
  Journal of Advances in Applied & Computational Mathematics, 2017, 4, 15-22 15 

 
 E-ISSN: 2409-5761/17  © 2017 Avanti Publishers 

Homoclinic Solutions for Some Nonperiodic Fourth Order 
Differential Equations with Sublinear Nonlinearities 
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Abstract: In this paper we investigate the existence of homoclinic solutions for the following fourth order 
nonautonomous differential equations; 
u
(4)
+ w !!u + a(x)u = f (x,u), (FDE )  

where w  is a constant, a !C(R,R)  and f !C(R " R,R) . The novelty of this paper is that, when (FDE) is nonperiodic, 
i.e., a  and f  are nonperiodic in x , assuming that a  is bounded from below and f  is sublinear as | u |! +" , we 
establish one new criterion to guarantee the existence and multiplicity of homoclinic solutions of (FDE). Recent results in 
the literature are generalized and improved. 
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1. INTRODUCTION 

In the present paper we deal with the existence of 
homoclinic solutions for the following nonperiodic fourth 
order nonautonomous differential equations; 

u
(4)
+ w !!u + a(x)u = f (x,u), (FDE) , 

where w  is a constant, a !C(R,R)  and 
f !C(R " R,R) . In (FDE), let f (x,u)  be of the form; 

f (x,u) = b(x)u
2
+ c(x)u

3
,  

then (FDE) reduces to the following equation; 

u
(4)
+ w !!u + a(x)u " b(x)u

2
" c(x)u

3
= 0,      (1.1) 

which has been put forward as mathematical model for 
the study of pattern formation in physics and 
mechanics, see for instance [2, 4, 5, 7, 8, 9, 19] and 
the references there in. 

For the problem of finding a homoclinic solution 
(i.e., a nontrivial solution u(x)  such that u(x)! 0  as 
| x |! +" ) of the fourth order differential equations, we 
refer the reader to [1, 3, 14] concerned with the 
autonomous case. Compared to the autonomous case, 
the nonautonomous case seems to be more difficult, 
because of the lack of the translation invariance and 
the existence of a first integral. Tersian and Chaparova 
[19] showed that Eq.(1.1) possesses one nontrivial 
homoclinic solution by using the Mountain Pass 
Theorem when a(x) , b(x)  and c(x)  are continuous 
periodic functions and satisfy some other 
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assumptions. Li [12] extended the results to some 
general nonlinear term, i.e., (FDE), assuming that a(x)  
and f (x,u)  are periodic in x , and f (x,u)  satisfies the 
Ambrosetti-Rabinowitz condition ((AR) condition). 
Moreover, Li [13] dealt with the nonperiodic case of 
Eq.(1.1) and obtained the existence of nontrivial 
homoclinic solutions via using a compactness lemma 
and a mountain pass theorem. Sun and Wu [17] 
considered the following nonperiodic fourth order 
differential equations with a perturbation; 

u
(4)
+ w !!u + a(x)u = f (x,u) + "h(x) | u |

p#2
u, x $R,  

where w  is a constant, ! > 0  is a parameter, 
a !C(R,R) , f !C(R " R,R) , 1 ! p < 2  and h !L

2

2" p (R) , 
which has been improved for some more generalized 
perturbation in [22]. More recently, Li et al. [10] studied 
the existence of infinitely many homoclinic solutions for 
nonperiodic (FDE) when the nonlinear term f (x,u)  
satisfies the superlinear condition, but does not fulfil the 
well-known (AR) condition, see its Theorem 1.1. 
However we must point out that, for the case that 
(FDE) is nonperiodic, to obtain the existence of 
homoclinic solutions, the following coercive condition 
on a  is often needed: 

• a : R! R  is a continuous function, and there exists 
some constant a

1
> 0  such that; 

0 < a
1
! a(x)" +# as | x |" +#,      (1.2) 

which is used to establish the corresponding compact 
embedding lemmas on suitable functional spaces, see 
Lemma 2 in [13], Lemma 2.2 in [17] and Lemma 2.3 in 
[10]. 

It is obvious that, if a  is bounded, then it is not 
covered by (a). Inspired by the above facts, more 
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recently, the authors [18, 21, 23] investigated the 
existence of homoclinic solutions of (FDE) for the case 
that a  is nonperiodic and bounded from below. 
Explicitly, assuming that the following conditions hold:  

• a !C(R,R)  is continuous and there exists a positive 
0>!  such that; 

a(x) ! " > 0 and w # 2 " ;  

• there exist a constant 1 < ! < 2  and positive function 

b !L

2

2"# (R,R
+
)  such that;  

| f (x,u) |! "b(x) | u |
"#1
, $(x,u)%R & R;  

• there exist x
0
!R  and ! "(1, 2)  such that;  

(x,u )!(x
0
,0)

liminf
F(x,u)

| u |
"
> 0,  

where F(x,u) =
0

u

! f (x, t)dt , then Yang [21] showed that 

(FDE) possesses at least one nontrivial homoclinic 
solution. If, in addition, f  is odd in u  variable, i.e., 

• f (x,u) = ! f (x,!u),"(x,u)#R $ R ,  

then (FDE) possesses infinitely many homoclinic 
solutions. In [18], Sun et al. considered the following 
nonperiodic fourth order differential equations with a 
parameter:  

u
(4)
+ w !!u + "a(x)u = f (x,u),       (1.3) 

where w  is a constant, ! > 0  is a constant and 
f !C(R " R,R) . Assuming that the function a  satisfies 

the following conditions:  

• a !C(R,R)  and a ! 0  on R ; there exists c > 0  such 
that the set {a < c} = {x !R|a(x) < c}  is nonempty and 
| {a < c} |< c

0
S
!

"2 , where | ! |  is the Lebesgue measure, 
S
!

 is the best Sobolev constant for the embedding of 
H

2
(R)  in L! (R)  and c

0
 is given in Lemma 2.1;  

• T =inta!1
(0)  is nonempty and T = a!1

(0)  such that T  
is a finite interval;  

and f  is supposed to satisfy. 

• there exist a constant ! "(1, 2)  and a positive 

function b !L" (R,R+
)  with ! "(1,

2

2 #$
]  such that; 

| f (x,u) |! b(x) | u |
"#1

for all (x,u)$R % R;  

• there exist two constants !," > 0  such that; 

| F(x,u) |! " | u |# for all x $T and u $R with | u |% & ,  

then they showed that there exists !
0
> 0  such that for 

every ! > "
0
, Eq.(1.3) has at least one homoclinic 

solution u
!

, and explored the phenomenon of 
concentration of homoclinic solutions as ! " # , which 
has been generalized in recent paper [11] when the 
nonlinear term f (x,u)  satisfies the asymptotically 
linear condition, and the non-existence of nontrivial 
homoclinic solutions is also discussed. In [23], for the 
case that a  is bounded in the following sense; 

• a !C(R,R)  and there exits two constants 
0 < !

1
< !

2
< +"  such that; 

0 < !
1
" a(t) " !

2
for all x #R,  

and assuming that f  satisfies some superlinear 
condition weaker than (AR) condition, we showed that 
(FDE) has at least one nontrivial homoclinic solution. 

Motivated by the above results, in present paper we 
focus our attention on the existence and multiplicity of 
homoclinic solutions of (FDE) for the case that a  is 
bounded from below and f  is sublinear as | u |! " . 
Explicitly, we suppose that (A) is satisfied and f  fulfils;  

• f : R ! R" R  is continuous, there exist a constant 
! "(1, 2)  and a positive function b !L" (R,R+

)  with 
1 ! " ! 2 / (2 #$ )  such that;  

| f (x,u) |! "b(x) | u |
"#1

for all (x,u)$R % R;  

and (F2). 

Now we formulate our main result.  

Theorem 1.1 Under the assumptions of (A), (F
1 !)  

and (F
2
) , (FDE) has at least one nontrivial homoclinic 

solution. In addition, if f  is odd in u  variable, that is, 
(F

3
)  holds, then (FDE) possesses infinitely many 

nontrivial homoclinic solutions.  

Remark 1.2 In view of F(x, 0) = 0  and (F
1 !) , we 

have;  

| F(x,u) |! b(x) | u |
"
, #(x,u)$R % R.      (1.4) 

In (F
1 !) , we assume that b !L" (R,R+

)  with 
1 ! " ! 2 / (2 #$ ) , which is a generalization of (F

1
) . 

Therefore, the results in [21] are extended. In [18], 
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under the assumptions of (V
1
) , (V

2
) , (D

1
)  and (D

2
) , 

the authors investigated the existence of homoclinic 
solutions and the concentration of homoclinic solutions. 
In our Theorem 1.1, we deal with the existence and 
multiplicity of homoclinic solutions of (FDE). So the 
results in [18] are generalized.  

Remark 1.3 Recently, Chapiro et al. [6] considered 
the existence of homoclinic solutions for following 
nonperiodic semilinear fourth order differential 
equations;  

u
(4)
+ w !!u + a(x)u = f (x,u, !u ).       (1.5) 

Under some reasonable hypotheses on w , a  and 
f , using the iterative method, they obtained the 

existence of at least one nontrivial homoclinic solution 
of Eq.(1.5). Although, the authors dealt with the case 
when the nonlinear term f  depends on u  and its 
derivative (which is a generalized nonlinearity), the 
assumption ( f

3
) (see its Theorem 2.1) implies that f  is 

superlinear with respect u . Here, in our Theorem 1.1 
we consider (FDE) for the case that f  is sublinear as 
| u |! +"  and obtain the existence of infinitely many 
homoclinic solutions. 

The remaining part of this paper is structured as 
follows. Some preliminary results are presented in 
Section 2. In Section 3, we are devoted to 
accomplishing the proof of Theorem 1.1. 

2. PRELIMINARY RESULTS 

In order to prove Theorem 1.1 via the critical point 
theory, we firstly describe some properties of the space 
E  on which the variational framework associated with 
(FDE) is defined.  

Lemma 2.1 ([19, Lemma 8]) Assume that a(x) ! " > 0  
and w ! 2 " . Then there exists a constant c

0
> 0  such 

that;  

R! [ ""u (x)
2 # w "u (x)2 + a(x)u(x)2 ]dx $ c0PuP

H
2

2

for all u %H 2
(R),

    (2.1) 

where PuP
H
2
= (

R
! [ ""u (x)

2
+ "u (x)2 + u(x)2 ]dx)1/2  is the 

norm of Sobolev space H 2
(R) =W

2,2
(R)  as usual.  

Due to Lemma 2.1, we define;  

E = u !H 2
(R) :

R
" [ ##u (x)

2 $ w #u (x)2 + a(x)u(x)2 ]dx < +%{ },  

with the inner product;  

(u, v) =
R
! [ ""u (x) ""v (x) # w "u (x) "v (x) + a(x)u(x)v(x)]dx  

and the corresponding norm;  

PuP = (
R
! [ ""u (x)

2 # w "u (x)2 + a(x)u(x)2 ]dx)1/2 .  

Then, it is easy to verify that E  is a Hilbert space. Note 
that;  

H
2
(R)! L

p
(R), 2 " p " +#  

and the embedding is continuous. That is, there exists 
a constant Cp > 0  such that;  

PuPp ! CpPuP
H
2
, "u #E,       (2.2) 

for any p ![2,+"] . Combining (2.2) with (2.1), for any 
p ![2,+"] , there is an another constant (still denoted 

by Cp ) such that;  

PuPp ! CpPuP, "u #E.        (2.3) 

Here Lp (R)  ( 2 ! p < +" ) denotes the Banach spaces 
of functions on R with values in R  under the norm;  

PuPp := (
R! | u(x) |

p
dx)

1/p
.  

L
!
(R)  is the Banach space of essentially bounded 

functions from R  into R  equipped with the norm;  

PuP
!
:=esssup | u(x) |: x "R{ }.  

To deal with the existence of homoclinic solutions of 
(FDE), we appeal to the following well-known result, 
see for example [15]. 

Definition 2.2 I !C1
(B,R)  is said to satisfy the (PS) 

condition if any sequence u
j{ }

j!N
" B , for which 

I(u
j
){ }

j!N
 is bounded and !I (u j

)" 0  as j! +" , 

possesses a convergent subsequence in B.  

Lemma 2.3 Let B be a real Banach space and 
I !C

1
(B,R)  satisfying the (PS) condition. If I is 

bounded from below, then c = Binf I(u)  is a critical value 
of I . 

To obtain the existence of infinitely many homoclinic 
solutions of (FDE) under the assumptions of Theorem 
1.1, we shall employ the “genus" properties in critical 
point theory, see [15, 16]. 

Let B be Banach space, I !C1
(B,R)  and c !R . We 

set;  
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!
= {A " B # {0} : A is closed in B and

symmetric with respect to 0},

Kc = {u $B : I(u) = c, %I (u) = 0}, I
c
= {u $B : I(u) & c}.

 

Definition 2.4 For A !" , we say the genus of A  is j  
(denoted by ! (A) = j ) if there is an odd map 
! "C(A,R

j
\ {0})  and j  is the smallest integer with 

this property.  

Lemma 2.5 [16, Theorem 2.1] Let I  be an even C1  
functional on B and satisfy the (PS) condition. For any 
j !N , set;  

! j = {A "! :# (A) $ j}, cj =
A"!

j

inf
u"A

supI(u).  

• If ! j
" #  and cj !R , then cj  is a critical value of I ;  

• if there exists r !N  such that;  

,====
1

Rcccc rjjj !
++

!  

and c ! I(0) , then ! (K
c
) " r +1 .  

Remark 2.6 From Remark 7.3 in [15], we know that if 
K

c
!"  and ! (K

c
) > 1 , then K

c
 contains infinitely many 

distinct points, i.e., I  has infinitely many distinct critical 
points in B.  

3. PROOF OF THEOREM 1.1 

Now we are going to establish the corresponding 
variational framework to obtain the existence and 
multiplicity of homoclinic solutions of (FDE). To this 
end, define the functional I : B = E! R  by,  

I(u) =
R
! [
1

2
""u (x)

2 #
1

2
w "u (x)2 +

1

2
a(x)u(x)

2 # F(x,u(x))]dx

=
1

2
PuP

2 #
R
! F(x,u(x))dx.

          (3.1) 

The purpose of this section is to prove Theorem 1.1. 
To this aim, we present some lemmas which will be 
used in the subsequent discussion.  

Lemma 3.1 Under the conditions of Theorem 1.1, 
I !C

1
(E,R) , i.e., I  is a continuously Fr !e chet-

differentiable functional defined on E . Moreover, we 
have;  

!I (u)v =
R" [ !!u (x) !!v (x) # w !u (x) !v (x) +

a(x)u(x)v(x) # f (x,u(x))v(x)]dx
     (3.2) 

for all u , v !E , which yields that;  

!I (u)u = PuP2 "
R# f (x,u(x))u(x)dx.      (3.3) 

Proof. We firstly show that I :E! R . By the Hölder 
inequality, (1.4) and (2.3), we have;  

0 !
R
" | F(x,u(x)) | dx !

R
" | b(x) || u(x) |# d

x ! PbP$PuP#$*
# ! C

#$*
#
PbP$PuP

#
,

     (3.4) 

where !*  is the conjugate exponent of ! , i.e., 

1 =
1

!
+
1

!*
, C

!"*
 is as defined in (2.3). Combining this 

with (3.1), we see that I :E! R . 

Next we prove that I !C1
(E,R) . To this end, we 

rewrite I = A ! B  as follows:  

A(u) =
1

2
PuP

2
, B(u) =

R
! F(x,u(x))dx.      (3.5) 

 It is easy to check that A !C
1
(E,R) , and we have;  

!A (u)v =
R
" [ !!u (x) !!v (x) # w !u (x) !v (x) + a(x)u(x)v(x)]dx.  

Therefore, it is sufficient to show that this is the 
case for B . In the process we shall see that 
B !C

1
(E,R)  and;  

!B (u)v =
R" f (x,u(x))v(x)dx,       (3.6) 

which is defined for all u , v !E . 

For any given u !E , let us define J(u) :E! R  by,  

J(u)v =
R! f (x,u(x))v(x)dx, "v #E.      (3.7) 

It is obvious that, for any given u !E , J(u)  is a 
linear functional. Moreover, J(u)  is also bounded. 
Indeed, for any given u !E , in view of (2.3), the Young 
inequality and the Hölder inequality, we obtain that;  

PJ(u)P =
PvP=1

sup | J(u)v |=
PvP=1

sup |
R! f (x,u(x))v(x))dx |

"
PvP=1

sup#
R! | b(x) || u(x) |

#$1| v(x) | dx

"
PvP=1

sup#
R! | b(x) | (

# $1
#

| u(x) |# +
1

#
| v(x) |# )dx

"
PvP=1

sup[(# $1)PbP%PuP#%*
#

+ PbP%PvP#%*
#
]

"
PvP=1

sup[(# $1)PbP%C#%*
#
PuP + PbP%C#%*

#
PvP]

= (# $1)PbP%C#%*
#
PuP + PbP%C#%*

# .

(3.8) 

In what follows, we show that J  is the Gateaux 
derivative of B  defined in (3.5). For u, v !E , using the 
Mean Value Theorem, we have; 
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R! F(x,u(x) + tv(x))dx " R! F(x,u(x))dx =

R! f (x,u(x) + th(x)v(x))tv(x)dx
 

for some h(x)!(0,1) , where 0 <| t |< 1 . For any ! > 0 , 
in view of b !L" (R,R+

) , there exists an R > 0  such 
that;  

(
|x|>R! | b(x) |

"
dx)

1/"
< #.        (3.9) 

For the given R > 0  in (3.9), based on (F
1 !)  and 

(2.3), we have  

1

t
[

R! f (x,u(x) + th(x)v(x))tv(x)dx " R! f (x,u(x))tv(x)dx]  

=
R! ( f (x,u(x) + th(x)v(x)) " f (x,u(x)))v(x)dx  

=
|x|!R" ( f (x,u(x) + th(x)v(x)) # f (x,u(x)))v(x)dx  

+
|x|>R! ( f (x,u(x) + th(x)v(x)) " f (x,u(x)))v(x)dx  

! (
|x|!R" | f (x,u(x) + th(x)v(x)) # f (x,u(x)) |

2
dx)

1/2

(
|x|!R" | v(x) |

2
dx)

1/2
 

+!
|x|>R" | b(x) | (2 | u(x) |

!#1
+ | v(x) |

!#1
) | v(x) | dx  

! C
2
PvP(

|x|!R" | f (x,u(x) + th(x)v(x)) # f (x,u(x)) |
2
dx)

1/2  

+(
|x|>R! | b(x) |

"
dt)

1/"
[2(# $1)(

|x|>R! | u(x) |
#"*

dx)
1/"*

+(
|x|>R! | v(x) |

#"*
dx)

1/"*
]

 

+!(
|x|>R" | b(x) |

#
dt)

1/#
(
|x|>R" | v(x) |

!#*
dx)

1/#*  

! C
2
PvP(

|x|!R" | f (x,u(x) + th(x)v(x)) # f (x,u(x)) |
2
dx)

1/2  

+!(
|x|>R" | b(x) |

#
dt)

1/#
[2(! $1)(

R
" | u(x) |!#

*

dx)
1/#*

+2(
R
" | v(x) |!#

*

dx)
1/#*
].

 

For the first term of the above inequality, due to the 
fact that E |

[!R,R]
 is compactly embedded into 

L
!
(["R,R],R) , it can be made arbitrary small by 

choosing | t |  small enough. As far as the second term 
of the above inequality is concerned, according to (2.3) 
and (3.9), we have;  

!
(
|x|>R" | b(x) |

#
dt)

1/#
[2(! $1)

(
R
" | u(x) |!#

*

dx)
1/#*

+ 2(
R
" | v(x) |!#

*

dx)
1/#*
]

% !(
|x|>R" | b(x) |

#
dt)

1/#
[2(! $1)C

!#*
!
PuP

!#*
!

+2C
!#*
!
PvP

!#*
!
]

% &![2(! $1)C
!#*
!
PuP

!#*
!

+ 2C
!#*
!
PvP

!#*
!
],

 

which implies that the second term can be also made 
arbitrary small. Therefore, we show that J  is the 
Gateaux derivative of B . 

Next it is sufficient to prove that !B  is continuous 
(which implies that J  is the Fréchet derivative of B , 
see Proposition 1.3 in [20]). Suppose that u! u

0
 in E , 

then, in view of (2.3) and (3.9), it deduces that;  

PvP=1

sup | !B (u)v " !B (u0 )v |  

=
PvP=1

sup |
R! ( f (x,u(x)) " f (x,u0 (x)))v(x)dx |  

!
PvP=1

sup
|x|!R" | ( f (x,u(x)) # f (x,u0 (x)))v(x) | dx  

+
PvP=1

sup
|x|>R! " | b(x) | (| u(x) |"#1

+ | u0 (x) |
"#1
) | v(x) | dx  

!
PvP=1

sup(
|x|!R" | f (x,u(x)) # f (x,u0 (x)) |

2
dx)1/2

(
|x|!R" | v(x) |2 dx)1/2

 

+
PvP=1

sup(
|x|>R! | b(x) |

"
dx)

1/"
(# $1)[(

|x|>R! | u(x) |
#"*

dx)
1/"*

+(
|x|>R! | u0 (x) |

#"*
dx)

1/"*
]

 

+
PvP=1

sup2(
|x|>R! | b(x) |" dx)1/" (

|x|>R! | v(x) |#"
*

dx)1/"
*

 

! C
2
(
|x|!R" | f (x,u(x)) # f (x,u

0
(x)) |

2
dx)

1/2  

+C
!"*
!
[(! #1)(PuP

!"*
!

+ Pu
0
P
!"*
!
) + 2](

|x|>R$ | b(x) |
"
dx)

1/"  

! "C
2
+ "C

#$*
#
[(# %1)(PuP

#$*
#

+ Pu
0
P
#$*
#
) + 2],  

which yields that !B (u) " !B (u0 )# 0  as u! u
0

. Thus, 
!B  is continuous. Therefore, we have shown that 

I !C
1
(E,R) .  

Lemma 3.2 If (A)  and (F
1 !)  hold, then I  satisfies 

the (PS) condition.  
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 Proof. Assume that u
j{ }

j!N
" E  is a sequence 

such that I(u
j
){ }

j!N
 is bounded and !I (u j

)" 0  as 

j! +" . Then there exists a constant C > 0  such that; 

| I(u j ) |! C,       (3.10) 

for every j !N . We firstly prove that u
j{ }

j!N
 is 

bounded in E . From (3.1), (??) and (??), it is easy to 
deduce that; 

PujP
2
= 2I(u j ) + 2

R! F(x,u j (x))dx

" 2C + 2C
#$*
#
PbP$PujP

#
.

   (3.11) 

Since 1 < ! < 2 , the inequality (??) shows that 
u
j{ }

j!N
 is bounded in E . Then the sequence u

j{ }
j!N

 

has a subsequence, again denoted by u
j{ }

j!N
, and 

there exists u !E  such that; 

,† Einweaklyuu j  

which implies that; 

( !I (u j
) " !I (u))(u j

" u)# 0 as j# +$,    (3.12) 

and, for any j !N , there exists a constant M > 0  such 
that; 

PujP! "C
!
PujP " M and PuP

!
"C

!
PuP " M .   (3.13) 

Next, we verify that I  satisfies the (PS) condition. 
For the given R > 0  in (3.9), on account of the 
continuity of f (x,u)  and uu

j
!  in L

loc

!
(R,R) , there 

exists N!
0
j  such that; 

.<))()()))((,())(,(( 0
||

jjfordxxuxuxuxfxuxf jj
Rx

!""# $
%

                 (3.14) 

On the other hand, joining )( 1 !F , (2.3), (3.9) and 
(3.13), we obtain that;  

|x|>R! ( f (x,u j (x)) " f (x,u(x)))(u j (x) " u(x))dx

#
|x|>R! | f (x,u j (x)) " f (x,u(x)) || u j (x) " u(x) | dx

# $
|x|>R! | b(x) | (| u j (x) |

$"1
+ | u(x) |

$"1
)(| u j (x) | + | u(x) |)dx

# 2$
|x|>R! | b(x) | (| u j (x) |

$
+ | u(x) |

$
)dx

# 2$(
|x|>R! | b(x) |

%
dx)

1/%
(PujP$%*

$
+ PuP

$%*
$
)

# 2$(
|x|>R! | b(x) |

%
dx)

1/%
C

$%*
$
(PujP

$
+ PuP

$
)

# 4&$C
$%*
$
(
M

C'

)
$
.

(3.15) 

 Since ! > 0  is arbitrary, combining (3.14) with 
(3.15), we get;  

R! ( f (x,u j (x)) " f (x,u(x)))(u j (x) " u(x))dx# 0   (3.16) 

as j! +" . Consequently, in view of (??), (3.16) and 
the following equality;  

( !I (u j ) " !I (u),u j " u) =
Puj " uP

2

"
R# ( f (x,u j (x)) " f (x,u(x)))(u j (x) " u(x))dx,

 

it is obvious that Puj
! uP" 0  as j! +" . That is, the 

proof is completed.  

Now we can formulate the proof of Theorem 1.1. 

Proof of Theorem 1.1 It is clear that I(0) = 0 , and 
by Lemma 3.2 we have known that I  is a C

1  
functional on E  satisfying the (PS) condition. On the 
other hand, in view of (3.1) and (??), we obtain that;  

I(u) !
1

2
PuP

2 " C
#$*
#
PbP$PuP

#
,     (3.17) 

which implies that I  is bounded below on E . 
Hence by Lemma 2.3, c = Einf I(u)  is a critical value of 
I , namely, there is a critical point u* !E  such that 

cuI =)( *  and 0=)( *
uI ! . Moreover, this critical value c  

is a negative real number as the following argument will 
show, and so *

u  is a nontrivial homoclinic solution. 

In what follows, we investigate the existence of 
infinitely many homoclinic solutions of (FDE). From 
)( 3F
, it is obvious that I  is even. In order to apply 

Lemma 2.5, we prove that  

for any j !N there exists " > 0 such that # (I $" ) % j.   (3.18) 

By (F
2
) , there exist an open set D ! R  with x

0
!D , 

! > 0  and ! > 0  such that; 

F(x,u) ! " | u |# , $(x,u)%D & R, | u |' ( .    (3.19) 

For any j !N , we take j  disjoint open sets D
i
 

such that 
 i=1

j

! D
i
! D . For 

 
i =1, 2,…, j , let 

u
i
!(W

0

2,2
(D

i
)" E) \ {0}  with Pu

i
P =1 , and;  

 
Ej =span{u1,u2 ,…,u j}, Sj = {u !Ej :PuP =1}.  

Then, for any u !Ej , there exist R
i
!" , 

 
i =1, 2,…, j  

such that; 
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u(x) =
i=1

j

!"iui (x) for x #R.     (3.20) 

From (??), it follows that; 

PuP! = (
R" | u(x) |

!
)
1/!
= (

i=1

j

# | $i |
!

D
i

" | ui (x) |
!
dx)

1/!   (3.21) 

and, 

PuP
2
=

R! [ ""u (x)
2 # w "u (x)2 + a(x)u(x)2 ]dx

=
i=1

j

$%i
2

D
i

! [u ""i (x)
2 # wu "i (x)

2
+ a(x)ui (x)

2
]dx

=
i=1

j

$%i
2

R! [u ""i (x)
2 # wu "i (x)

2
+ a(x)ui (x)

2
]dx

=
i=1

j

$%i
2
PuiP

2
=

i=1

j

$%i
2
.

  (3.22) 

Since all norms of a finite dimensional norm space 
are equivalent, there is a constant ! = !( j) > 0  such 
that; 

!PuP " PuP# , $u %E
j
.      (3.23) 

Note that F(t, 0) = 0 , and so according to (??)-(??), 
we have;  

I(su) =
s
2

2
PuP

2 !
R" F(x, su(x))dx

=
s
2

2
PuP

2 !
i=1

j

#
D
i

" F(x, s$iui (x))dx

%
s
2

2
PuP

2 !&s'
i=1

j

# | $i |
'

D
i

" | ui (x) |
'
dx

=
s
2

2
PuP

2 !&s'PuP'
'

%
s
2

2
PuP

2 !&((s)' PuP'

=
s
2

2
!&((s)'

  (3.24) 

for all u !Sj  and sufficient small s > 0 . In this case (??) 

is applicable, since u  is continuous on D  and so 

 
| s!

i
u
i
(x) |" # ,$x %D, i =1, 2,!, j  can be true for 

sufficiently small s . Therefore, it follows from (??) that 
there exist ! > 0  and ! > 0  such that; 

I(!u) < "# for u $Sj .      (3.25) 

Let;  

 

Sj
!
= {!u :u "Sj},

# = {($
1
,$

2
,…,$ j )"R

j
:
i=1

j

%$i
2
< !

2
}.

 

Then it follows from (??) that; 

I(u) < !", #u $Sj
%
,  

which, together with the fact that I  is an even C1  
functional on E , yields that;  

Sj
!
" I

#$
%&,  

where I !"  and !  have been previously introduced 
in Section 2. On the other hand, it follows from (??) and 
(??) that there exists an odd homeomorphism 
! "C(Sj

#
,$%) . By some properties of the genus (see 

!

3  of Propositions 7.5 and 7.7 in [15]), we infer that;  

! (I "# ) $ ! (Sj
%
) = j,      (3.26) 

so (??) follows. Set;  

cj =
A!"

j

inf
u!A

supI(u),  

where ! j  is defined in Lemma 2.5. It follows from (??) 
and the fact that I  is bounded from below on E  (see 
(3.17)), we have !" < cj # !$ < 0 , which implies that, 

for any j !N , j
c  is a real negative number. By lemma 

2.5 and Remark 2.6, I  has infinitely many nontrivial 
critical points. Consequently, (FDE) possesses infinitely 
many homoclinic solutions.  
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