Further Results on Designs Arising from Some Certain Corona Graphs

M.P. Sumathi* and Anwar Alwardi

Department of Mathematics, Mahajana First Grade College, Mysore

Abstract

In this paper, we determine the partially balanced incomplete block designs and association scheme which are formed by the minimum dominating sets of the graphs $\mathrm{C}_{3} \cdot \mathrm{~K}_{2}$, and $\mathrm{C}_{4} \cdot \mathrm{~K}_{2}$. Finally, we determine the number of minimum dominating sets of graph $G=\mathrm{C}_{n} \cdot \mathrm{~K}_{2}$ and prove that the set of all minimum dominating sets of $\mathrm{G}=\mathrm{C}_{\mathrm{n}} \cdot \mathrm{K}_{2}$ forms a partially balanced incomplete block design with two association scheme.

Keywords: Minimum dominating sets, association schemes, PBIBD.

1. INTRODUCTION

In this paper by a graph, we mean a finite undirected graph without loops or multiple lines. For a graph G, let $V(G)$ and $E(G)$ respectively denote the point set and the line set of graph G. We say that u and v dominate each other. A set D subset of V is dominating set of G, if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $y(G)$ of G is the minimum cardinality of a dominating set.

Many authors have been studied PBIBD with massociation scheme which are arising from some dominating sets of some graphs. H.B.Walikar and et al. [5], have studied PBIBD arising from minimum dominating set of paths and cycles, Anwar and Soner [1], have studied Partial balanced incomplete block designs arising from some minimal dominating sets of SRNT graphs. Any undefined terms and notation, reader may refer to F.Harary [3]. We refer the reader to see [2, 4], for more details about PBIBD and dominating set. We concern here to study PBIBD and the association scheme which can be obtained from the minimum dominating sets in some certain $\left(\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{2}\right)$ graph, then we generalize the graph $\left(C_{n} \circ K_{n}\right)$ and it is open area to study the same things for the other graphs.

We can obtain different PBIBD association scheme from the ($\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{\mathrm{n}}$) graphs by using different definitions as we will see in next sections.

2. SOME PBIBD ARISING FROM MINIMUM DOMINATING SETS OF ($\mathrm{C}_{\mathrm{N}} \cdot \mathrm{K}_{2}$)

[^0]E-ISSN: 2409-5761/14

2.1. Definition

Given v objects a relation satisfying the following conditions is said to be an association scheme with m classes:
i. Any two objects are either first associates, or second associates,..., or $\mathrm{m}^{\text {th }}$ associates, the relation of association being symmetric.
ii. Each object α has n_{i} ith associates, the number n_{i} being independent of α.
iii. If two objects α and β are ith associates, then the number of objects which are jth associates of α and kth associates of β is $\mathrm{p}_{\mathrm{jk}}^{\mathrm{i}}$ and is independent of the pair of ith associates α and β. Also $\mathrm{p}^{\mathrm{j}}{ }_{\mathrm{k}}=\mathrm{p}_{\mathrm{kj}}^{\mathrm{i}}$.

If we have association scheme for the v objects we can define a PBIBD as the following definition.

2.2. Definition

The PBIBD design is arrangement of v objects into b sets (called blocks) of size k where $k<v$ such that
i. Every object is contained in exactly r blocks.
ii. Each block contains k distinct objects.
iii. Any two objects which are ith associates occur together in exactly λ_{i} blocks.

Theorem3: From ($\mathrm{C}_{3} \cdot \mathrm{~K}_{2}$) we get PBIBD with parameters
($v=9, k=3, r=9, b=27, \lambda_{1}=0, \lambda_{2}=3$) and association scheme of 2-classes with

$$
P_{1}=\left[\begin{array}{ll}
p_{11}^{1} & p_{12}^{1} \\
p_{21}^{1} & p_{22}^{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \text { and } P_{2}=\left[\begin{array}{ll}
p_{11}^{2} & p_{12}^{2} \\
p_{21}^{2} & p_{22}^{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right] .
$$

Figure 1: $\mathrm{C}_{3} \mathrm{~K}_{2}$.

Proof. let $G=(V, E)$ be a corona graph $\left(C_{3} \circ K_{2}\right)$. By labelling $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}\right\}$, as in Figure 1. we can define PBIBD as follows:

The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$,
$\left\{v_{1}^{\prime}, v_{2}^{\prime}{ }_{n}^{\prime} v_{3}^{\prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}^{\prime \prime}, \mathrm{v}_{3}^{\prime \prime}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}\right.$, $\left.\mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$,
$\left\{v_{1}, v_{2}^{\prime \prime}, v_{3}\right\},\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}\right\},\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}{ }^{\prime \prime}\right\},\left\{v_{1}, v_{2}^{\prime}, v_{3}^{\prime}\right\},\left\{v_{1}^{\prime \prime}, v_{2}^{\prime}\right.$, $\left.\mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$,
$\left\{v_{1}{ }^{\prime \prime}, v_{2}{ }^{\prime \prime}, v_{3}\right\},\left\{v_{1}{ }^{\prime \prime}, v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right\},\left\{v_{1}, v_{2}{ }^{\prime}, v_{3}{ }^{\prime \prime}\right\},\left\{v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, v_{3}{ }^{\prime \prime}\right\},\left\{v_{1}{ }^{\prime \prime}\right.$, $\left.\mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$, $\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}, \mathrm{v}_{3}^{\prime \prime}\right\}$ and $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}\right\}$.

We define association scheme as follows, for any α, $\beta \in \mathrm{V}(\mathrm{G}), \alpha$ is first associate of β if α and β appear in zero or three minimum dominating sets and α is second associate of β otherwise.

Table 1:

Elements	First Associates	Second Associates
v_{1}	$\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime \prime}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}^{\prime \prime}$
v_{1}	$\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{\prime}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{2}^{\prime \prime}, \mathrm{v}_{3}^{\prime \prime}$
$\mathrm{v}_{1}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{1}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime}$
V_{2}	$\mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}$
V_{2}	$\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}$
$\mathrm{v}_{2}{ }^{\prime}$	$\mathrm{v}_{2}, \mathrm{~V}_{2}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{1}^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime \prime}$
V_{3}	$\mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{1}^{\prime \prime}, \mathrm{v}_{2}^{\prime \prime}$
V_{3}	$\mathrm{v}_{3}, \mathrm{v}_{3}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}$
$\mathrm{v}_{3}{ }^{\prime}$	$\mathrm{v}_{3}, \mathrm{~V}_{3}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{1}^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime \prime}$

Theorem4. From $\left(\mathrm{C}_{4} \circ \mathrm{~K}_{2}\right)$ we get PBIBD with parameters
($\mathrm{v}=12, \mathrm{k}=4, \mathrm{r}=27, \mathrm{~b}=81, \lambda_{1}=0, \lambda_{2}=4$) and association scheme of 2-classes with
$P_{1}=\left[\begin{array}{ll}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ and $P_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$
Proof. let $G=(V, E)$ be a corona graph $\left(\mathrm{C}_{4} \circ \mathrm{~K}_{2}\right)$. By labelling $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\}$ as in Figure 1.we can define PBIBD as follows:

Figure 2: $\mathrm{C}_{4} \mathrm{~K}_{2}$.
The point set is the vertices and the block set is the minimum dominating sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}^{\prime}\right\},\left\{\mathrm{v}_{1}^{\prime \prime}, \mathrm{v}_{2}^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}^{\prime \prime}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}^{\prime}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right.$, $\left.v_{3}^{\prime}, v_{4}{ }^{\prime \prime}\right\},\left\{v_{1}, v_{2}, v_{3}{ }^{\prime \prime}, v_{4}^{\prime}\right\}$,
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right.$, $\left.v_{4}^{\prime}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}^{\prime \prime}\right\},\left\{v_{1}^{\prime}, v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}{ }_{1}^{\prime \prime}, v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}^{\prime}, v_{2}\right.$ $\left., v_{3}, v_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}{ }^{\prime \prime}\right\}$,
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}\right.$, $\left.\mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}\right.$, $\left.\mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}{ }^{\prime}\right\},\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}\right.$, $\left.\mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime}\right.$, $\left.\mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}^{\prime}\right\},\left\{\mathrm{v}_{1}^{\prime \prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}\right.$, $\left.\mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}^{\prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}\right.$, $\left.v_{3}, v_{4}^{\prime}\right\},\left\{v_{1}^{\prime}, v_{2}{ }^{\prime}, v_{3}^{\prime \prime}, v_{4}^{\prime}\right\}$,
$\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}\right.$, $\left.v_{3}, v_{4}{ }^{\prime \prime}\right\},\left\{v_{1}, v_{2}{ }^{\prime}, v_{3}{ }^{\prime \prime}, v_{4}\right\}$,
$\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}{ }^{\prime \prime}, v_{4}\right\},\left\{v_{1}^{\prime}, v_{2}, v_{3}^{\prime \prime}, v_{4}\right\},\left\{v_{1}^{\prime}, v_{2}^{\prime \prime}, v_{3}{ }^{\prime \prime}, v_{4}{ }^{\prime \prime}\right\},\left\{v_{1}, v_{2}^{\prime}\right.$, $\left.v_{3}{ }^{\prime \prime}, v_{4}\right\},\left\{v_{1}, v_{2}{ }^{\prime \prime}, v_{3}{ }^{\prime \prime}, v_{4}\right\}$,
$\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}\right.$, $\left.\mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{v_{1}, v_{2}{ }^{\prime \prime}, v_{3}, v_{4}{ }^{\prime \prime}\right\},\left\{v_{1}, v_{2}^{\prime}, v_{3}, v_{4}{ }^{\prime \prime}\right\},\left\{v_{1}, v_{2}{ }^{\prime \prime}, v_{3}, v_{4}\right\},\left\{v_{1}^{\prime}, v_{2}\right.$, $\left.\mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}\right.$, $\left.\mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$,
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}{ }^{\prime}\right\},\left\{\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}\right.$, $\left.v_{3}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$,
$\left\{\mathrm{v}_{1}{ }^{\prime \prime}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{1}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}\right\}$ and $\left\{\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$

We define association scheme as follows, for any α, $\beta \in \mathrm{V}(\mathrm{G}), \alpha$ is first associate of β if α and β appear in zero or three minimum dominating sets and α is second associate of β otherwise.

Theorem 5: Let $G \cong\left(C_{n} \circ K_{2}\right)$. Then the minimum dominating sets of G is 3^{n}.

Proof: Let $G \cong\left(C_{n} \circ K_{2}\right)$. Then $\gamma(G)=n$. We need to find out all the sets of size n . For this, we have many possibilities:

Case1: All the vertices of the minimum dominating set is from inside that is from C_{n}. Then there is only one minimum dominating set.

Case 2: The vertices of minimum dominating set i.e; not from the vertices of C_{n}. The number of ways to select minimum dominating sets of size n from outside is 2^{n}.

Case 3: We select some vertices of minimum dominating sets from inside and some from outside. So we start by selecting one vertex from inside and ($\mathrm{n}-1$) vertices from outside. There are $\binom{n}{1} 2^{(n-1)}$ ways. Similarly 2 vertex from inside and ($n-2$) vertices from outside. There are $\binom{n}{2} 2^{(n-2)}$ ways. By continuing in same way till ($n-1$) vertices from inside and one from outside, there are $\binom{n}{n-1} 2$ ways. Hence the total number of minimum dominating sets is
$2^{\mathrm{n}}+\binom{n}{1} 2^{\mathrm{n}-1}+\binom{n}{2} 2^{\mathrm{n}-2}+\binom{n}{3} 2^{\mathrm{n}-3}+\ldots \ldots+\binom{n}{n-1} 2+1$

Table 2:

Elements	First Associates	Second Associates
V_{1}	$\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime \prime}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}{ }^{\prime}, \mathrm{v}^{\prime \prime}{ }^{\prime}, \mathrm{v}_{3}^{\prime \prime}, \mathrm{v}_{4}^{\prime \prime}$
$\mathrm{v}_{1}{ }^{\prime}$	$\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{\prime}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}{ }^{\prime}, \mathrm{v}_{2}^{\prime \prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}$
$\mathrm{v}_{1}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{1}{ }^{\prime}$	$\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}$
V_{2}	$\mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}{ }^{\prime \prime}$
V_{2}	$\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{\prime}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}$
$\mathrm{v}_{2}{ }^{\prime \prime}$	$\mathrm{v}_{2}, \mathrm{v}_{2}{ }^{\prime}$	$\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{4}^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}, \mathrm{v}_{4}{ }^{\prime \prime}$
v_{3}	$\mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}$	$v_{1}, v_{2}, v_{4}, v_{1}^{\prime}, v_{2}^{\prime}, v_{4}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{4}^{\prime \prime}$
$\mathrm{v}_{3}{ }^{\prime}$	$\mathrm{v}_{3}, \mathrm{v}_{3}{ }^{\prime}$	$v_{1}, v_{2}, v_{4}, v_{1}^{\prime}, v_{2}^{\prime}, v_{4}^{\prime}, v_{1}{ }^{\prime}, v_{2}{ }^{\prime \prime}, v_{4}^{\prime \prime}$
$\mathrm{v}_{3}{ }^{\prime \prime}$	$\mathrm{V}_{3}, \mathrm{~V}_{3}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime \prime}, \mathrm{v}_{4}{ }^{\prime \prime}$
V_{4}	$\mathrm{v}_{4}{ }^{\prime}, \mathrm{v}_{4}{ }^{\prime \prime}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}$
V_{4}	$\mathrm{V}_{4}, \mathrm{v}_{4}{ }^{\prime}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}^{\prime \prime}, \mathrm{v}_{3}^{\prime \prime}$
V_{4}	$\mathrm{V}_{4}, \mathrm{~V}_{4}$	$\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \mathrm{v}^{\prime}{ }^{\prime}, \mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime \prime}$

$=\sum_{i=0}^{n}\binom{n}{i} 2^{\mathrm{n}-1}$
$=3^{n}$.
Theorem 6: Let $G \cong \cong\left(C_{n} \circ K_{2}\right)$. Any two vertices in G either belong to zero minimum dominating set or 3^{n-2} minimum dominating sets.

Proof: By labeling the vertices of the graph $\mathrm{C}_{\mathrm{n}} \circ \mathrm{K}_{2}=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime}, v_{2}^{\prime \prime}, \ldots . v_{n}^{\prime}, v_{n}^{\prime \prime}\right\}$ where
$\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are the vertices of C_{n} and $\left\{v_{1}{ }^{\prime}, v_{1}{ }^{\prime \prime}, v_{2}{ }^{\prime}\right.$, $\left.v_{2}^{\prime \prime}, \ldots . v_{n}^{\prime}, v_{n}^{\prime \prime}\right\}$ are the vertices of K_{2}.

Suppose $A=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $B=\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime}\right.$, $\left.v_{2}{ }^{\prime \prime}, \ldots . v_{n}{ }^{\prime}, v_{n}{ }^{\prime \prime}\right\}$. Let u, v be any two vertices, we have the following cases:

Case1: u and v belong to A then there are 3^{n-2} minimum dominating sets containing u and v.

Case2: u and v belong to B then there are 3^{n-2} ways to select minimum dominating sets containing u and v.

Case3: Let $u \in A$ and $v \in B$ we have two sub cases:
Case(i). Let u and v in the same triangle then there does not exists any minimum dominating sets containing u and v.

Case(ii). If u and v are from the different triangle then there are 3^{n-2} ways to select minimum dominating sets.

Theorem 7: Let $G \cong\left(C_{n} \circ K_{2}\right)$. Then every vertex v $\epsilon \mathrm{V}(\mathrm{G})$ contained in $3^{\mathrm{n}-1}$ minimum dominating sets.

Proof: Let $G \cong\left(C_{n} \circ K_{2}\right)$. The vertices of G can be partitioned into n sets, each set containing 3 vertex as the triangles $\Delta 1, \Delta 2, \ldots \Delta$. Let $v \in \mathrm{~V}(\mathrm{G})$ be any vertex such that $\mathrm{v} \in \Delta$ for some
$1 \leq \mathrm{i} \leq \mathrm{n}$. Any minimum dominating set containing v will contain ($n-1$) vertices from the other triangle Δ where $i \neq j$. But it is not allowed to take two vertex from the same triangle so we need to take one vertex from each triangle. Hence the ways to select ($n-1$) vertices from the $\Delta \quad$ where $\mathrm{i} \neq \mathrm{j}$ is
$\left({ }^{3}{ }_{1}\right)\left({ }^{3}{ }_{1}\right)\binom{3}{1}\left({ }^{3}{ }_{1}\right) \ldots \ldots\left({ }^{3}{ }_{1}\right)=3^{n-1}$.
Theorem 8: For any graph $G \cong\left(C_{n} \circ K_{2}\right)$, there is PBIBD and association scheme associate with G as
the following parameters, $\left(v=3 n, k=n, r=3^{n-1}, b=3^{n}\right.$, $\lambda_{1}=0, \lambda_{2}=3^{n-2}$) and association scheme of 2-classes with
$P_{1}=\left[\begin{array}{cc}p_{11}^{1} & p_{12}^{1} \\ p_{21}^{1} & p_{22}^{1}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 3(n-1)\end{array}\right] \quad$ and $\quad P_{2}=\left[\begin{array}{ll}p_{11}^{2} & p_{12}^{2} \\ p_{21}^{2} & p_{22}^{2}\end{array}\right]=$
$\left[\begin{array}{cc}0 & 2 \\ 2 & 3(n-2)\end{array}\right]$

Proof: Above theorem follows from the previous theorems.
$P_{11}^{1}=1$
If we select α, β any two vertices such that α, β does not belong to any dominating set. Then the number of vertices which appear with α and β together is only one.
$P^{1}{ }_{12}=1$
There are no minimum dominating sets which contains with α in zero minimum dominating set and β in 3^{n-2} dominating set. Similarly for $\mathrm{P}^{1}{ }_{21}=0$.
$P^{1}{ }_{22}=3(n-1)$
The number of vertices which appear with α in $3^{\text {n- }}$ ${ }^{1}$ dominating sets are $3(\mathrm{n}-1)$ and β also in 3^{n-1} dominating sets are $3(n-1)$.
$P^{2}{ }_{11}=0$
α, β does not belong to the same triangle, so the value of $P^{2}{ }_{11}=0$
$P^{2}{ }_{12}=2$
The number of vertices which belongs with α to zero vertices and with β to 3^{n-2} minimum dominating set is only two. Similarly for $\mathrm{P}^{2}{ }_{21}=2$.
$P^{2}{ }_{22}=3(n-2)$
α, β belong to different triangles. The number of vertices which appear with α in 3^{n-2} minimum dominating sets and with β also in 3^{n-2} minimum dominating sets.

ACKNOWLEDGEMENT

I thank the college and UGC for supporting this minor project MRP(S)-0154/12-13/KAMY008/UGCSWRO by UGC grants.

REFERENCES

[1] Anwar Alwardi, ND Soner. Partial balanced incomplete block designs arising from some minimal dominating sets of SRNT graphs. Int Jour of Math Arch 2011; 2(2): 233-235.
[2] PJ Cameron, JH. Van Lint. Designs, graphs, Codes and their links, vol. 22 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge 1991.
[3] F Harary. Graph theory Addison-Wesley Reading Mass 1969.
[4] MP Sumathi. Some Designs with Association Schemes Arising from Some Certain Corona Graphs. International Journal of Scientific and Innovative Mathematical Research (IJSIMR) October 2014; 2(10): 819-826.
[5] [5] HB Walikar, HS Ramane, BD Acharya, HS Shekhareppa, S Arumugum. Partially balanced incomplete block design arising from minimum dominating sets of paths and cycles. AKCE J Graphs Combin 2007; 4(2): 223-232.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[^0]: *Address correspondence to these authors at the Department of Mathematics, Mahajana First Grade College, Mysore; Tel: 9880810618;
 E-mail: sumathideepak@gmail.com
 2010Mathematics subject classification: 05C50.

