̃ are  

 {
𝑛𝐶(𝑟) = 𝜆𝑥𝐶(𝑟), 𝑛𝑅(𝑟) = 𝜆𝑥𝑅(𝑟), 𝜆 ≥ 0,

𝑛𝐶(𝑟) = 𝜆𝑥𝐶(𝑟), 𝑛𝑅(𝑟) = |𝜆|𝑥𝑅(𝑟), 𝜆 < 0.
 (2.5) 

Definition 2.8. Suppose that 𝑥̃1, 𝑥̃2, ⋯ , 𝑥̃𝑛 ∈ 𝐸
1 and 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 ∈ 𝑅 and also 𝑢̃ = ∑ 𝜆𝑖𝑥̃𝑖,

𝑛
𝑖=1  then 

 𝑢𝐶(𝑟) = ∑ 𝜆𝑖𝑥𝑖
𝐶(𝑟)𝑛

𝑖=1 , 𝑢𝑅(𝑟) = ∑ |𝜆𝑖|𝑥𝑖
𝑅(𝑟).𝑛

𝑖=1  (2.6) 

Further, suppose 𝑥̃ = (𝑥̃1, 𝑥̃2, ⋯ , 𝑥̃𝑛)
𝑇 ∈ 𝐸𝑛 is a fuzzy numbers vector, and is a real matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 ∈ 𝑅

𝑛×𝑛, then 

the 𝑟 -center and the 𝑟 -radius of the fuzzy numbers vector 𝑣̃ = 𝐴𝑥̃ are given by  

 𝑣𝐶(𝑟) = 𝐴𝑥𝐶(𝑟), 𝑣𝑅(𝑟) = |𝐴|𝑥𝑅(𝑟). (2.7) 

Definition 2.9. The 𝑛 × 𝑛 linear system:  

 

{
 
 

 
 𝑎11𝑥̃1 + 𝑎12𝑥̃2 +⋯+ 𝑎1𝑛𝑥̃𝑛 = 𝑏̃1,

𝑎21𝑥̃1 + 𝑎22𝑥̃2 +⋯+ 𝑎2𝑛𝑥̃𝑛 = 𝑏̃2,

⋮
𝑎𝑛1𝑥̃1 + 𝑎𝑛2𝑥̃2 +⋯+ 𝑎𝑛𝑛𝑥̃𝑛 = 𝑏̃𝑛,

 (2.8) 

where the coefficient matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 ( 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 ) is a real 𝑛 × 𝑛 matrix; 𝑏̃ = (𝑏̃1, 𝑏̃2, … , 𝑏̃𝑛)
𝑇 is a column 

vector of fuzzy numbers; 𝑥̃ = (𝑥̃1, 𝑥̃2, … , 𝑥̃𝑛)
𝑇 is a vector of fuzzy unknowns. Such a system is called a fuzzy linear 

system. Using matrix notation,we have  

 𝐴𝑥̃ = 𝑏̃. (2.9) 

In 1998, Friedman et al. [1] presented a computing model:  

 𝑆𝑋(𝑟) = 𝑌(𝑟),0 ≤ 𝑟 ≤ 1, (2.10) 

i.e.,  

(
𝐵 𝐶
𝐶 𝐵

) (
𝑥(𝑟)

−𝑥(𝑟)
) = (

𝑏(𝑟)

−𝑏(𝑟)
), 

where  

 𝑥̃ = [𝑥(𝑟), 𝑥(𝑟)],  𝐴 = 𝐴+ + 𝐴−,  𝐵 = 𝐴+,  𝐶 = −𝐴−,  |𝐴| = 𝐵 + 𝐶.  (2.11) 

And the elements 𝑎𝑖𝑗
+  of matrix 𝐴+ and 𝑎𝑖𝑗

−  of matrix 𝐴− are determined by this way: if 𝑎𝑖𝑗 ≥ 0, 𝑎𝑖𝑗
+ = 𝑎𝑖𝑗 else 𝑎𝑖𝑗

+ =

0,1 ≤ 𝑖, 𝑗 ≤ 𝑛; if 𝑎𝑖𝑗 < 0, 𝑎𝑖𝑗
− = 𝑎𝑖𝑗 else 𝑎𝑖𝑗

− = 0,1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Matrix 𝑆 is invertible if and only if both matrices 𝐴 = 𝐵 − 𝐶 and |𝐴| = 𝐵 + 𝐶 are nonsingular. Under this condition, 

they derived the solution to model (2.9) as follows: 

 (
𝑥(𝑟)

−𝑥(𝑟)
) = ( 𝐴

+ −𝐴−

−𝐴− 𝐴+
)
−1

(
𝑏(𝑟)

−𝑏(𝑟)
) = (

𝐷 𝐸
𝐸 𝐷

) (
𝑏(𝑟)

−𝑏(𝑟)
),  (2.12) 

where  

 𝐷 =
1

2
[|𝐴|−1 + 𝐴−1], 𝐸 =

1

2
[|𝐴|−1 − 𝐴−1].  (2.13) 
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3. The Equivalence Property Analysis of the Fuzzy Linear Systems 

3.1. The Equivalence Property of the Computing Model 

In this subsection, we aim at discussion on the another computing form of the model (2.9). 

In fact, the model (2.9) is equivalent to the following equation 

 {
𝐴+𝑥(𝑟) + 𝐴−𝑥(𝑟) = 𝑏(𝑟),

𝐴−𝑥(𝑟) + 𝐴+𝑥(𝑟) = 𝑏(𝑟).
 (3.1) 

Adding the two equations of (3.1), we have  

(𝐴+ + 𝐴−)𝑥(𝑟) + (𝐴+ + 𝐴−)𝑥(𝑟) = 𝑏(𝑟) + 𝑏(𝑟), 

i.e.,  

 𝐴(𝑥(𝑟) + 𝑥(𝑟)) = 𝑏(𝑟) + 𝑏(𝑟).  (3.2) 

Subtracting the first equation from the second equation of (3.1), we have  

(𝐴− − 𝐴+)𝑥(𝑟) + (𝐴+ − 𝐴−)𝑥(𝑟) = 𝑏(𝑟) − 𝑏(𝑟), 

i.e.,  

 |𝐴|(𝑥(𝑟) − 𝑥(𝑟)) = 𝑏(𝑟) − 𝑏(𝑟).  (3.3) 

So we have  

 {
𝐴
1

2
(𝑥(𝑟) + 𝑥(𝑟)) =

1

2
(𝑏(𝑟) + 𝑏(𝑟)),

|𝐴|
1

2
(𝑥(𝑟) − 𝑥(𝑟)) =

1

2
(𝑏(𝑟) − 𝑏(𝑟)).

  (3.4) 

Using the definitions of the 𝑟 -center and 𝑟 -radius for the fuzzy number vector 𝑥̃, Eqs.(3.4) are reduced to 

 {
𝐴𝑥𝐶(𝑟) = 𝑏𝐶(𝑟),

|𝐴|𝑥𝑅(𝑟) = 𝑏𝑅(𝑟).
  (3.5) 

From the above analysis, we can easily get the following Theorem 3.1. 

Theorem 3.1. Under the assumptions of definitions 2.1 and 2.2, the fuzzy linear systems (2.9) can be extended 

into a crisp linear system as follows:  

 𝐺𝑢(𝑟) = 𝑣(𝑟),0 ≤ 𝑟 ≤ 1,  (3.6) 

where  

 𝐺 = (
𝐴 𝑂
𝑂 |𝐴|

) , 𝑢(𝑟) = (
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) , 𝑣(𝑟) = (

𝑏𝐶(𝑟)

𝑏𝑅(𝑟)
),  (3.7) 

and  

𝑥𝐶(𝑟) =
𝑥(𝑟) + 𝑥(𝑟)

2
, 𝑥𝑅(𝑟) =

𝑥(𝑟) − 𝑥(𝑟)

2
, 0 ≤ 𝑟 ≤ 1. 
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3.2. The Equivalence Property of the Solution of the Model 

The equivalence property between the solution of the model (2.10) and the solution of the model (3.6) will be 

discussed in this subsection. 

From the Theorem 3.1, we can obtain the solution of the model (3.6) as 

 {
𝑥𝐶(𝑟) = 𝐴−1𝑏𝐶(𝑟),

𝑥𝑅(𝑟) = |𝐴|−1𝑏𝑅(𝑟),
  (3.8) 

when matrices 𝐴 = 𝐵 − 𝐶 and |𝐴| = 𝐵 + 𝐶 are invertible. 

Substituting back to the Initial assumption, we have  

𝑥(𝑟) = 𝑥𝐶(𝑟) − 𝑥𝑅(𝑟) = 𝐴−1
𝑏(𝑟) + 𝑏(𝑟)

2
− |𝐴|−1

𝑏(𝑟) − 𝑏(𝑟)

2
, 𝑟 ∈ [0,1], 

𝑥(𝑟) = 𝑥𝐶(𝑟) + 𝑥𝑅(𝑟) = 𝐴−1
𝑏(𝑟) + 𝑏(𝑟)

2
+ |𝐴|−1

𝑏(𝑟) − 𝑏(𝑟)

2
, 𝑟 ∈ [0,1], 

i.e.,  

 {
𝑥(𝑟) =

1

2
(𝐴−1 + |𝐴|−1)𝑏(𝑟) +

1

2
(𝐴−1 − |𝐴|−1)𝑏(𝑟),

𝑥(𝑟) =
1

2
(𝐴−1 − |𝐴|−1)𝑏(𝑟) +

1

2
(𝐴−1 + |𝐴|−1)𝑏(𝑟).

  (3.9) 

Eqs.(3.9) can be rewritten as 

 {
𝑥(𝑟) =

1

2
(𝐴−1 + |𝐴|−1)𝑏(𝑟) +

1

2
(|𝐴|−1 − 𝐴−1)(−𝑏(𝑟)),

−𝑥(𝑟) =
1

2
(|𝐴|−1 − 𝐴−1)𝑏(𝑟) +

1

2
(𝐴−1 + |𝐴|−1)(−𝑏(𝑟)).

  (3.10) 

Expressing the formula (3.10) in matrix form, we have  

 (
𝑥(𝑟)

−𝑥(𝑟)
) = (

1

2
(𝐴−1 + |𝐴|−1)

1

2
(|𝐴|−1 − 𝐴−1)

1

2
(|𝐴|−1 − 𝐴−1)

1

2
(𝐴−1 + |𝐴|−1)

) (
𝑏(𝑟)

−𝑏(𝑟)
) = (

𝐷 𝐸
𝐸 𝐷

) (
𝑏(𝑟)

−𝑏(𝑟)
),  (3.11) 

where  

𝐷 =
1

2
[|𝐴|−1 + 𝐴−1], 𝐸 =

1

2
[|𝐴|−1 − 𝐴−1]. 

The result is completely consistent with Eqs. (2.13) of the proposed method by Friedman et al. [1] 

3.3. The Equivalence Property of the Strong Fuzzy Solution 

Theorem 3.2. When 𝑥𝑅(𝑟) ≥ 0, 𝑟 ∈ [0,1], the fuzzy linear systems (2.9) exists the strong fuzzy solution as  

 [𝑥(𝑟), 𝑥(𝑟)] = [𝑥𝐶(𝑟) − 𝑥𝑅(𝑟), 𝑥𝐶(𝑟) + 𝑥𝑅(𝑟)], 𝑟 ∈ [0,1],  (3.12) 

where  

𝑥𝐶(𝑟) =
𝑥(𝑟) + 𝑥(𝑟)

2
, 𝑥𝑅(𝑟) =

𝑥(𝑟) − 𝑥(𝑟)

2
, 0 ≤ 𝑟 ≤ 1. 
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Proof. Since 𝑟 -center and 𝑟 -radius of a fuzzy numbers vector are crisp real-valued continuous functions of 𝑟, 

the functions 𝑥(𝑟) = 𝑥𝐶(𝑟) − 𝑥𝑅(𝑟) and 𝑥(𝑟) = 𝑥𝐶(𝑟) + 𝑥𝑅(𝑟) are , of course, continuous functions of 𝑟, 𝑟 ∈ [0,1]. The 

condition 𝑥𝑅(𝑟) ≥ 0, 𝑟 ∈ [0,1] means that 𝑥(𝑟) ≤ 𝑥(𝑟), ∀𝑟 ∈ [0,1]. So, [𝑥(𝑟), 𝑥(𝑟)] is a strong fuzzy solution of fuzzy linear 

systems (2.9). 

4. The Equivalence Property Analysis of the Dual Fuzzy Linear Systems 

For the dual fuzzy linear systems [29, 33]  

 𝐴𝑥̃ + 𝑦̃ = 𝐵𝑥̃ + 𝑧̃,  (4.1) 

where the coefficient matrices 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, 𝐵 = (𝑏𝑖𝑗)𝑛×𝑛 are two 𝑛 × 𝑛 crisp real matrices, and the vectors 𝑦̃ =

(𝑦̃
1
, 𝑦̃

2
, … , 𝑦̃

𝑛
)𝑇, 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑛)

𝑇, and also the unknown vector 𝑥̃ = (𝑥̃1, 𝑥̃2, … , 𝑥̃𝑛)
𝑇 are fuzzy number vectors. 

Using Friedman’s method, it can be extended to the following crisp linear system of higher dimension:  

 𝑆𝑋(𝑟) + 𝑌(𝑟) = 𝑇𝑋(𝑟) + 𝑍(𝑟),0 ≤ 𝑟 ≤ 1,  (4.2) 

i.e.,  

 ( 𝐴
+ −𝐴−

−𝐴− 𝐴+
) (

𝑥(𝑟)

−𝑥(𝑟)
) + (

𝑦(𝑟)

−𝑦(𝑟)
) = ( 𝐵

+ −𝐵−

−𝐵− 𝐵+
) (

𝑥(𝑟)

−𝑥(𝑟)
) + (

𝑧(𝑟)

−𝑧(𝑟)
),  (4.3) 

where  

 𝑥̃ = [𝑥(𝑟), 𝑥(𝑟)], 𝐴 = 𝐴+ + 𝐴−, 𝐵 = 𝐵+ + 𝐵−.  (4.4) 

And the elements 𝑏𝑖𝑗
+ of matrix 𝐵+ and 𝑏𝑖𝑗

− of matrix 𝐵− are determined by this way: if 𝑏𝑖𝑗 ≥ 0, 𝑏𝑖𝑗
+ = 𝑏𝑖𝑗 else 𝑏𝑖𝑗

+ =

0,1 ≤ 𝑖, 𝑗 ≤ 𝑛; if 𝑏𝑖𝑗 < 0, 𝑏𝑖𝑗
− = 𝑏𝑖𝑗 else 𝑏𝑖𝑗

− = 0,1 ≤ 𝑖, 𝑗 ≤ 𝑛. The elements 𝑎𝑖𝑗
+  of matrix 𝐴+ and 𝑎𝑖𝑗

−  of matrix 𝐴− are 

determined by the same way. 

The model (4.2) can be presented in detail as  

 {
𝐴+𝑥(𝑟) − 𝐴−(−𝑥(𝑟)) + 𝑦(𝑟) = 𝐵+𝑥(𝑟) − 𝐵−(−𝑥(𝑟)) + 𝑧(𝑟),

−𝐴−𝑥(𝑟) + 𝐴+(−𝑥(𝑟)) − 𝑦(𝑟) = −𝐵−𝑥(𝑟) + 𝐵+(−𝑥(𝑟)) − 𝑧(𝑟),
 

i.e.,  

 {
𝐴+𝑥(𝑟) + 𝐴−𝑥(𝑟) + 𝑦(𝑟) = 𝐵+𝑥(𝑟) + 𝐵−𝑥(𝑟) + 𝑧(𝑟),

𝐴−𝑥(𝑟) + 𝐴+𝑥(𝑟) + 𝑦(𝑟) = 𝐵−𝑥(𝑟) + 𝐵+𝑥(𝑟) + 𝑧(𝑟).
  (4.5) 

By adding the two equations in (4.5), we have  

 (𝐴+ + 𝐴−)𝑥(𝑟) + (𝐴+ + 𝐴−)𝑥(𝑟) + 𝑦(𝑟) + 𝑦(𝑟) = (𝐵+ + 𝐵−)𝑥(𝑟) + (𝐵+ + 𝐵−)𝑥(𝑟) + 𝑧(𝑟) + 𝑧(𝑟). 

Subtracting the first equation from the second equation of (4.5), we have  

 (𝐴− − 𝐴+)𝑥(𝑟) + (𝐴+ − 𝐴−)𝑥(𝑟) + 𝑦(𝑟) − 𝑦(𝑟) = (𝐵− − 𝐵+)𝑥(𝑟) + (𝐵+ − 𝐵−)𝑥(𝑟) + 𝑧(𝑟) − 𝑧(𝑟). 

So we have  

 {
𝐴
1

2
(𝑥(𝑟) + 𝑥(𝑟)) +

1

2
(𝑦(𝑟) + 𝑦(𝑟)) = 𝐵

1

2
(𝑥(𝑟) + 𝑥(𝑟)) +

1

2
(𝑧(𝑟) + 𝑧(𝑟)),

|𝐴|
1

2
(𝑥(𝑟) − 𝑥(𝑟)) +

1

2
(𝑦(𝑟) − 𝑦(𝑟)) = |𝐵|

1

2
(𝑥(𝑟) − 𝑥(𝑟)) +

1

2
(𝑧(𝑟) − 𝑧(𝑟)).

  (4.6) 
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Using the definitions of the 𝑟 -center and 𝑟 -radius for the fuzzy number vectors 𝑦̃ and 𝑥̃, Eqs.(4.6) are reduced 

to  

 {
𝐴𝑥𝐶(𝑟) + 𝑦𝐶(𝑟) = 𝐵𝑥𝐶(𝑟) + 𝑧𝐶(𝑟),

|𝐴|𝑥𝑅(𝑟) + 𝑦𝑅(𝑟)) = |𝐵|𝑥𝑅(𝑟) + 𝑧𝑅(𝑟).
  (4.7) 

Denoting Eqs.(4.7) in matrix form, we have  

 (
𝐴 𝑂
𝑂 |𝐴|

) (
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) + (

𝑦𝐶(𝑟)

𝑦𝑅(𝑟)
) = (

𝐵 𝑂
𝑂 |𝐵|

) (
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) + (

𝑧𝐶(𝑟)

𝑧𝑅(𝑟)
),  (4.8) 

where  

𝑥𝐶(𝑟) =
𝑥(𝑟) + 𝑥(𝑟)

2
, 𝑥𝑅(𝑟) =

𝑥(𝑟) − 𝑥(𝑟)

2
, 

𝑦𝐶(𝑟) =
𝑦(𝑟) + 𝑦(𝑟)

2
, 𝑦𝑅(𝑟) =

𝑦(𝑟) − 𝑦(𝑟)

2
, 

𝑧𝐶(𝑟) =
𝑧(𝑟) + 𝑧(𝑟)

2
, 𝑧𝑅(𝑟) =

𝑧(𝑟) − 𝑧(𝑟)

2
, 0 ≤ 𝑟 ≤ 1. (4.9) 

Theorem 4.1. Under the assumptions of definitions 2.1 and 2.2, the dual fuzzy linear systems (4.1) can be 

converted to a crisp linear system as follows:  

 𝐺𝑢(𝑟) = 𝑣(𝑟),0 ≤ 𝑟 ≤ 1,  (4.10) 

where  

 𝐺 = (
𝐴 − 𝐵 𝑂
𝑂 |𝐴| − |𝐵|

) , 𝑢(𝑟) = (
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) , 𝑣(𝑟) = (

𝑧𝐶(𝑟) − 𝑦𝐶(𝑟)

𝑧𝑅(𝑟) − 𝑦𝑅(𝑟)
).  (4.11) 

Proof. The proof of Theorem 4.1. is straightforward. 

When matrices 𝐴 − 𝐵 and |𝐴| − |𝐵| are invertible, we can obtain the solution of the model (4.10) is  

(
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) = (

𝐴 − 𝐵 𝑂
𝑂 |𝐴| − |𝐵|

)
−1

(
𝑧𝐶(𝑟) − 𝑦𝐶(𝑟)

𝑧𝑅(𝑟) − 𝑦𝑅(𝑟)
) 

= (
(𝐴 − 𝐵)−1 𝑂

𝑂 (|𝐴| − |𝐵|)−1
)
1

2
(
1 1
−1 1

)((
𝑧(𝑟)

𝑧(𝑟)
) − (

𝑦(𝑟)

𝑦(𝑟)
)) 

 =
1

2
(
(𝐴 − 𝐵)−1((𝑧(𝑟) − 𝑦(𝑟)) + (𝑧(𝑟) − 𝑦(𝑟)))

(|𝐴| − |𝐵|)−1((𝑧(𝑟) − 𝑦(𝑟)) − (𝑧(𝑟) − 𝑦(𝑟)))
).  (4.12) 

Thus we have  

(
𝑥(𝑟)

𝑥(𝑟)
) =

1

2
(
1 −1
1 1

) (
(𝐴 − 𝐵)−1((𝑧(𝑟) − 𝑦(𝑟)) + (𝑧(𝑟) − 𝑦(𝑟)))

(|𝐴| − |𝐵|)−1((𝑧(𝑟) − 𝑦(𝑟)) − (𝑧(𝑟) − 𝑦(𝑟)))
) 

 =
1

2
(
(𝐴 − 𝐵)−1((𝑧(𝑟) − 𝑦(𝑟)) + (𝑧(𝑟) − 𝑦(𝑟))) − (|𝐴| − |𝐵|)−1((𝑧(𝑟) − 𝑦(𝑟)) − (𝑧(𝑟) − 𝑦(𝑟)))

(𝐴 − 𝐵)−1((𝑧(𝑟) − 𝑦(𝑟)) + (𝑧(𝑟) − 𝑦(𝑟))) + (|𝐴| − |𝐵|)−1((𝑧(𝑟) − 𝑦(𝑟)) − (𝑧(𝑟) − 𝑦(𝑟)))
).  (4.13) 

Theorem 4.2. When 𝑥𝑅(𝑟) ≥ 0, 𝑟 ∈ [0,1], the dual fuzzy linear systems (4.1) exists the strong fuzzy solution as  

 (
𝑥(𝑟)

𝑥(𝑟)
) =

1

2
(
(𝐴 − 𝐵)−1((𝑧(𝑟) − 𝑦(𝑟)) + (𝑧(𝑟) − 𝑦(𝑟))) − (|𝐴| − |𝐵|)−1((𝑧(𝑟) − 𝑦(𝑟)) − (𝑧(𝑟) − 𝑦(𝑟)))

(𝐴 − 𝐵)−1((𝑧(𝑟) − 𝑦(𝑟)) + (𝑧(𝑟) − 𝑦(𝑟))) + (|𝐴| − |𝐵|)−1((𝑧(𝑟) − 𝑦(𝑟)) − (𝑧(𝑟) − 𝑦(𝑟)))
),  (4.14) 
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where  

𝑥𝐶(𝑟) =
𝑥(𝑟) + 𝑥(𝑟)

2
, 𝑥𝑅(𝑟) =

𝑥(𝑟) − 𝑥(𝑟)

2
, 0 ≤ 𝑟 ≤ 1. 

Proof. From the analysis and results of Theorem 4.1, the proof of Theorem 4.2. is straightforward. 

5. Numerical Examples 

Example 5.1. [1] Consider the semi fuzzy linear system 

{
𝑥̃1 − 𝑥̃2 = [𝑟, 2 − 𝑟],

𝑥̃1 + 3𝑥̃2 = [4 + 𝑟, 7 − 2𝑟].
 

By the Theorem 3.1, the fuzzy linear systems can be extended into the crisp linear system as  

(
𝐴 𝑂
𝑂 |𝐴|

) (
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) = (

𝑏𝐶(𝑟)

𝑏𝑅(𝑟)
), 

where  

𝑏𝐶(𝑟) =
𝑏(𝑟) + 𝑏(𝑟)

2
= (

1
5.5
) + (

0
−0.5

) 𝑟, 

𝑏𝑅(𝑟) =
𝑏(𝑟) − 𝑏(𝑟)

2
= (

1
1.5
) + (

−1
−1.5

) 𝑟. 

Now that the matrices 𝐴 and |𝐴| are invertible, we obtain the solution of the model (3.6) is  

(
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) = (

𝐴 𝑂
𝑂 |𝐴|

)
−1

(
𝑏𝐶(𝑟)

𝑏𝑅(𝑟)
), 

i.e.,  

𝑥𝐶(𝑟) = 𝐴−1𝑏𝐶(𝑟) = (
0.75 0.25
−0.25 0.25

)((
1
5.5
) + (

0
−0.5

) 𝑟) = (
2.125 − 0.125𝑟
1.125 − 0.125𝑟

), 

𝑥𝑅(𝑟) = |𝐴|−1𝑏𝑅(𝑟) = (
1.5 −0.5
−0.5 0.5

) ((
1
1.5
) + (

−1
−1.5

) 𝑟) = (
0.750 − 0.750𝑟
0.250 − 0.250𝑟

). 

Thus we have  

𝑥(𝑟) = 𝑥𝐶(𝑟) − 𝑥𝑅(𝑟) = (
2.125 − 0.125𝑟
1.125 − 0.125𝑟

) − (
0.750 − 0.750𝑟
0.250 − 0.250𝑟

) = (
1.375 + 0.625𝑟
0.875 + 0.125𝑟

), 

𝑥(𝑟) = 𝑥𝐶(𝑟) + 𝑥𝑅(𝑟) = (
2.125 − 0.125𝑟
1.125 − 0.125𝑟

) + (
0.750 − 0.750𝑟
0.250 − 0.250𝑟

) = (
2.875 − 0.875𝑟
1.375 − 0.375𝑟

). 

It means that the fuzzy solution of the original fuzzy linear systems 

(
𝑥̃1
𝑥̃2
) = (

𝑥1(𝑟) 𝑥1(𝑟)

𝑥2(𝑟) 𝑥2(𝑟)
), 

i.e.,  

{
𝑥̃1 = [1.375 + 0.625𝑟, 2.875 − 0.875𝑟],

𝑥̃2 = [0.875 + 0.125𝑟, 1.375 − 0.375𝑟].
 

is a strong fuzzy solution since 𝑥𝑅(𝑟) ≥ 0 for all 𝑟 ∈ [0,1]. A visual representation of this solution is shown in Fig. (2).  
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Figure 2: A strong fuzzy solution. 

Example 5.2. [𝟏] Consider the 3 × 3 dual semi fuzzy linear system 

(
1 1 −1
1 −2 1
2 2 3

)(

𝑥̃1
𝑥̃2
𝑥̃3

) + (

𝑦̃1
𝑦̃2
𝑦̃3

) = (
1 0 −3
2 2 2
1 1 −3

)(

𝑥̃1
𝑥̃2
𝑥̃3

) + (

𝑧̃1
𝑧̃2
𝑧̃3

), 

where  

(

𝑦̃1 = [0,1 − 𝑟]

𝑦̃2 = [−1 + 𝑟, 1 − 𝑟]

𝑦̃3 = [−2,−1 − 𝑟]
) , (

𝑧̃1 = [2,2 − 𝑟]

𝑧̃2 = [2 + 𝑟, 3]

𝑧̃3 = [2 + 2𝑟, 5 − 𝑟]
). 

By the Theorem 4.1, the dual fuzzy linear systems can be extended into the crisp linear system as  

𝐺𝑢(𝑟) = 𝑣(𝑟),0 ≤ 𝑟 ≤ 1, 

where  

𝐺 = (
𝐴 − 𝐵 𝑂
𝑂 |𝐴| − |𝐵|

) , 𝑢(𝑟) = (
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) , 𝑣(𝑟) = (

𝑧𝐶(𝑟) − 𝑦𝐶(𝑟)

𝑧𝑅(𝑟) − 𝑦𝑅(𝑟)
) 

and  

𝑦𝐶(𝑟) =
𝑦(𝑟) + 𝑦(𝑟)

2
= (

0.5 − 0.5𝑟
0

−1.5 − 0.5𝑟
) , 𝑦𝑅(𝑟) =

𝑦(𝑟) − 𝑦(𝑟)

2
= (

0.5 − 0.5𝑟
1 − 𝑟

0.5 − 0.5𝑟
), 

𝑧𝐶(𝑟) =
𝑧(𝑟) + 𝑧(𝑟)

2
= (

2.0 − 0.5𝑟
2.5 + 0.5𝑟
3.5 + 0.5𝑟

) , 𝑧𝑅(𝑟) =
𝑧(𝑟) − 𝑧(𝑟)

2
= (

0 − 0.5𝑟
0.5 − 0.5𝑟
1.5 − 1.5𝑟

). 

Now that the matrices 𝐴 − 𝐵 and |𝐴| − |𝐵| are invertible, we can obtain the solution of the above model is  

(
𝑥𝐶(𝑟)

𝑥𝑅(𝑟)
) = (

𝐴 − 𝐵 𝑂
𝑂 |𝐴| − |𝐵|

)
−1

(
𝑧𝐶(𝑟) − 𝑦𝐶(𝑟)

𝑧𝑅(𝑟) − 𝑦𝑅(𝑟)
) 
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= (
(𝐴 − 𝐵)−1 𝑂

𝑂 (|𝐴| − |𝐵|)−1
) (
𝑧𝐶(𝑟) − 𝑦𝐶(𝑟)

𝑧𝑅(𝑟) − 𝑦𝑅(𝑟)
) =

(

 
 
 

−0.8636 + 0.4545𝑟
−0.6818 − 0.2727𝑟
1.0909 + 0.1363𝑟
−0.5000 + 0.0000𝑟
1.5000 − 1.0000𝑟
1.0000 − 0.5000𝑟 )

 
 
 
. 

Thus we have  

𝑥(𝑟) = 𝑥𝐶(𝑟) − 𝑥𝑅(𝑟) = (
−0.8636 + 0.4545𝑟
−0.6818 − 0.2727𝑟
1.0909 + 0.1363𝑟

) − (
−0.5000 + 0.0000𝑟
1.5000 − 1.0000𝑟
1.0000 − 0.5000𝑟

) = (
−0.3636 + 0.4545𝑟
−2.1818 + 0.7273𝑟
0.0909 + 0.6363𝑟

), 

𝑥(𝑟) = 𝑥𝐶(𝑟) + 𝑥𝑅(𝑟) = (
−0.0476 − 0.2381𝑟
−0.9286 − 0.1428𝑟
1.2619 + 0.3095𝑟

) + (
−0.5000 + 0.0000𝑟
1.5000 − 1.0000𝑟
1.0000 − 0.5000𝑟

) = (
−1.3636 + 0.4545𝑟
0.8182 − 1.2727𝑟
2.0909 − 0.3637𝑟

). 

So we know that the fuzzy solution of the original fuzzy linear systems is  

{

𝑥̃1 = [−0.3636 + 0.4545𝑟, −1.3636 + 0.4545𝑟],

𝑥̃2 = [−2.1818 + 0.7273𝑟, 0.8182 − 1.2727𝑟],   

𝑥̃3 = [0.0909 + 0.6363𝑟, 2.0909 − 0.3637𝑟].      
 

and it admits a weak fuzzy solution since in which 𝑥̃1 = [−0.3636 + 0.4545𝑟, −1.3636 + 0.4545𝑟] is not an appropriate 

fuzzy number. 

6. Conclusion 

In this paper, the equivalence between the new method proposed in [29] and the conventional method in [1] for 

solving two types of fuzzy linear systems is analyzed from the perspective of the basic operations of fuzzy numbers. 

Firstly, through an in-depth analysis of the traditional method for solving the system 𝐴𝑥̃ = 𝑏̃, it is rigorously 

demonstrated that the computational model used in the new method and its solutions are mathematically fully 

equivalent to those of the traditional method. Subsequently, this analytical framework is extended to dual fuzzy 

linear systems, and similar equivalence conclusions are verified. Finally, two numerical examples are provided to 

intuitively illustrate the effectiveness of the new method in simplifying computations while maintaining solution 

consistency. In the future, we will further explore the deeper mathematical mechanisms underlying different 

algorithms.  
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