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ABSTRACT 

Membrane life and performance are crucial factors in adopting membrane-based 

processes for water treatment and separations. This study investigated various time 

series models using hold-out validation of experimentally generated water vapor flux 

and salt rejection rates. Membrane properties were optimized by incorporating 

carbon-based nanomaterials to enhance anti-wetting and porosity, developing 

correlations between membrane characteristics and high fluxes. Fine-tuned 

Autoregressive Integrated Moving Average (ARIMA), Prophet, Exponential Smoothing, 

and Neural Prophet models were trained on an experimental dataset (N=434) 

collected over 36 hours to forecast performance for 72 hours. Results demonstrate 

the superiority of the Exponential Smoothing statistical model in predicting and 

forecasting membrane performance, yielding the lowest root mean square error 

(RMSE) of 0.006 and mean absolute error (MAE) of 0.007. This outperformance is 

attributed to its non-linear data fitting approach, which employs weighted averages 

to mitigate non-stationary behavior in time series data, a characteristic often 

observed in membrane performance over time. While other models showed 

promise, they did not match the accuracy of Exponential Smoothing in this context. 

The proposed modeling approach offers a more efficient alternative to traditional 

experimental studies, potentially leading to significant cost and time savings in the 

research and development phase of membrane distillation processes. This method's 

applicability to various membrane types and operational conditions warrants further 

investigation. 
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1. Introduction 

Membrane based separation processes such as membrane distillation (MD), reverse osmosis [1], filtration [2], 

electrodialysis [3] remains a popular method for water desalination and treatment of produced water [4, 5]. MD 

remains a versatile desalting technique that offers advantages such as low energy input via lower operational 

temperature and pressure and theoretically has nearly 100% rejection of non-volatile feed streams compared to 

the conventional methods [6-10]. Despite an increase in the need for clean water and the potential of MD as an 

emergent technology, its conventional use is limited by low membrane potency specific to high performing 

permeate flux [5]. To address this, polymer membranes are being modified via top-down approach of surface 

coating with nanomaterials or functional groups or bottom-up approach of creating mixed polymer 

membrane/nanomaterial matrix to synthesize membranes with tunable properties specific to membrane 

distillation [11-15]. Another critical factor for industrial scalability is the membrane performance and life under 

MD operating conditions, which remain a challenge due to the time and labor-intensive nature of MD experiments 

[16-19]. However, due to the recent surge in data training and predictive analysis techniques, it is possible to 

develop experimentally informed models that can forecast membrane performance and fluxes for longer duration 

of runs. Such approaches will further support effective MD process design and the development of membrane 

cleaning procedures to enable membrane reuse for an extended duration. 

The use of an artificial neural network (ANN) platform to accelerate the design of efficient nanocomposite 

membranes through material discovery and select process parameters for membrane distillation operation has 

been reported in handful of studies. For instance, Dudchenko et al. [20] developed an ANN model to improve the 

accuracy of empirical methods by estimating the heat transfer and membrane permeability, while Fetanat et al. 

[21] fitted a feed-forward ANN model with Bayesian regularization for predicting nanocomposite membrane 

performance. Binger et al. [22] investigated ANN to predict the effect of spacer geometries on pressure loss and 

concentration polarization in membrane channels. However, few studies have reported time-dependent 

membrane performance and distillation studies based on experimental datasets. Although ARIMA models have 

been reported for the evaluation of the long-term performance of MD desalination on Polyvinylidene fluoride 

(PVDF) membrane [23] and the prediction of membrane fouling of ultrafiltration membranes based on the 

volumetric flux prediction [24], these studies predicted the MD performance based single time-series model that 

does not account for the type of data generated such as linear vs nonlinear or their combination and the resultant 

forecast failed to recognize the nonlinear time series (TS) of MD performance data. 

To overcome the limitations of the studies mentioned earlier, this work evaluated a range of time-series 

forecasting models, including statistical forecasting methods such as Autoregressive Integrated Moving Average 

(ARIMA) and Exponential Smoothing (ES), as well as machine learning models like Prophet and Neural Prophet. 

The models were trained on an experimental dataset of water vapor flux and salt rejection rates with respect to 

time. Prophet and Neural Prophet were chosen specifically because both frameworks are designed for time-series 

forecasting tasks that may exhibit non-linear trends, seasonality, and irregular sampling intervals. The aim of this 

work was to evaluate whether these neural-network–based (or hybrid) models—known for capturing complex 

patterns and for their relative ease of hyperparameter tuning—could outperform more traditional statistical 

methods. Given the inherent ability of neural network-based machine learning (ML) models to capture complex 

non-linear relationships and temporal dependencies, it was hypothesized that these models would outperform 

traditional statistical models in time-series forecasting tasks [25]. Moreover, Neural Prophet extends Prophet by 

incorporating an auto-regression component (AR-Net), which can in principle capture longer-term dependencies 

[26, 27]. Specifically, it was anticipated that the neural network-based ML models would demonstrate superior 

prediction accuracy and generalization to unseen data. This hypothesis was tested using an experimental dataset, 

with model performance evaluated based on appropriate metrics such as Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE). Contrary to the hypothesis, findings of this study indicate that the statistical 

exponential smoothing model yielded the best prediction with the lowest mean errors when comparing model 

prediction and experimental results. Despite the potential of deep learning algorithms in different fields, these 

models underperformed in forecasting water vapor flux and salt rejection rates. Therefore, this study emphasizes 

the importance of choosing the most suitable machine learning model tailored to data training, testing, and 

prediction to achieve the lowest possible error rates. This is especially useful in material discovery and process 

design, which is expensive and laborious but can potentially benefit from predictive multivariate time series 
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analysis. The findings of this work further highlight the importance of evaluating multiple forecasting methods, as 

the best-performing model can vary depending on the unique characteristics of the dataset and the specific 

problem being addressed. 

2. Methods 

2.1. Membrane Distillation Setup and Experiments 

PVDF membranes were modified using the bottom-up wet phase inversion approach by adding carbon 

nanofibers (CNF) and copper (Cu) nanoparticles decorated CNF fabricated using top-down thermal in-situ growth 

approach [28], into PVDF polymer matrix. The fabricated membranes were characterized using scanning electron 

microscopy and ImageJ analysis (pore size distribution), and tensiometer (static water contact angle). All the 

experiments were triplicated using sodium chloride solution at inlet and outlet flow rates of 100 ml/min. Fig. (1) 

represents the flow diagram of MD experiments with inlet and outlet streams. The hot and cold feed 

temperatures were maintained at 70 ± 2 °C and 20 ±2 °C respectively. Water vapor flux 𝐽𝑣 (kg.m-2h-1) and salt 

rejection 𝑅 (%) were recorded. The water vapor flux, 𝐽𝑣 = 𝑚/(𝐴𝑡) (Equation 1) correlates m, the mass of the 

overflow collected, 𝐴 the active area of the membrane, and 𝑡 duration of MD run. While salt rejection (%) efficiency 

represented as 𝑅(%) = (1 − 𝐶𝑝/𝐶𝑓 ) × 100  (Equation 2) compares the conductivities of the permeate (Cp) and the 

feed (Cf). Salt rejection and water vapor flux were recorded for three membranes for 36 hours at a 5 min sampling 

time resulting in a total of 434 data points, out of which 85% of the experimental data until 32nd hour was used for 

training and the remaining dataset for 4 hours were used to test the accuracy of statistical and machine learning 

models.  

 

Figure 1: Process Flow Diagram for Direct Contact Membrane Distillation (DCMD) used in study. TF-1 = Temperature of Feed in, 

TF-2 = Temperature of feed out, TP-1 = Temperature of permeate in, TP-2 = Temperature of permeate out, and CM = 

conductivity meter.  

2.2. Statistical Forecasting: ARIMA and Exponential Smoothing (ES) 

Autoregressive Integrated Moving Average (ARIMA) was used in this study because it is a linear statistical model 

that recognizes non-zero correlation between the consecutive data points for time-series data fitting for higher 

accuracy forecasting [29, 30]. ARIMA protocol involved determining whether the time series is stationary or 

nonstationary. The application of autocorrelation function to water vapor flux data revealed non-stationarity or 
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fluctuation with time for all the experimental data. The details of non-stationarity analysis of the experimental 

data are provided in SI as Fig. S1 and Table S1. Based on this analysis the ARIMA parameters (p, d, f.) for data 

training were optimized and summarized in Table S2. The Akaike Information Criterion and size of ARIMA are 

reported in Table S3. Exponential smoothing was chosen as an alternative study due to its capability to provide 

better predictions compared to other statistical models [31]. The exponential smoothing method gives reliable 

forecasts based on the weighted average of the past observations with highest weight associated to the most 

recent observation [32, 33]. The summary of the parameters used for Exponential smoothing model optimization 

are summarized in Table S4.  

2.3. Time Series Based Machine Learning Models: Prophet and Neural Prophet 

Prophet and Neural Prophet, open-source forecasting specialized tools for modeling nonlinear time series 

were also evaluated. The model is represented by 𝑌𝑡 =  𝑔𝑡 + 𝑆𝑡 + ℎ𝑡 + 𝜖𝑡  (Equation 3)  where parameters St 

corresponds to periodic changes, ht to irregularities, and ϵt as the error to account for any idiosyncratic changes. 

One advantage of Prophet over traditional statistical methods is its ability to handle missing and irregularly spaced 

data values, a common occurrence during large-scale MD operations [26]. To optimize the Prophet algorithm, a 

grid search method with an absolute error accuracy metric was used. The grid search parameters included the 

number of change points and the changepoint prior scale. Shorter MD runs of 36h showed higher sensitivity to 

the model parameters, particularly to changepoint_prior_scale, impacting the prediction significantly. [34].  

Neural Prophet, an improved Prophet neural network time-series data modeler includes Auto-Regressive (AR) 

similar to ARIMA but models the dynamics of an AR (Auto-Regressive) process using a feed-forward neural 

network approach suitable for sequential MD experimental data [27]. Another advantage is its scalability to 

estimate long-range dependencies in case of MD processes that were trained on data collected at fine 

granularities, this this case, minutes. Neural prophet architecture consisted of six components represented as: 

𝑌𝑡 =  𝑔𝑡 + 𝑆𝑡 + ℎ𝑡 + 𝑓𝑡 + 𝐴𝑡 + 𝐿𝑡  (Equation 4) where, additional parameters 𝑓𝑡  represent the regression effects for 

future-known exogenous variables, At corresponds to auto- regression effects based on past observations, and 

finally, Lt is the regression effects at time t for lagged observations of exogenous variables. Incorporating these 

elements into a model can help capture the dynamics of a membrane process more accurately. It incorporated 

additional parameters for future-known exogenous variables such as feed water composition and temperature. 

Auto-regression to predict the water vapor flux and salt rejection rate values based on its previous values. 

Regression effects for lagged observations of exogenous variables such as the effect of process parameters on the 

current water vapor flux. Furthermore, these parameters were tuned using grid search process to obtain the 

combination that produced the best model performance.  

2.4. Performance Evaluation Metrics  

The accuracy of each of the constructed predicting model for water vapor flux and salt rejection dataset was 

evaluated by Root-mean-square error (RMSE) and mean absolute error (MAE) [35, 36] using (y) experimental test 

dataset values and (�̂�) are the predicted value based on N data points. RMSE represents the standard deviation of 

the difference between the forecast and actual data, while MAE is the absolute mean error. Lower values of MAE 

and RMSE imply higher accuracy, indicating the model's predictions closer to the actual values on average. 

𝑅𝑀𝑆𝐸 =
Σ𝑖=1

𝑁 (𝑦𝑖 − �̂�𝑖)
2

𝑁
   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

𝑀𝐴𝐸 =
Σ𝑖=1

𝑁 |𝑦𝑖 − �̂�𝑖| 

𝑁
   (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 

3. Results and Discussion  

3.1. Membrane Distillation Experiment and Data Training  

Our comprehensive experimental approach involved adopting a bottom-up phase inversion approach to 

incorporate a wide range of concentration of copper nanoparticles and carbon nanofibers in the PVDF polymer 
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matrix to tune the porosity, crystallinity, and wettability of the membranes. The superior performing membranes 

comprised of multidimensional Cu and CNF particles incorporated in PVDF membranes to improve their 

permselectivity via induced chemical heterogeneity, improved pore size distribution, contact angle hysteresis and 

hierarchical morphologies confirmed by electron microscopy, ImageJ analysis, and tensiometry. Fig. (2) 

demonstrates the variable porosity from circular pores in (a) PVDF membranes, to ellipsoidal pores in (b) 

CNF/PVDF membranes to larger ellipsoidal pores in Cu+CNF/PVDF membranes. Additionally, static contact angles 

increased with the addition of multidimensional Cu and CNF nanomaterials in PVDF membrane resulting in 

increased hydrophobicity. ImageJ image processing technique confirmed the large pore size distribution of 

Cu+CNF/PVDF membranes in Fig. (2d). The water vapor flux and salt rejection rate studies demonstrated a 64% 

increase in water vapor flux and a salt rejection rate of over 99.8% with just 1wt% loading of Cu+CNF in the PVDF 

matrix as seen in Fig. (2e). While Fig. (2f) schematically summarizes the time-series modeling steps that involved 

training on data obtained for first 32 hours, subsequently, data obtained by the models between 32nd and 36th 

hours were used for testing, followed by forecasting for 72 hours.  

 

Figure 2: a-c) Electron Microscopy and static contact angle of PVDF, CNF/PVDF, and Cu+CNF/PVDF membranes, d) pore size 

distribution, e) water vapor flux and salt rejection rates of PVDF, CNF/PVDF and Cu+CNF/PVDF membranes, f) schematic 

representation of time-series modeling steps  

Preliminary dataset analysis yielded negative for missing values and evaluated z scores for outlier detection 

were insignificant as seen in Fig. (SI-S2) [37]. To preserve the authenticity of the data, no further resampling or 

other preprocessing steps were performed. Salt rejection and water vapor flux were recorded during MD runs for 

36 hours at a 5 min sampling time resulting in a total of 434 data points, out of which 85% of the experimental 

data (or until 32nd hour) was used for training the statistical and neural forecasting models while the remaining 

dataset for 4 hours were used to measure the accuracy of statistical and machine learning models.  

3.2. Performance Evaluation of Statical and Neural Network Models for Data Fitting and Time Series 

Forecasting  

The statistical and machine learning model that provides a good fit to the historical data does not necessarily 

result in accurate forecasts because of the changing data patterns over time that a model may fail to capture. 

Therefore, ARIMA, Exponential Smoothing, Prophet and Neural Prophet models were evaluated based on their 

experimental data training and testing accuracies of water vapor and salt rejection rates obtained for best 
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performing Cu+CNF/PVDF membranes. This study adopted the hold-out validation approach based on its 

simplicity and speed, both water vapor flux and salt rejection data sets were split into a training set and a test (or 

hold-out) set. Each statistical and ML model was trained on the training set and their performance were evaluated 

on the unseen test set. Alternatively, cross-validation involving computing averages overall all iterations of testing 

and training can be adopted. Fig. (3a) and (3b) illustrate the performance of the models on 4-hours test dataset. 

Meanwhile, Fig. (3c) (water vapor flux) and (3d) (salt rejection rate) depicts the forecasting performance of the 

models for the subsequent 72 hours.  

Among all the tested models, exponential smoothing yielded the best prediction with the lowest error rate, 

while the predictive performance of Neural Prophet model was the poorest on test dataset. Neural Prophet 

performance drops dramatically and predict an increase in PVDF water vapor flux for the next 72 hours where the 

trend of water vapor flux is clearly downward. In terms of comparison between Prophet vs Neural Prophet, our 

results show no significance difference between these two models. Both models have the lowest accuracy metrics 

in predicting salt rejection and water vapor flux in three experimental MD.  

In MD studies, the exponential smoothing models demonstrated superior performance by generating forecasts 

based on the weighted averages of past observations of water vapor flux and salt rejection over the initial 32 

hours. The model assigned exponentially decreasing weights to older observations, thereby giving more 

importance to recent observations. The flexibility of exponential smoothing, which involves adjusting parametric 

values to disregard older experimental observations during analysis, enabled the model to adapt more effectively 

to the experimental data. The optimal performance of exponential smoothing can be attributed to its non-linear 

data fitting approach, which employs weighted averages to mitigate fluctuations in the data [38].  

 

Figure 3: Comparison of experimental data training and testing splits for (a) Water vapor flux and (b) Salt rejection rate using 

ARIMA, prophet, neural prophet, and exponential smoothing models. Comparison of models’ performance for forecasting 72 

hours for (a-c) Water vapor flux of PVDF, CNF, Cu+CNF, and (d-f) Salt rejection of PVDF, CNF, Cu+CNF for ARIMA, prophet, Neural 

Prophet, and exponential smoothing. 
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Additionally, the models were also compared for their accuracy by computing RMSE and MAE as summarized in 

Fig. (4). Exponential Smoothing demonstrated the least errors, attributable to its intrinsic property of employing a 

weighted average of the training data and prioritizing recent observations over older ones for forecasting. This 

approach proved particularly effective in this study, given the consistent temporal trend observed in the water 

vapor flux and salt rejection data 

In the context of this study, the Root Mean Square Error (RMSE) values serve as a measure of the average 

discrepancy between the model’s predictions and the actual observations. Consequently, the minimal errors of 

0.012 for water vapor flux and 0.0013 for salt rejection rate, as yielded by the exponential smoothing model, 

signify its superior performance in comparison to the other models examined in this study. Since RMSE values are 

sensitive to outliers, the lowest RMSE values corroborate with the smaller z-score obtained during outlier 

computation (Refer Fig. S2). The largest RMSE was obtained for Prophet and Neural Prophet models for water 

vapor flux and salt rejection rate. This is attributed to several factors, for instance the addition of AR-Net2 in 

Neural Prophet as an extension of the basic Prophet model adds complexity to the model, thereby increasing the 

learnable parameters dramatically which could result in overfitting. The computed smoothing coefficients α, β and 

γ used to adjust the influence of different components of the time series vapor flux and salt rejection data are 

summarized in Table S4 of SI.  

The lower values of the smoothing coefficients represent the suitability of exponential smoothing model to 

capture the underlying patterns in the data, leading to more accurate forecasts and yielding lower MAE and RMSE 

values [39]. However, the performance of these models can vary depending on the specific characteristics of the 

data and the tuning of the model parameters. It’s also worth noting that while MAE and RMSE are useful for 

comparing different models, they don’t provide a complete picture of a model’s performance. Other factors, such 

as the interpretability of the model and its ability to capture uncertainty, should also be considered when 

evaluating and comparing forecasting models. 

 

Figure 4: MAE and RMSE results for models used in this study on salt rejection and vapor flux test dataset. 

These findings suggest that while deep learning has merits, traditional statistical-based time series models 

remain a viable and sometimes preferable alternative, particularly for specific use cases such as the one explored 

in this study. Evaluations of time series models, guided by experimental data, have confirmed that deep learning 

does not always provide superior results [40-42]. On the contrary, conventional TS models may not be optimal for 

datasets spanning extensive durations since models such as ARIMA and Exponential Smoothing require careful 

tuning of their parameters, making optimizing parameters time-consuming. Meanwhile, models like Neural 

Prophet can be complex and computationally intensive. This could pose computational resources and time 

challenges, especially for large datasets. Despite these challenges associated with each forecasting model, with 

careful implementation and consideration of these potential issues, these models can still serve as valuable tools 

in predicting membrane life and stability of membrane distillation processes.  
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It's important to acknowledge that the dataset, consisting of 434 carefully collected data points under 

controlled laboratory conditions, may present fewer irregularities than typically encountered in industrial settings. 

This relatively clean and consistent data allowed conventional statistical models to perform strongly. However, in 

real-world applications where data often contain more noise, outliers, or missing points, advanced machine 

learning approaches might demonstrate clearer advantages. Additionally, the work focused on water vapor flux 

and salt rejection as the primary indicators of membrane distillation performance, it is recognized that additional 

parameters could provide a more comprehensive evaluation of MD systems. Future studies could expand the 

model to include other relevant metrics such as thermal efficiency, energy consumption, permeate quality beyond 

salt rejection, and long-term membrane stability indicators. Furthermore, incorporating additional input variables, 

such as feed properties, membrane characteristics, and operational parameters, could potentially highlight the 

advantages of machine learning methods in handling multivariate complexity. This expanded approach would 

provide a more robust comparison between ML and statistical methods, potentially yielding different results than 

those observed in our current simplified model. As evidenced by large-scale forecasting competitions, the 

performance of different modeling approaches can vary depending on the specific characteristics of the dataset 

and the nature of the problem being addressed [43]. Therefore, while the findings in this work demonstrate the 

effectiveness of statistical methods for this particular dataset, further research with more complex, multivariate 

datasets is necessary to fully explore the potential of ML methods in membrane distillation performance 

prediction. Future research could extend the work by adapting the ML models for inverse design, potentially 

enabling the identification of optimal membrane design parameters for target water vapor flux and salt rejection 

rates. This approach could provide valuable insights for membrane material development and process 

optimization. Additionally, comparing the performance of ML and traditional statistical methods in such 

optimization tasks could further elucidate their respective strengths and limitations in the context of membrane 

distillation research. 

4. Conclusion 

This study presents a systematic approach to experimentally designing high-performing membranes for 

separation processes, coupled with an evaluation of suitable forecasting models to assess membrane life and 

stability over extended periods. The focus on experimentally guided time series (TS) model evaluation 

demonstrated the effectiveness of statistical time series forecasting models in predicting membrane distillation 

process performance over longer durations, yielding minimal mean errors. Error analysis comparing predicted 

and experimental data revealed smaller discrepancies for the exponential smoothing statistical model. The 

findings of this work highlight the importance of meticulous model selection, considering data characteristics and 

study objectives. Future research could explore alternative validation approaches and additional models to 

enhance prediction accuracy. This may include applying advanced deep learning models for multivariate time 

series analysis in membrane design, focusing on interfacial membrane characteristics such as chemical structure, 

pore dynamics, wettability, and surface area. The methodology presented here can be extended to time series-

based design and discovery of membranes, potentially revolutionizing the approach to membrane development 

and optimization in various  separation processes. 
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