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Abstract: Stability analysis of Wilkinson’s iterative refinement method IR(!)  with a relaxation parameter !  for solving 
linear systems is given. It extends existing results for ! =1 , i.e., for Wilkinson’s iterative refinement method. We assume 
that all computations are performed in fixed (working) precision arithmetic. Numerical tests were done in MATLAB to 
illustrate our theoretical results. A particular emphasis is given on convergence of iterative refinement method with a 
relaxation. A preliminary error analysis of the Algorithm IR(!)  was given in [11]. Our opinion is opposite to that given in 
[11], since our experiments show that the choice ! =1  is the best choice from the point of numerical stability. 
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1. INTRODUCTION 

We consider the system Ax = b , where A ! Rn"n  is 
nonsingular and b ! Rn . Iterative refinement 
techniques for linear systems of equations are very 
useful in practice and the literature on this subject is 
very rich, see [1], [4]– [11]. 

The idea of relaxing the iterative refinement step is 
the following. We require a basic linear equation solver 
S  for Ax = b  which uses a factorization of A into simple 
factors (e.g., triangular, block-triangular etc.). Such 
factorization is used again in the next steps of iterative 
refinement. Wilkinson’s iterative refinement method 
with a relaxation IR(! ) consists of three steps. 

Algorithm IR(! )  

Given ! > 0 . Let x0  be computed by the solver S . 

For  k = 0,1,2,… , the k th iteration consists of the 
three steps:  

1. Compute rk = b! Axk .  

2. Solve Apk = rk  for pk  by the basic solution solver 
S .  

3. Add the correction, xk+1 = xk +! pk .  

Clearly, ! =1  corresponds to Wilkinson’s iterative 
refinement method [10]. Wu and Wang [11] proposed 

this method for ! = h
h+1

, where h > 0  (i.e., for 

0 <! <1 ). They developed the method as the  
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numerical integration of a dynamic system with step 
size h . A preliminary error analysis of the Algorithm 
IR(!)  was given in [11] for 0 <! < 1 , assuming that 
the extended precision is used for computing the 
residual vectors rk . Wu and Wang considered only 
Gaussian elimination as a solver S . 

The purpose of this paper is to analyze the 
convergence of this method for 0 <! < 2  and to show 
with examples that the choice ! =1  is the best choice 
from the point of numerical stability. 

Notice that for arbitrary ! > 0 , the IR(! ) method is 
a stationary method (in the theory) and we have 
pk = A

!1rk = x
* ! xk , so 

 xk+1 ! x
* = (1!")(xk ! x

* ), k = 0,1,… , where x*  is the 
exact solution to Ax = b . We see that the sequence 
{xk}  is convergent for arbitrary initial x0  if and only if 
0 <! < 2 . For ! =1  (Wilkinson’s iterative refinement) 
x1  will be the exact solution x* . It is interesting to 
check the influence on the relaxation parameter !  on 
numerical properties of the algorithm IR(!) , assuming 
that all computations are performed only in the working 
(fixed) precision. 

Throughout the paper we use only the 2-norm and 
assume that all computations are performed in the 
working (fixed) precision. We use a floating point 
arithmetic which satisfies the IEEE floating point 
standard. For two floating point numbers a  and b  we 
have  

 f !(a!b) = (a!b)(1+"), | " |# $M  

for results in the normalized range, where !  denotes 
any of the elementary scalar operations +,!,*, /  and 
!M  is machine precision. 
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In this paper we present a comparison of 
Wilkinson’s iterative refinement method with a 
relaxation IR(! ) from the point of view of numerical 
stability. More precisely, we say that the computed  !x  in 
floating point arithmetic is a forward stable solution to 
Ax = b  if  

  ! "x ! x
* ! "O(#M )$(A) ! x* ! .          (1) 

Throughout this paper,  ! ! !  is the matrix or vector 
two–norm depending upon context, and 

 !(A) = ! A
"1 ! ! A !  denotes the standard condition 

number of the matrix A . 

A stronger property than forward stability is 
backward stability. It means that the computed x~  in 
floating point arithmetic is the exact solution of a 
slightly perturbed system  

 (A+!A) !x = b, " !A ""O(#M ) " A " .         (2) 

Our analysis is similar in spirit to [4]-[6]. Jankowski 
and Wo !z niakowski [6] prove that an arbitrary solver S  
which satisfies (3), supported by iterative refinement, is 
normwise forward stable as long as A  is not too ill-
conditioned (say, !M"(A) < 1 ), and is normwise 
backward stable under additional condition q!(A) < 1 . 
We extend their results for the algorithm IR(!) , see 
Theorems 2.1. 

The paper is organized as follows. A proof of 
forward stability of IR(!)  is given in Section 2. In 
Section 3, we present some numerical experiments 
that illustrate our theoretical results. 

2. FORWARD STABILITY OF IR(!)  

We require a basic linear equation solver S  for 
Ax = b  such that the computed solution  !x  by S  
satisfies  

 ! "x ! x
* !" q! x* !, q " 0.1.          (3) 

We make a standard assumption that the matrix-
vector multiplication is backward stable. Then the 
computed residual vector  !r = f "(b ! A!x)  satisfies  

 !r = b ! A!x +"r, " "r "# L(n)$M (|| b ||+ || A || || !x ||),        (4) 

where L(n)  is a modestly growing function on n . 

We start with the following lemma.  

Lemma 2.1 Let IR(!)  for ! " (0, 2)  be applied to 
the nonsingular linear system Ax = b  using the solver 
S  satisfying (3)-(4). Let  !xk ,  !rk  and  !pk  denote the 

computed vectors in floating point arithmetic. Assume 
that  

!M " 0.01, L(n)!M #(A) " 0.01          (5) 

and  

| 1!" |+"q # 0.6.           (6) 

Then for  k = 0,1,…  we have  

 || !xk ! x
* ||" qk || x

* ||, qk " 0.1,          (7) 

where  

qk+1 = (| 1!" |+q")qk + 2.31"L(n)#M$(A)+1.64#M ,        (8) 

with q0 = q .  

Proof. Assume that (7) holds for k . We prove that it 
holds also for k +1 , i.e.  || !xk+1 ! x

* ||" qk+1 || x
* || , where 

qk+1 ! 0.1  and qk+1  satisfies (8). 

Under assumption (4), the computed vectors kr~  
satisfy  

 !rk = b ! A!xk +"rk , || "rk ||# $M L(n)(|| b ||+ || A |||| !xk ||).      (9) 

Under assumption (3) we have  

 !pk = pk
* +!pk , pk

* = A"1 !rk , " !pk "# q " pk
* " .      (10) 

Standard error analysis shows  

 !xk+1 = (I + Dk
(1) )( !xk + (I + Dk

(2) )! !pk ), " Dk
(i ) "" #M .      (11) 

By inductive assertion, we have  ! "xk ! x
* !" qk ! x

* ! . 
Hence  

 ! "xk !=! x
* + ( "xk ! x

* ) !"! x* ! + ! "xk ! x
* !" (1+ qk ) ! x

* ! .  

Similarly, from (10) it follows that 

 ! "pk !! (1+ q) ! pk
* ! , thus  

 ! "xk !!1.1 ! x
* !, ! "pk !!1.1 ! pk

* ! .       (12) 

From (9) and the inequality  ! b !=! Ax* !!! A ! ! x* !  it 
can be seen that  

 !rk = b ! A!xk +"rk , " "rk "# 2.1L(n)$M " A " " x
* " .      (13) 

We have  

 pk
* = A!1 !rk = x

* ! !xk +"k , "k = A
!1#rk .       (14) 
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This together with (13) implies the bounds  

 ! pk
* !!! "xk " x

* ! + ! #k !, ! #k !! 2.1L(n)$M%(A) ! x
* ! . (15) 

Now our task is to bound the error  ! "xk+1 ! x
* ! . For 

simplicity, we define Dk
(3)  such that  

I + Dk
(3) = (I + Dk

(1) )(I + Dk
(2) ).  

Clearly,  ! Dk
(3) !! 2"M +"M

2 , so from (11) we get  

 !xk+1 = ( !xk +! !pk )+"k , ""k "# $M " !xk " +(2$M +$M
2 )! " !pk " .

           (16) 

This together with (10) and (14) gives the identity  

 !xk+1 ! x
* = (1!")( !xk ! x

* )+#k +"($k +%pk ).  

Taking norms and using (10), we obtain  

 ! "xk+1 ! x
* !"| 1!# | ! "xk ! x

* ! + !$k ! +# ! %k ! +#q ! pk
* ! . (17) 

First we estimate  !!k ! . Since  ! "xk ! x
* !" 0.1 ! x* ! , 

so by assumption (5) we obtain from (15) the bounds  

 ! !k !" 0.021 ! x
* !, ! pk

* !" 0.121 ! x* ! .       (18) 

From (12) and (16) we have 

 !!k !"1.1#M (! x
* ! +(2 +#M )$ ! pk

* !) . Now we apply (5) 
and (18). Since ! < 2 , we see that  !!k !"1.64#M ! x

* ! . 
Therefore,  

 ! ! "k ! + !#k !$!2.1L(n)%M&(A) ! x
* ! +1.64%M ! x

* !  

and by (15) we get  

 !q ! pk
* !"!q ! "xk # x

* ! +!q2.1L(n)$M%(A) ! x
* ! .  

Hence, from (17) and by (5)-(6) we finally obtain  

 ! "xk+1 ! x
* !" (| 1!# |+#q) ! "xk ! x

* ! +2.31#L(n)$M%(A)+1.64$M ! x
* ! .  

We conclude that,  ! "xk+1 ! x
* !" qk+1 ! x

* !  with qk+1  
defined in (8). It remains to prove that qk+1 ! 0.1 . By 
assumptions (5) and (6) and using the fact that 
qk ! 0.1 , we see that qk+1 ! 0.6 * 0.1+ (0.0231+ 0.0164) , 
so qk+1 ! 0.1 . This completes the proof.  

Theorem 2.1 Under the assumptions of Lemma 2.1 
the algorithm IR(!)  is forward stable for ! " (0, 2) . 
There exists k*  depending only on n  such that for 
every k ! k*  the following inequality holds  

 ! "xk ! x
* !" (11.6L(n)+ 4.2)#M $(A) ! x* ! .       (19) 

Proof. We apply the results of Lemma 2.1. Notice 
that from (7)-(8) and by assumptions (5) it follows that  

qk+1 ! qk 0.6 + 2.31"L(n)#M$(A)+1.64#M .  

Since ! < 2  and 1! "(A) , we get  

qk+1 ! qk 0.6 + (4.62L(n)+1.64)"M#(A).  

From this it follows that  

qk+1 ! (0.6)
k + 4.62L(n)+1.64

1" 0.6
#M$(A).  

From this (19) follows immediately.  

3. NUMERICAL EXPERIMENTS 

In this section we present numerical experiments 
that show the comparison of the IR(!)  for different 
values of ! . All tests were performed in MATLAB 
version 8.4.0.150421 (R2014b), with !M " 2.2 #10$16 . 

Let x* = A!1b  be the exact solution to Ax = b  and let 

kx
~  be the computed approximation to x*  by IR(!) . 
We produced the n ! n  matrix A  and the vector 
b = Ax* , with  x

* = [1,1,…,1]T . 

We report the following statistics for each iteration:  

• forward stability error  

 
!(A,b, !xk ) =

" !xk " x
* "

#(A)" x* "
,         (20) 

• backward stability error  

 
!(A,b, !xk ) =

" b " A!xk "
" A " " !xk "

,         (21) 

 • componentwise backward stability error  

 
!(A,b, !xk ) =

i
max

(| b " A!xk |)i
(| A || !xk |)i

.        (22) 

Note that, the componentwise stability implies the 
backward stability, and backward stability implies 
forward stability. 

We consider the following solvers S . 

• Algorithm I (GEPP). Gaussian elimination with 
partial pivoting (GEPP) for the system Ax = b . 

• Algorithm II (BLU). This method uses a block 
LU  factorization [2]:  
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A =
A11 A12
A21 A22

!

"
#

$

%
& =

I 0
L21 I
!

"
#

$

%
&

U11 U12

0 U22

!

"
#

$

%
&.       (23) 

We assume that A11(m !m)  is nonsingular. Then 

(a) U11 = A11 , U12 = A12 .  

(b) Solve the system L21A11 = A21  for L21  (by GEPP).  

(c) Compute the Schur complement U22 = A22 ! L21A12 .  

Next we solve the system LUx = b  by solving two 
linear systems, using the MATLAB commands  

y=L\b; x=U\y;  

Example 1 Take A =Wn , where Wn  is the famous 
Wilkinson’s matrix of order n :  

 

Wn =

1 0 0 … 0 1
!1 1 0 … 0 1
!1 !1 1 … 0 1
! ! ! " " !
!1 !1 !1 … !1 1

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

.        (24) 

R.D. Skeel [8] wrote: "Gaussian elimination with 
pivoting is not always as accurate as one might 
reasonably expect". It is known, see [10], that GEPP is 
considered numerically stable unless the growth factor 
!n  is large. For Wilkinson’s matrix Wn  we have 
!n = 2

n"1 . It is interesting that for n =100  the Wilkinson 
matrix is perfectly well-conditioned, but GEPP 
produces an unstable solution! After one step of 
Wilkinson’s iterative refinement method (for ! =1) we 
get the exact solution  x

* = [1,1,…,1]T . The situation is 

different for other choices of parameter ! . The results 
are contained in Table 1. 

Example 2 We test Algorithm I (GEPP) on badly 
scaled tridiagonally matrix A  generated by the 
MATLAB code  

randn('state',0)  
n=10;m=5;  
u=randn(n,1); v=randn(n-1,1);  
A=diag(u)+diag(v,-1)+diag(v,1);  
t=1e10; A(m-1,m)=t;  
end  

Random matrices of entries were generated by the 
MATLAB function "randn" (normally distributed 
pseudorandom numbers). Before each usage the 
random number generator was reset to its initial state. 
Notice that only the element A4,5  is very large (equals 

1010 ), hence the matrix A  is ill-conditioned. The values 
of the componentwise stability error (22) are gathered 
in Table 2. Clearly the best results are obtained for 
! =1  (Wilkinson’s original iterative refinement). We 
don’t display the forward error (20) and backward 
stability error (21) because they were always small (of 
order !M ). 

Example 3 We generate a block matrix A  as in (23) 
using the following MATLAB code.  

 m=8; n=2*m;  
rand('state',0);  
A=rand(n);  
A(1:m,1:m)=hilb(m);  

Table 1: Values of the Forward Stability Error (20) for Algorithm I (GEPP) , where A  is the 100!100  Wilkinson Matrix 
Defined in (24). Here !(A) = 44.8  

 ! / k    0.3    0.5    0.7    0.9    1.0    1.2   

0   1.51E-02   1.51E-02   1.51E-02   1.51E-02   1.51E-02   1.51E-02  

1   1.05E-02   7.56E-03   4.54E-03   1.51E-03   0   3.02E-03  

2   7.41E-03   3.78E-03   1.36E-03   1.51E-04   0   6.05E-04  

3   5.19E-03   1.89E-03   4.08E-04   1.51E-05   0   1.21E-04  

4   3.63E-03   9.46E-04   1.22E-04   1.51E-06   0   2.42E-05  

5   2.54E-03   4.73E-04   3.67E-05   1.51E-07   0   4.84E-06  

6   1.78E-03   2.36E-04   1.10E-05   1.51E-08   0   9.68E-07  

7   1.24E-03   1.18E-04   3.31E-06   1.51E-09   0   1.93E-07  

8   8.72E-04   5.91E-05   9.93E-07   1.51E-10   0   3.87E-08  

9   6.10E-04   2.95E-05   2.97E-07   1.51E-11   0   7.75E-09  

10   4.27E-04   1.47E-05   8.93E-08   1.51E-12   0   1.55E-09 
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The matrix A  is very well-conditioned, with the 
condition number !(A) = 2.08 "102  but the block (1,1)  
of A  is ill-conditioned: !(A11 ) = 4.75 "10

8 . Here 
H = hilb(m)  is a m !m  Hilbert matrix defined by  

 
H = (hij ), hij =

1
i + j !1

, i, j =1,…,m.  

The results are contained in Tables 3-3. 

Based on the numerical results of this section, we 
conclude that one step of Wilkinson’s iterative 

Table 2: Values of the Componentwise Stability Error (22) for Algorithm I (GEPP) , where A  is the 10!10  Tridiagonal 
Matrix Defined in Example 2 for t =1010 . Here !(A) = 7.74 "1010  

! / k    0.3    0.5    0.7    0.9    1.0    1.2   

0   1.02E-06   1.024E-06   1.02E-06   1.02E-06   1.02E-06   1.02E-06  
1   7.15E-07   5.10E-07   3.06E-07   1.02E-07   1.15E-16   2.04E-07  
2  5.00E-07   2.55E-07   9.19E-08   1.02E-08   1.15E-16   4.08E-08  
3  3.50E-07   1.27E-07   2.75E-08   1.02E-09   1.15E-16   8.17E-09  
4  2.45E-07   6.38E-08   8.27E-09   1.02E-10   1.15E-16   1.63E-09  
5   1.71E-07   3.19E-08   2.48E-09   1.02E-11   1.15E-16   3.27E-10  
6   1.20E-07   1.59E-08   7.44E-10   1.021E-12   1.15E-16   6.54E-11  
7   8.41E-08   7.98E-09   2.23E-10   1.021E-13   1.15E-16   1.30E-11  
8   5.89E-08   3.99E-09   6.70E-11   1.01E-14   1.15E-16   2.61E-12  
9   4.12E-08   1.99E-09   2.01E-11   1.07E-15   1.15E-16   5.23E-13  

10   2.88E-08   9.97E-10   6.034E-12   1.54E-16   1.15E-16   1.04E-13 

Table 3: Values of the Forward Stability Error (20) for Algorithm II (BLU), where A  is the 16!16  Matrix Defined in 
Example 3 

 ! / k    0.3    0.5    0.7    0.9    1.0    1.2   

0   2.01E-10   2.01E-10   2.01E-10   2.01E-10   2.01E-10   2.01E-10  
1   1.41E-10   1.00E-10   6.05E-11   2.01E-11   3.57E-17   4.03E-11  
2   9.89E-11   5.04E-11   1.81E-11   2.01E-12   2.64E-17   8.07E-12  
3   6.92E-11   2.52E-11   5.45E-12   2.01E-13   9.57E-18   1.61E-12  
4   4.84E-11   1.26E-11   1.63E-12   2.01E-14   8.91E-18   3.23E-13  
5   3.39E-11   6.31E-12   4.90E-13   2.01E-15   1.19E-17   6.46E-14  
6   2.37E-11   3.15E-12   1.47E-13   1.96E-16   2.94E-17   1.29E-14  
7   1.66E-11   1.57E-12   4.41E-14   2.62E-17   1.46E-17   2.58E-15  
8   1.16E-11   7.88E-13   1.32E-14   3.71E-17   2.04E-17   5.12E-16  
9   8.14E-12   3.94E-13   3.96E-15   5.36E-17   2.47E-17   9.83E-17  

10   5.70E-12   1.97E-13   1.19E-15   2.70E-17   3.22E-17   4.84E-17 

 
Table 4: Values of the Backward Stability Error (21) for Algorithm II (BLU), where A  is the 16!16  Matrix Defined in 

Example 3 

! / k    0.3    0.5    0.7    0.9    1.0    1.2   

0   4.03E-09   4.03E-09   4.03E-09   4.03E-09   4.03E-09   4.03E-09  
1   2.82E-09   2.01E-09   1.21E-09   4.03E-10   1.90E-16   8.06E-10  
2   1.97E-09   1.00E-09   3.63E-10   4.03E-11   1.92E-16   1.61E-10  
3   1.38E-09   5.04E-10   1.08E-10   4.03E-12   1.43E-16   3.22E-11  
4   9.68E-10   2.52E-10   3.26E-11   4.03E-13   1.53E-16   6.45E-12  
5   6.78E-10   1.26E-10   9.80E-12   4.03E-14   1.44E-16   1.29E-12  
6   4.74E-10   6.30E-11   2.94E-12   4.01E-15   1.49E-16   2.58E-13  
7   3.32E-10   3.15E-11   8.82E-13   4.14E-16   1.63E-16   5.16E-14  
8   2.32E-10   1.575E-11   2.64E-13   1.14E-16   1.22E-16   1.03E-14  
9   1.62E-10   7.88E-12   7.93E-14   8.18E-17   1.66E-16   2.09E-15  

10   1.13E-10   3.94E-12   2.38E-14   1.44E-16   1.66E-16   5.16E-16 
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refinement method (! =1 ) is usually be enough to yield 
small errors (20)–(22). However, iterative refinement 
method with a relaxation !  which is not close to 1, can 
require much more steps than Wilkinson’s iterative 
refinement. Therefore, the choice ! =1  is the best 
choice from the point of numerical stability. 
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Table 5: Values of the Componentwise Backward Stability Error (22) for Algorithm II (BLU), where A  is the 16!16  
Matrix Defined in Example 3 

 ! / k    0.3    0.5    0.7    0.9    1.0    1.2   

0   7.88E-09   7.88E-09   7.88E-09   7.88E-09   7.88E-09   7.88E-09  

1   5.51E-09   3.94E-09   2.36E-09   7.88E-10   4.19E-16   1.57E-09  

2   3.86E-09   1.97E-09   7.09E-10   7.88E-11   4.61E-16   3.15E-10  

3   2.70E-09   9.85E-10   2.12E-10   7.88E-12   3.07E-16   6.30E-11  

4   1.89E-09   4.92E-10   6.38E-11   7.88E-13   3.07E-16   1.26E-11  

5   1.32E-09   2.46E-10   1.91E-11   7.89E-14   2.79E-16   2.52E-12  

6   9.27E-10   1.23E-10   5.74E-12   7.87E-15   2.27E-16   5.04E-13  

7   6.49E-10   6.15E-11   1.72E-12   7.95E-16   3.07E-16   1.01E-13  

8  4.54E-10   3.07E-11   5.17E-13   2.25E-16   2.21E-16   2.03E-14  

9  3.18E-10   1.53E-11   1.54E-13   1.89E-16   3.04E-16   4.15E-15  

10  2.22E-10   7.69E-12   4.65E-14   3.78E-16   3.41E-16   1.02E-15  


