
68 Journal of Advances in Applied & Computational Mathematics, 2016, 3, 68-73

 E-ISSN: 2409-5761/16 © 2016 Avanti Publishers

Forward Stability of Iterative Refinement with a Relaxation for
Linear Systems

Alicja Smoktunowicz*, Jakub Kierzkowski and Iwona Wróbel

Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662
Warsaw, Poland

Abstract: Stability analysis of Wilkinson’s iterative refinement method IR(!) with a relaxation parameter ! for solving
linear systems is given. It extends existing results for ! =1 , i.e., for Wilkinson’s iterative refinement method. We assume
that all computations are performed in fixed (working) precision arithmetic. Numerical tests were done in MATLAB to
illustrate our theoretical results. A particular emphasis is given on convergence of iterative refinement method with a
relaxation. A preliminary error analysis of the Algorithm IR(!) was given in [11]. Our opinion is opposite to that given in
[11], since our experiments show that the choice ! =1 is the best choice from the point of numerical stability.

Keywords: Iterative refinement, numerical stability, condition number.

1. INTRODUCTION

We consider the system Ax = b , where A ! Rn"n is
nonsingular and b ! Rn . Iterative refinement
techniques for linear systems of equations are very
useful in practice and the literature on this subject is
very rich, see [1], [4]– [11].

The idea of relaxing the iterative refinement step is
the following. We require a basic linear equation solver
S for Ax = b which uses a factorization of A into simple
factors (e.g., triangular, block-triangular etc.). Such
factorization is used again in the next steps of iterative
refinement. Wilkinson’s iterative refinement method
with a relaxation IR(!) consists of three steps.

Algorithm IR(!)

Given ! > 0 . Let x0 be computed by the solver S .

For k = 0,1,2,… , the k th iteration consists of the
three steps:

1. Compute rk = b! Axk .

2. Solve Apk = rk for pk by the basic solution solver
S .

3. Add the correction, xk+1 = xk +! pk .

Clearly, ! =1 corresponds to Wilkinson’s iterative
refinement method [10]. Wu and Wang [11] proposed

this method for ! = h
h+1

, where h > 0 (i.e., for

0 <! <1). They developed the method as the

*Address correspondence to this author at the Faculty of Mathematics and
Information Science, Warsaw University of Technology, Koszykowa 75, 00-662
Warsaw, Poland; Tel: +48222347988; Fax: +48226257460;
E-mail: smok@mini.pw.edu.pl

numerical integration of a dynamic system with step
size h . A preliminary error analysis of the Algorithm
IR(!) was given in [11] for 0 <! < 1 , assuming that
the extended precision is used for computing the
residual vectors rk . Wu and Wang considered only
Gaussian elimination as a solver S .

The purpose of this paper is to analyze the
convergence of this method for 0 <! < 2 and to show
with examples that the choice ! =1 is the best choice
from the point of numerical stability.

Notice that for arbitrary ! > 0 , the IR(!) method is
a stationary method (in the theory) and we have
pk = A

!1rk = x
* ! xk , so

 xk+1 ! x
* = (1!")(xk ! x

*), k = 0,1,… , where x* is the
exact solution to Ax = b . We see that the sequence
{xk} is convergent for arbitrary initial x0 if and only if
0 <! < 2 . For ! =1 (Wilkinson’s iterative refinement)
x1 will be the exact solution x* . It is interesting to
check the influence on the relaxation parameter ! on
numerical properties of the algorithm IR(!) , assuming
that all computations are performed only in the working
(fixed) precision.

Throughout the paper we use only the 2-norm and
assume that all computations are performed in the
working (fixed) precision. We use a floating point
arithmetic which satisfies the IEEE floating point
standard. For two floating point numbers a and b we
have

 f !(a!b) = (a!b)(1+"), | " |# $M

for results in the normalized range, where ! denotes
any of the elementary scalar operations +,!,*, / and
!M is machine precision.

Forward Stability of Iterative Refinement with a Relaxation Journal of Advances in Applied & Computational Mathematics, 2016, Vol. 3, No. 2 69

In this paper we present a comparison of
Wilkinson’s iterative refinement method with a
relaxation IR(!) from the point of view of numerical
stability. More precisely, we say that the computed !x in
floating point arithmetic is a forward stable solution to
Ax = b if

 ! "x ! x
* ! "O(#M)$(A) ! x* ! . (1)

Throughout this paper, ! ! ! is the matrix or vector
two–norm depending upon context, and

 !(A) = ! A
"1 ! ! A ! denotes the standard condition

number of the matrix A .

A stronger property than forward stability is
backward stability. It means that the computed x~ in
floating point arithmetic is the exact solution of a
slightly perturbed system

 (A+!A) !x = b, " !A ""O(#M) " A " . (2)

Our analysis is similar in spirit to [4]-[6]. Jankowski
and Wo !z niakowski [6] prove that an arbitrary solver S
which satisfies (3), supported by iterative refinement, is
normwise forward stable as long as A is not too ill-
conditioned (say, !M"(A) < 1), and is normwise
backward stable under additional condition q!(A) < 1 .
We extend their results for the algorithm IR(!) , see
Theorems 2.1.

The paper is organized as follows. A proof of
forward stability of IR(!) is given in Section 2. In
Section 3, we present some numerical experiments
that illustrate our theoretical results.

2. FORWARD STABILITY OF IR(!)

We require a basic linear equation solver S for
Ax = b such that the computed solution !x by S
satisfies

 ! "x ! x
* !" q! x* !, q " 0.1. (3)

We make a standard assumption that the matrix-
vector multiplication is backward stable. Then the
computed residual vector !r = f "(b ! A!x) satisfies

 !r = b ! A!x +"r, " "r "# L(n)$M (|| b ||+ || A || || !x ||), (4)

where L(n) is a modestly growing function on n .

We start with the following lemma.

Lemma 2.1 Let IR(!) for ! " (0, 2) be applied to
the nonsingular linear system Ax = b using the solver
S satisfying (3)-(4). Let !xk , !rk and !pk denote the

computed vectors in floating point arithmetic. Assume
that

!M " 0.01, L(n)!M #(A) " 0.01 (5)

and

| 1!" |+"q # 0.6. (6)

Then for k = 0,1,… we have

 || !xk ! x
* ||" qk || x

* ||, qk " 0.1, (7)

where

qk+1 = (| 1!" |+q")qk + 2.31"L(n)#M$(A)+1.64#M , (8)

with q0 = q .

Proof. Assume that (7) holds for k . We prove that it
holds also for k +1 , i.e. || !xk+1 ! x

* ||" qk+1 || x
* || , where

qk+1 ! 0.1 and qk+1 satisfies (8).

Under assumption (4), the computed vectors kr~
satisfy

 !rk = b ! A!xk +"rk , || "rk ||# $M L(n)(|| b ||+ || A |||| !xk ||). (9)

Under assumption (3) we have

 !pk = pk
* +!pk , pk

* = A"1 !rk , " !pk "# q " pk
* " . (10)

Standard error analysis shows

 !xk+1 = (I + Dk
(1))(!xk + (I + Dk

(2))! !pk), " Dk
(i) "" #M . (11)

By inductive assertion, we have ! "xk ! x
* !" qk ! x

* ! .
Hence

 ! "xk !=! x
* + ("xk ! x

*) !"! x* ! + ! "xk ! x
* !" (1+ qk) ! x

* ! .

Similarly, from (10) it follows that

 ! "pk !! (1+ q) ! pk
* ! , thus

 ! "xk !!1.1 ! x
* !, ! "pk !!1.1 ! pk

* ! . (12)

From (9) and the inequality ! b !=! Ax* !!! A ! ! x* ! it
can be seen that

 !rk = b ! A!xk +"rk , " "rk "# 2.1L(n)$M " A " " x
* " . (13)

We have

 pk
* = A!1 !rk = x

* ! !xk +"k , "k = A
!1#rk . (14)

70 Journal of Advances in Applied & Computational Mathematics, 2016, Vol. 3, No. 2 Smoktunowicz et al.

This together with (13) implies the bounds

 ! pk
* !!! "xk " x

* ! + ! #k !, ! #k !! 2.1L(n)$M%(A) ! x
* ! . (15)

Now our task is to bound the error ! "xk+1 ! x
* ! . For

simplicity, we define Dk
(3) such that

I + Dk
(3) = (I + Dk

(1))(I + Dk
(2)).

Clearly, ! Dk
(3) !! 2"M +"M

2 , so from (11) we get

 !xk+1 = (!xk +! !pk)+"k , ""k "# $M " !xk " +(2$M +$M
2)! " !pk " .

 (16)

This together with (10) and (14) gives the identity

 !xk+1 ! x
* = (1!")(!xk ! x

*)+#k +"($k +%pk).

Taking norms and using (10), we obtain

 ! "xk+1 ! x
* !"| 1!# | ! "xk ! x

* ! + !$k ! +# ! %k ! +#q ! pk
* ! . (17)

First we estimate !!k ! . Since ! "xk ! x
* !" 0.1 ! x* ! ,

so by assumption (5) we obtain from (15) the bounds

 ! !k !" 0.021 ! x
* !, ! pk

* !" 0.121 ! x* ! . (18)

From (12) and (16) we have

 !!k !"1.1#M (! x
* ! +(2 +#M)$! pk

* !) . Now we apply (5)
and (18). Since ! < 2 , we see that !!k !"1.64#M ! x

* ! .
Therefore,

 ! ! "k ! + !#k !$!2.1L(n)%M&(A) ! x
* ! +1.64%M ! x

* !

and by (15) we get

 !q ! pk
* !"!q ! "xk # x

* ! +!q2.1L(n)$M%(A) ! x
* ! .

Hence, from (17) and by (5)-(6) we finally obtain

 ! "xk+1 ! x
* !" (| 1!# |+#q) ! "xk ! x

* ! +2.31#L(n)$M%(A)+1.64$M ! x
* ! .

We conclude that, ! "xk+1 ! x
* !" qk+1 ! x

* ! with qk+1
defined in (8). It remains to prove that qk+1 ! 0.1 . By
assumptions (5) and (6) and using the fact that
qk ! 0.1 , we see that qk+1 ! 0.6 * 0.1+ (0.0231+ 0.0164) ,
so qk+1 ! 0.1 . This completes the proof.

Theorem 2.1 Under the assumptions of Lemma 2.1
the algorithm IR(!) is forward stable for ! " (0, 2) .
There exists k* depending only on n such that for
every k ! k* the following inequality holds

 ! "xk ! x
* !" (11.6L(n)+ 4.2)#M $(A) ! x* ! . (19)

Proof. We apply the results of Lemma 2.1. Notice
that from (7)-(8) and by assumptions (5) it follows that

qk+1 ! qk 0.6 + 2.31"L(n)#M$(A)+1.64#M .

Since ! < 2 and 1! "(A) , we get

qk+1 ! qk 0.6 + (4.62L(n)+1.64)"M#(A).

From this it follows that

qk+1 ! (0.6)
k + 4.62L(n)+1.64

1" 0.6
#M$(A).

From this (19) follows immediately.

3. NUMERICAL EXPERIMENTS

In this section we present numerical experiments
that show the comparison of the IR(!) for different
values of ! . All tests were performed in MATLAB
version 8.4.0.150421 (R2014b), with !M " 2.2 #10$16 .

Let x* = A!1b be the exact solution to Ax = b and let

kx
~ be the computed approximation to x* by IR(!) .
We produced the n ! n matrix A and the vector
b = Ax* , with x

* = [1,1,…,1]T .

We report the following statistics for each iteration:

• forward stability error

!(A,b, !xk) =

" !xk " x
* "

#(A)" x* "
, (20)

• backward stability error

!(A,b, !xk) =

" b " A!xk "
" A " " !xk "

, (21)

 • componentwise backward stability error

!(A,b, !xk) =

i
max

(| b " A!xk |)i
(| A || !xk |)i

. (22)

Note that, the componentwise stability implies the
backward stability, and backward stability implies
forward stability.

We consider the following solvers S .

• Algorithm I (GEPP). Gaussian elimination with
partial pivoting (GEPP) for the system Ax = b .

• Algorithm II (BLU). This method uses a block
LU factorization [2]:

Forward Stability of Iterative Refinement with a Relaxation Journal of Advances in Applied & Computational Mathematics, 2016, Vol. 3, No. 2 71

A =
A11 A12
A21 A22

!

"
#

$

%
& =

I 0
L21 I
!

"
#

$

%
&

U11 U12

0 U22

!

"
#

$

%
&. (23)

We assume that A11(m !m) is nonsingular. Then

(a) U11 = A11 , U12 = A12 .

(b) Solve the system L21A11 = A21 for L21 (by GEPP).

(c) Compute the Schur complement U22 = A22 ! L21A12 .

Next we solve the system LUx = b by solving two
linear systems, using the MATLAB commands

y=L\b; x=U\y;

Example 1 Take A =Wn , where Wn is the famous
Wilkinson’s matrix of order n :

Wn =

1 0 0 … 0 1
!1 1 0 … 0 1
!1 !1 1 … 0 1
! ! ! " " !
!1 !1 !1 … !1 1

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

. (24)

R.D. Skeel [8] wrote: "Gaussian elimination with
pivoting is not always as accurate as one might
reasonably expect". It is known, see [10], that GEPP is
considered numerically stable unless the growth factor
!n is large. For Wilkinson’s matrix Wn we have
!n = 2

n"1 . It is interesting that for n =100 the Wilkinson
matrix is perfectly well-conditioned, but GEPP
produces an unstable solution! After one step of
Wilkinson’s iterative refinement method (for ! =1) we
get the exact solution x

* = [1,1,…,1]T . The situation is

different for other choices of parameter ! . The results
are contained in Table 1.

Example 2 We test Algorithm I (GEPP) on badly
scaled tridiagonally matrix A generated by the
MATLAB code

randn('state',0)
n=10;m=5;
u=randn(n,1); v=randn(n-1,1);
A=diag(u)+diag(v,-1)+diag(v,1);
t=1e10; A(m-1,m)=t;
end

Random matrices of entries were generated by the
MATLAB function "randn" (normally distributed
pseudorandom numbers). Before each usage the
random number generator was reset to its initial state.
Notice that only the element A4,5 is very large (equals

1010), hence the matrix A is ill-conditioned. The values
of the componentwise stability error (22) are gathered
in Table 2. Clearly the best results are obtained for
! =1 (Wilkinson’s original iterative refinement). We
don’t display the forward error (20) and backward
stability error (21) because they were always small (of
order !M).

Example 3 We generate a block matrix A as in (23)
using the following MATLAB code.

 m=8; n=2*m;
rand('state',0);
A=rand(n);
A(1:m,1:m)=hilb(m);

Table 1: Values of the Forward Stability Error (20) for Algorithm I (GEPP) , where A is the 100!100 Wilkinson Matrix
Defined in (24). Here !(A) = 44.8

 ! / k 0.3 0.5 0.7 0.9 1.0 1.2

0 1.51E-02 1.51E-02 1.51E-02 1.51E-02 1.51E-02 1.51E-02

1 1.05E-02 7.56E-03 4.54E-03 1.51E-03 0 3.02E-03

2 7.41E-03 3.78E-03 1.36E-03 1.51E-04 0 6.05E-04

3 5.19E-03 1.89E-03 4.08E-04 1.51E-05 0 1.21E-04

4 3.63E-03 9.46E-04 1.22E-04 1.51E-06 0 2.42E-05

5 2.54E-03 4.73E-04 3.67E-05 1.51E-07 0 4.84E-06

6 1.78E-03 2.36E-04 1.10E-05 1.51E-08 0 9.68E-07

7 1.24E-03 1.18E-04 3.31E-06 1.51E-09 0 1.93E-07

8 8.72E-04 5.91E-05 9.93E-07 1.51E-10 0 3.87E-08

9 6.10E-04 2.95E-05 2.97E-07 1.51E-11 0 7.75E-09

10 4.27E-04 1.47E-05 8.93E-08 1.51E-12 0 1.55E-09

72 Journal of Advances in Applied & Computational Mathematics, 2016, Vol. 3, No. 2 Smoktunowicz et al.

The matrix A is very well-conditioned, with the
condition number !(A) = 2.08 "102 but the block (1,1)
of A is ill-conditioned: !(A11) = 4.75 "10

8 . Here
H = hilb(m) is a m !m Hilbert matrix defined by

H = (hij), hij =

1
i + j !1

, i, j =1,…,m.

The results are contained in Tables 3-3.

Based on the numerical results of this section, we
conclude that one step of Wilkinson’s iterative

Table 2: Values of the Componentwise Stability Error (22) for Algorithm I (GEPP) , where A is the 10!10 Tridiagonal
Matrix Defined in Example 2 for t =1010 . Here !(A) = 7.74 "1010

! / k 0.3 0.5 0.7 0.9 1.0 1.2

0 1.02E-06 1.024E-06 1.02E-06 1.02E-06 1.02E-06 1.02E-06
1 7.15E-07 5.10E-07 3.06E-07 1.02E-07 1.15E-16 2.04E-07
2 5.00E-07 2.55E-07 9.19E-08 1.02E-08 1.15E-16 4.08E-08
3 3.50E-07 1.27E-07 2.75E-08 1.02E-09 1.15E-16 8.17E-09
4 2.45E-07 6.38E-08 8.27E-09 1.02E-10 1.15E-16 1.63E-09
5 1.71E-07 3.19E-08 2.48E-09 1.02E-11 1.15E-16 3.27E-10
6 1.20E-07 1.59E-08 7.44E-10 1.021E-12 1.15E-16 6.54E-11
7 8.41E-08 7.98E-09 2.23E-10 1.021E-13 1.15E-16 1.30E-11
8 5.89E-08 3.99E-09 6.70E-11 1.01E-14 1.15E-16 2.61E-12
9 4.12E-08 1.99E-09 2.01E-11 1.07E-15 1.15E-16 5.23E-13

10 2.88E-08 9.97E-10 6.034E-12 1.54E-16 1.15E-16 1.04E-13

Table 3: Values of the Forward Stability Error (20) for Algorithm II (BLU), where A is the 16!16 Matrix Defined in
Example 3

 ! / k 0.3 0.5 0.7 0.9 1.0 1.2

0 2.01E-10 2.01E-10 2.01E-10 2.01E-10 2.01E-10 2.01E-10
1 1.41E-10 1.00E-10 6.05E-11 2.01E-11 3.57E-17 4.03E-11
2 9.89E-11 5.04E-11 1.81E-11 2.01E-12 2.64E-17 8.07E-12
3 6.92E-11 2.52E-11 5.45E-12 2.01E-13 9.57E-18 1.61E-12
4 4.84E-11 1.26E-11 1.63E-12 2.01E-14 8.91E-18 3.23E-13
5 3.39E-11 6.31E-12 4.90E-13 2.01E-15 1.19E-17 6.46E-14
6 2.37E-11 3.15E-12 1.47E-13 1.96E-16 2.94E-17 1.29E-14
7 1.66E-11 1.57E-12 4.41E-14 2.62E-17 1.46E-17 2.58E-15
8 1.16E-11 7.88E-13 1.32E-14 3.71E-17 2.04E-17 5.12E-16
9 8.14E-12 3.94E-13 3.96E-15 5.36E-17 2.47E-17 9.83E-17

10 5.70E-12 1.97E-13 1.19E-15 2.70E-17 3.22E-17 4.84E-17

Table 4: Values of the Backward Stability Error (21) for Algorithm II (BLU), where A is the 16!16 Matrix Defined in

Example 3

! / k 0.3 0.5 0.7 0.9 1.0 1.2

0 4.03E-09 4.03E-09 4.03E-09 4.03E-09 4.03E-09 4.03E-09
1 2.82E-09 2.01E-09 1.21E-09 4.03E-10 1.90E-16 8.06E-10
2 1.97E-09 1.00E-09 3.63E-10 4.03E-11 1.92E-16 1.61E-10
3 1.38E-09 5.04E-10 1.08E-10 4.03E-12 1.43E-16 3.22E-11
4 9.68E-10 2.52E-10 3.26E-11 4.03E-13 1.53E-16 6.45E-12
5 6.78E-10 1.26E-10 9.80E-12 4.03E-14 1.44E-16 1.29E-12
6 4.74E-10 6.30E-11 2.94E-12 4.01E-15 1.49E-16 2.58E-13
7 3.32E-10 3.15E-11 8.82E-13 4.14E-16 1.63E-16 5.16E-14
8 2.32E-10 1.575E-11 2.64E-13 1.14E-16 1.22E-16 1.03E-14
9 1.62E-10 7.88E-12 7.93E-14 8.18E-17 1.66E-16 2.09E-15

10 1.13E-10 3.94E-12 2.38E-14 1.44E-16 1.66E-16 5.16E-16

Forward Stability of Iterative Refinement with a Relaxation Journal of Advances in Applied & Computational Mathematics, 2016, Vol. 3, No. 2 73

refinement method (! =1) is usually be enough to yield
small errors (20)–(22). However, iterative refinement
method with a relaxation ! which is not close to 1, can
require much more steps than Wilkinson’s iterative
refinement. Therefore, the choice ! =1 is the best
choice from the point of numerical stability.

REFERENCES

[1] Buttari A, Dongarra J, Langou J, Langou J, Luszczek JP,
Kurzak J. Mixed precision iterative refinement techniques for
the solution of dense linear systems. International Journal of
High Performance Computing Applications 2007; 21(4): 457-
466.
https://doi.org/10.1177/1094342007084026

[2] Demmel JW, Higham NJ, Schreiber RS. Stability of block LU
factorization. Numer Linear Algebra Appl 1995; 12: 173-190.
https://doi.org/10.1002/nla.1680020208

[3] Foster LV. Gaussian elimination with partial pivoting can fail
in practice. SIAM J Matrix Anal Appl 1994; 15(4): 1354-1362.
https://doi.org/10.1137/S0895479892239755

[4] Higham NJ. Iterative refinement enhances the stability of QR
factorization methods for solving linear equations. BIT 1991;

31: 447-468.
https://doi.org/10.1007/BF01933262

[5] Higham NJ. Iterative refinement for linear systems and
LAPACK. IMA J Numer Anal 1997; 17: 495-509.
https://doi.org/10.1093/imanum/17.4.495

[6] Jankowski M, Woźniakowski H. Iterative refinement implies
numerical stability. BIT 1977; 17: 303-311.
https://doi.org/10.1007/BF01932150

[7] Rozložník M, Smoktunowicz A, Kopal J. A note on iterative
refinement for seminormal equations. Applied Numerical
Mathematics 2014; 75: 167-174.
https://doi.org/10.1016/j.apnum.2013.08.005

[8] Skeel RD. Iterative refinement implies numerical stability for
Gaussian elimination. Math Comp 1980; 35: 817-832.
https://doi.org/10.1090/S0025-5718-1980-0572859-4

[9] Smoktunowicz A, Smoktunowicz A. Iterative refinement
techniques for solving block linear systems of equations.
Applied Numerical Mathematics 2013; 67: 220-229.
https://doi.org/10.1016/j.apnum.2011.11.004

[10] Wilkinson JH. The Algebraic Eigenvalue Problem, Oxford
University Press 1965.

[11] Wu X, Wang Z. A new iterative refinement with roundoff error
analysis. Numer Linear Algebra Appl 2011; 18: 275-282.
https://doi.org/10.1002/nla.723

Received on 22-11-2016 Accepted on 25-12-2016 Published on 30-12-2016

DOI: http://dx.doi.org/10.15377/2409-5761.2016.03.02.1

© 2016 Smoktunowicz et al.; Avanti Publishers.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in
any medium, provided the work is properly cited.

Table 5: Values of the Componentwise Backward Stability Error (22) for Algorithm II (BLU), where A is the 16!16
Matrix Defined in Example 3

 ! / k 0.3 0.5 0.7 0.9 1.0 1.2

0 7.88E-09 7.88E-09 7.88E-09 7.88E-09 7.88E-09 7.88E-09

1 5.51E-09 3.94E-09 2.36E-09 7.88E-10 4.19E-16 1.57E-09

2 3.86E-09 1.97E-09 7.09E-10 7.88E-11 4.61E-16 3.15E-10

3 2.70E-09 9.85E-10 2.12E-10 7.88E-12 3.07E-16 6.30E-11

4 1.89E-09 4.92E-10 6.38E-11 7.88E-13 3.07E-16 1.26E-11

5 1.32E-09 2.46E-10 1.91E-11 7.89E-14 2.79E-16 2.52E-12

6 9.27E-10 1.23E-10 5.74E-12 7.87E-15 2.27E-16 5.04E-13

7 6.49E-10 6.15E-11 1.72E-12 7.95E-16 3.07E-16 1.01E-13

8 4.54E-10 3.07E-11 5.17E-13 2.25E-16 2.21E-16 2.03E-14

9 3.18E-10 1.53E-11 1.54E-13 1.89E-16 3.04E-16 4.15E-15

10 2.22E-10 7.69E-12 4.65E-14 3.78E-16 3.41E-16 1.02E-15

