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1. Introduction

In the past decades fuzzy linear systems have been paid more attention by some scholars. In 1998, Friedman et
al. [1] proposed a general model for solving an n x n fuzzy linear systems based on triangular fuzzy numbers by an
embedding approach [2]. Substantial work has been done on handling various advanced fuzzy linear systems, such
as dual fuzzy linear systems (DFLS), general fuzzy linear systems (GFLS), full fuzzy linear systems (FFLS), dual full
fuzzy linear systems (DFFLS) and general dual fuzzy linear systems (GDFLS) [3-10]. Recently, new theories and
methods for fuzzy linear systems and fuzzy numbers matrix appeared in the literature [11-26]. Meanwhile, fuzzy
integro-differential equations also play an important role in fields such as control theory, electrical circuits, and
signal processing, and significant progress has been made in their numerical solution methods, such as the
reproductive kernel algorithm [27, 28].

In this paper, some distinctions and connections between a new approach introduced in [29] and the traditional
method presented in [1] for solving two classes of semi-fuzzy linear systems are discussed. We analyze some
primary algebraic operations between the a -center and « -radius of a fuzzy number x and the «a -levels of a fuzzy
number X at first. Based on this, we investigate the equivalence of the computing model and the strong fuzzy
solution in the recent paper [29] by discussing the proposed method twenty-eight years ago [1]. Then, we consider
the dual fuzzy linear systems in a similar way. Finally, we show the validity of the new method by solving two classical
and well known examples in which the idea and approach can be applied to simplifying calculation of any semi-
fuzzy linear systems.

In Section 2, some definitions and results on fuzzy numbers and fuzzy linear systems are presented. In Section
3, the equivalence property of the computing model and the strong fuzzy solution in recent paper [29] by discussing
the proposed method twenty-four years ago [1] are considered. The dual fuzzy linear systems are also considered
in a similar way in Section 4. Some illustrating numerical examples are given in Section 5. Finally, the conclusion and
future research directions are presented in Section 6.

2. Preliminaries

There are several basic definitions for the concept of fuzzy numbers (see [30-32]).
Definition 2.1. A fuzzy number is a fuzzy set like u: R —» I = [0,1] which satisfies:

(1) u is upper semi-continuous,

(2) wis fuzzy convex, i.e. u(Ax + (1 — D)y) = min{u(x),u(y)} forallx,y € R,A € [0,1],

(3) uwis normal, i.e. there exists x, € R such that u(x,) =1,

(4) suppu = {x € R|u(x) > 0} is the support of the u, and its closure cl(suppu) is compact.

Let E? be the set of all fuzzy numbers on R.

Definition 2.2. A fuzzy number u in parametric form is a pair (u(r),u(r)) of functions u(r), u(r), 0 < r < 1, which
satisfies the requirements:

(1) u(r) is a bounded monotonic increasing left continuous function,
(2) u(r) is a bounded monotonic decreasing right continuous function,

Bu@ <u@),0<r<1.

For example, the fuzzy number (2 + r,5 — 2r) is shown in Fig. (1). A crisp number x is simply represented by
@ u@) =xx),0<r<1
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Figure 1: A fuzzy number.
Definition 2.3. Let x = (x(r), x(r)), yx = @), y(M) € E',0<r<1andke€R.Then
(MXx =yiffx(r) = y(r) and x(r) = y(r),

@F+5 = () + y(),F) + (),
B)x—y=@xm- 5(7)3(0 = y(),

(kx(r), kx(r)), k=0,
(kx(r), kx(r)), k <0.

(4) kx = {
Now we recall the following two concepts [29].
Definition 2.4. The r -center of the fuzzy number x is denoted by x¢(r) and it is defined as

x6(r) = X220 1 e 0,11, 2.1)
The r -radius of the fuzzy number x is denoted by x*(r) and it is defined as

xR(r) = w,r € [0,1]. (2.2)
Remark 2.5. The r -center and r -radius of an arbitrary fuzzy number are crisp real functions of r. Also

(%], = [x(r), X(")] = [x“(r) = x* (), x“(r) + x* ()], 7 € [0,1]. (2.3)

Obviously, two fuzzy numbers x and y are equal, if and only if x¢(r) = y¢(r) and xR(r) = yR(r), for every r € [0,1].
For the fuzzy number ¥, if for any r € [0,1], x®(r) = 0, then it can be easily concluded that x is a crisp real number.

Remark 2.6. Let x and y to be two fuzzy numbers. Since
X+y=[x@)+y@),x@) +x()] =[x @) +y° () —xR() —yR (), x° () + ¥y (r) + xR () + yF ()], r € [0,1],
the r -center and the r -radius of the sunm = X + y are
mé() = x¢(r) + y¢ (), mR(r) = xR(r) + yR(r),r € [0,1]. (2.4)
Remark 2.7. Let A to be a crisp real number. Since

[Ax(r), Ax(1)] = [AxC (1) — AxR(1), AxC (r) + AxR (1)), A=0,

3] = AE = {[/W(r),/lz(r)] = () — (~AxR (), 226() + (~AxR()], 1<,
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the r -center and the r -radius of the product n = Ax are

nc(r) = xC(@), nR@)=xR@), 1=0,
{ c c R R (2.5)
n“(r) = Ax*(r), n"(r) =|A|x"(@), A<O0.
Definition 2.8. Suppose that %, %,,--, %, € E* and 1;,4,,-+-,4, € Rand also u = ), ; 1,x;, then
u(r) = Ly Axf (), uf (r) = Zikg |lx (). (2.6)

Further, suppose X = (¥1,%,, -+, X,)" € E"is a fuzzy numbers vector, and is a real matrix 4 = (a;;)nxn € R™*™", then
the r -center and the r -radius of the fuzzy numbers vector v = Ax are given by

ve(r) = AxC(r), vR(r) = |A|xR (). (2.7)

Definition 2.9. The n x n linear system:

allfl + alzféz + -+ alnfn = bl’
a215€1 + azzfz + -+ aznfn = bz, (2.8)
kanlfl + anzfz + -+ annfn = bn,

where the coefficient matrix A = (a;))nxn (1 <i<n,1<j<n)isareal nxn matrix; b = (by,b,, ..., b,)" is a column
vector of fuzzy numbers; ¥ = (%,,%,, ..., %,)" is a vector of fuzzy unknowns. Such a system is called a fuzzy linear
system. Using matrix notation,we have

A% = b. (2.9)

In 1998, Friedman et al. [1] presented a computing model:

SX(r)=Y("),0<r<1, (2.10)
ie.,
B c\(x(®)\ _(bm
(c &) <—%(r)) - <—E(r))'
where

¥=[x(r),x(r)], A=A*+A", B=A*, C=-4-, |A|=B+C. 2.11)

And the elements a; of matrix A* and a;; of matrix A~ are determined by this way: if a;; = 0,a;; = a;; else afj =
01<ij<nifa;< 0,a;; = a;j else a;=01<ij<n.

Matrix S is invertible if and only if both matrices A = B — C and |A| = B + C are nonsingular. Under this condition,
they derived the solution to model (2.9) as follows:

x(r) + A\ b b(r)
(_J;Zr)) - (—AA_ A/i ) <—E(T)) = (g g) <—E(T)>' (2.12)

where

D=_[|A" + A7 E = [|A]7t - 471, (2.13)
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3. The Equivalence Property Analysis of the Fuzzy Linear Systems
3.1. The Equivalence Property of the Computing Model

In this subsection, we aim at discussion on the another computing form of the model (2.9).

In fact, the model (2.9) is equivalent to the following equation

ATx(r) + Ax(r) = b(r),
{A‘g(r) + A*X(r) = b(r). (1)
Adding the two equations of (3.1), we have
(A" + A)x(r) + (AT + A)X(r) = b(r) + b(r),
ie.,
A@(r) +X(r)) = b(r) + (7). (3.2)
Subtracting the first equation from the second equation of (3.1), we have
(A” = AMx(r) + (A" = A))X(r) = b(r) — b(r),
ie.,
|AIE() = () = b(r) = b(). (3.3)
So we have
{ A ;1@_@) +%(r) = ;1(9_@ +b(r), 54
|Al; (x(r) = x() =5 (b(r) = b()).
Using the definitions of the r -center and r -radius for the fuzzy number vector x, Egs.(3.4) are reduced to
Cr) = BC
s = b2, @9

From the above analysis, we can easily get the following Theorem 3.1.

Theorem 3.1. Under the assumptions of definitions 2.1 and 2.2, the fuzzy linear systems (2.9) can be extended
into a crisp linear system as follows:

Gu(r)=v(r),0<r<1, (3.6)
where
(A O _(xE () _ (b
G= (0 IAI)’”(T) - (xR(r)>'U(r) - (bR(r)>’ (3.7)
and
xc(r) — M,xR(r) — M,O <r<i.

2 2 -
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3.2. The Equivalence Property of the Solution of the Model

The equivalence property between the solution of the model (2.10) and the solution of the model (3.6) will be
discussed in this subsection.

From the Theorem 3.1, we can obtain the solution of the model (3.6) as

x¢(r) = A7b¢(r),
{xR(r) = |A|7 bR (7), (3.8)

when matrices A = B — C and |A| = B + C are invertible.
Substituting back to the Initial assumption, we have

L b +b() a1 b(r) = b(r)

x(r) =x¢(r)—xR(r)=A4A > 5 , 7 € [0,1],
b(r)+b b(r)-b
xX(r) = x(r) + xR(r) = A‘lw + |A|_1w,r € [0,1],
ie.
x(r) =5 (A7 + A T)b() +5 (A7 = A7), 9)
X(r) =5 (A7 = |A )b +5 (A7 + |41 ™)b(). '
Egs.(3.9) can be rewritten as
x(r) = (A7 + |AI™Db() +3 (A7 = A7) (=b (1), 310
—%(r) = 2 (JAI"" = A™)b(r) + 3 (A7 + AT (=b(1). '
Expressing the formula (3.10) in matrix form, we have
(X)) JAT AT (AT - AT ( b(r) ) @ 5 ( b(r) ) s
XM \1gAt -4 Lttt 1Ay J\-b))  E D/\-b()) '
where
D= [AI + A7 E = S (1417 - A7)
2 ’ 2 '
The result is completely consistent with Egs. (2.13) of the proposed method by Friedman et al. [1]
3.3. The Equivalence Property of the Strong Fuzzy Solution
Theorem 3.2. When x®(r) = 0,7 € [0,1], the fuzzy linear systems (2.9) exists the strong fuzzy solution as
[x(r), X()] = [x“(r) = xR (), x“(r) + x* ()], 7 € [0,1], (3.12)
where
XC(r) = w,x’?(ﬂ - M,o <r<l
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Proof. Since r -center and r -radius of a fuzzy numbers vector are crisp real-valued continuous functions of r,
the functions x(r) = x(r) — xR(r) and x(r) = x¢(r) + xR(r) are, of course, continuous functions of r,r € [0,1]. The
condition x®(r) = 0,r € [0,1] means that x(r) < x(r),Vr € [0,1].So, [x(r),X(1)] is a strong fuzzy solution of fuzzy linear
systems (2.9).

4. The Equivalence Property Analysis of the Dual Fuzzy Linear Systems
For the dual fuzzy linear systems [29, 33]
A% + 7 = BX + 7, (4.1)

where the coefficient matrices A = (a;;)nxn: B = (bij)nxn are two nxn crisp real matrices, and the vectors y =
G,V ¥ ) 2 = (21,7, -, 2,)", and also the unknown vector ¥ = (%, X,, ..., %,)" are fuzzy number vectors.

Using Friedman's method, it can be extended to the following crisp linear system of higher dimension:

SX() +Y(r) =TX(@) +Z(),0<r <1, (4.2)
ie.,
AY —An(x(D) yr)\ _ Bt —B~\(x(M z(r)
(G ) (—f(r)) * (_y(r)> =G ) (—E(r)) * <—E(r)>' (43)
where
¥=[x(r),x()],A=A*+A",B=BT+B". (4.4)

And the elements b, of matrix B* and b;; of matrix B~ are determined by this way: if b;; = 0,b;; = b;; else b;; =
0,1 <i,j<mn; if b; <0,b;; = b;; else b;; =0,1<i,j<n. The elements af; of matrix A* and a;; of matrix A~ are

ij 2]
determined by the same way.
The model (4.2) can be presented in detail as

ATx(r) — A" (=x(1) + y(r) = B*x(r) = B~ (=x(r)) + z(7),
{—A'i(r) + AT (=x() = y(r) = =B7x(r) + B¥(—x(1) — z(r),

ie.,
A*x(r) + A7x(r) + y(r) = B¥x(r) + B™x(r) + z(7),
{A‘g(r) +AYE() + J(r) = B~x(r) + B*E(r) + Z(r). (4.3)
By adding the two equations in (4.5), we have
AT+ A)x() + (AT + ADX() + y(r) + ¥(r) = (B + B)x(r) + (B* + BT)x(r) + z(1) + z(1).
Subtracting the first equation from the second equation of (4.5), we have
(A" =ANx() + (AT = ADx() +¥(r) — y(r) = (B~ = B")x(r) + (B* — BT)x(r) + z(r) — z(7).
So we have
{ A (@) +x(r) + %(z(r) +¥(r) = B SM +X() +5 Ez(r) +2(r), we
A1) — x() +1 ) - y(1) = B3 GE@) — x() +3 @) — 2().
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Using the definitions of the r -center and r -radius for the fuzzy number vectors y and x, Eqs.(4.6) are reduced

to
{ AxC(r) + y¢(r) = BxC(r) + z¢ (1), 4.7)
|Alx® () + y* (1)) = [Blx®(r) + 2* (7). '
Denoting Eqgs.(4.7) in matrix form, we have
A 0\ (x‘() ye(m)\ _ (B 0\ (x“(r) z¢(r)
(0 IAI) (xR(r)) * (yR(r)) B (0 IBI) (xR(r)) * (zR(r))‘ (4.8)
where
iy < EOFED) o F@) —x()
2 2
L YOI ¥ -y
yo ==y =
zc(r)=w,z’?(r)=w,0£r£ 1. (4.9)

Theorem 4.1. Under the assumptions of definitions 2.1 and 2.2, the dual fuzzy linear systems (4.1) can be
converted to a crisp linear system as follows:

Gur) =v(M,0srs<l, (4.10)
where
(A8 0 _ (XM _ () =y
6=("0" 21 u0 = Cags) v = Cogry —veer) @11)

Proof. The proof of Theorem 4.1. is straightforward.

When matrices A — B and |A| — |B| are invertible, we can obtain the solution of the model (4.10) is

)= (0" Zim) Co) )

xR (@)
A-B) 0 Lo 1y((zt)y (¥
=( 0 (|A|—|B|)—1>E(—1 1)((2(r))_<y(r)>)

B 1( (A=B)ME@) —y) + () —y() ) 412)
2\ (|4 = IBDTHE() = ¥() = () —y(™))) '
Thus we have
(g(r)) B 1(1 _1)< (A=B) (@) —y) + () —y)) )
x(r)) 2\ 1/\(4] = IBDTHE() = () = (2(r) = y()
1 ((A = B) (@) —y() + () —y())) — (A = [BD™H (@) = y() — (2(r) - X(r)))) 413)
~2\(A=B) (@) =) + () = y()) + (Al = [B)"HE(T) = y(1) = () —y(™))/) '

Theorem 4.2. When x®(r) = 0,7 € [0,1], the dual fuzzy linear systems (4.1) exists the strong fuzzy solution as

<£(r)) B l<(A —B)7H (@M —y() + () —y™)) — (Al - [BDTH(ET) =¥ () — () —y()

—2\(A=B) (@) = ¥(r) + () = y(r))) + (Al = [B)TH(E(1) = (1)) = (2(r) = y(1)))

) > (4.14)

2
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where

() +X(0) g

XC(T)Zf (r):M’OS

<1
> r

Proof. From the analysis and results of Theorem 4.1, the proof of Theorem 4.2. is straightforward.

5. Numerical Examples

Example 5.1. [1] Consider the semi fuzzy linear system

{ fl—fZZ[T,Z—T],
% +3% = [4+7,7—2r]

By the Theorem 3.1, the fuzzy linear systems can be extended into the crisp linear system as

(g |Z|) (ifeﬁii) - (2528)

where

) =225 = (59 + (o)

b = 20 2 =0 (1s)+ (Cis)m

Now that the matrices 4 and |A| are invertible, we obtain the solution of the model (3.6) is

(o) =6 14) (o)

=100 = (55 529 ((55)+ (L05))

w0 =1 = (5 59 ((4)+ (5)7)

(2.125 - 0.1257‘)
1.125 — 0.125r/"

(0.750 - 0.7507‘)
0.250 — 0.2507/°

Thus we have

x(r) = x6(r) — xR(r) = (2.125 - 0.1257”) _ (0.750 - 0.750r) (1.375 + 0.6251')’

1125 — 0.125+) ~ \0.250 — 0.250r) = L0.875 + 0.125r
o, oo (2125 —0.125r | (0.750 — 0.750r _ (2.875 — 0.875r
xX(r) =x"(r) +x7(r) = (1.125 _ 0.1257”) + (0.250 _ 0.250r) = (1.375 - 0.375r)'

It means that the fuzzy solution of the original fuzzy linear systems
(;21) _ (@) x@)
X, x(r) X))

{zl = [1.375 + 0.6257, 2.875 — 0.8757],
%, = [0.875 + 0.1257, 1.375 — 0.3757].

is a strong fuzzy solution since x®(r) = 0 for all r € [0,1]. A visual representation of this solution is shown in Fig. (2).
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Figure 2: A strong fuzzy solution.

Example 5.2. [1] Consider the 3 x 3 dual semi fuzzy linear system

1 1 —-1\/% 52} 1 0 -3\ /% 7
2 2 3/\% Va 1 1 =3/ \% Zs
where

y1=1[01~-7] 7 =[22-r]
Vo=[-1+r1-1]]|, Z, =[2+71,3]
Vs =[-2,—-1-r] Zy=[2+2r,5-71]

By the Theorem 4.1, the dual fuzzy linear systems can be extended into the crisp linear system as

Gu(r)=v(r)0<r<1,
where

6=("0" w2 ay) ) = (ﬁiﬁiﬁ)»vm = CC% iicﬁiﬁ)
and

y(r) +y() 0.5—-0.5r y(r) —y) 0.5—-0.5r
Y ==—m—"= 0 YR = —————= ,

> 1—r
—1.5-0.5r 0.5 —-0.57r
= 2.0 —0.5r = 0—0.5r
z(r) + z(r z(r) — z(r
2oy =20 (2.5 ; O.5r> hry = 120 (0.5 _ o.5r>.
3.5+ 0.57 1.5 — 1.5r

Now that the matrices A — B and |A| — | B| are invertible, we can obtain the solution of the above model is

) =("0" wle) G20

240



Equivalence of Methods for Fuzzy Linear Systems Liu et al.

—0.8636 + 0.4545r
—0.6818 — 0.2727r
_ <(A —-B)™! 0 ) (Zc(r) - yc(r)) | 1.0909 + 0.1363r
Lo (1Al = 1B~ —0.5000 + 0.0000r
1.5000 — 1.00007
1.0000 — 0.50007

zf(r) — ¥ (r)

Thus we have

—0.8636 + 0.4545r —0.5000 + 0.00007 —0.3636 + 0.45457
x(r) = xC(r) —xR(r) = (—0.6818 - 0.2727r> - ( 1.5000 — 1.00007 ) = (—2.1818 + 0.7273r>,
1.0909 + 0.1363r 1.0000 — 0.50007 0.0909 + 0.6363r

—0.0476 — 0.2381r —0.5000 + 0.0000r —1.3636 + 0.4545r
xX(r)=x(r) +xR(@r) = (—0.9286 - 0.14-287") + ( 1.5000 — 1.0000r ) = ( 0.8182 — 1.2727r )
1.2619 + 0.3095r 1.0000 — 0.5000r 2.0909 - 0.3637r

So we know that the fuzzy solution of the original fuzzy linear systems is

X1 = [—0.3636 + 0.4545r, —1.3636 + 0.45457],
%X, =[—2.1818 + 0.7273r,0.8182 — 1.2727r],
X3 = [0.0909 + 0.63637,2.0909 — 0.3637r].

and it admits a weak fuzzy solution since in which ¥; = [-0.3636 + 0.4545r, —1.3636 + 0.4545r] is not an appropriate
fuzzy number.

6. Conclusion

In this paper, the equivalence between the new method proposed in [29] and the conventional method in [1] for
solving two types of fuzzy linear systems is analyzed from the perspective of the basic operations of fuzzy numbers.
Firstly, through an in-depth analysis of the traditional method for solving the system Ax = b, it is rigorously
demonstrated that the computational model used in the new method and its solutions are mathematically fully
equivalent to those of the traditional method. Subsequently, this analytical framework is extended to dual fuzzy
linear systems, and similar equivalence conclusions are verified. Finally, two numerical examples are provided to
intuitively illustrate the effectiveness of the new method in simplifying computations while maintaining solution
consistency. In the future, we will further explore the deeper mathematical mechanisms underlying different
algorithms.
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