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ABSTRACT

Monodisperse microfluidic droplets, with precisely controlled size, high stability, and
compartmentalization, have emerged as powerful tools in biomedicine, chemistry,
and materials science. This review systematically summarizes key droplet generation
methods, co-flow  configurations,
emphasizing how droplet size, frequency, and morphology are governed by channel

including  T-junction, flow-focusing, and

geometry and operating parameters. Numerical modeling approaches-particularly
Volume-of-Fluid (VOF), Level-Set (LS), and Phase-Field (PF) methods-are evaluated for
their capabilities in capturing droplet formation dynamics and guiding device design,
with VOF highlighted as the most reliable due to its mass-conservation properties.
Applications of monodisperse droplets are further discussed in three major
domains: biomedicine, chemical reactions, and materials fabrication. Overall, this
review consolidates current advances in droplet fabrication, mechanisms,
applications and outlines future directions to promote cross-disciplinary innovations.
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1. Introduction

Microfluidic monodisperse droplets, with their precisely tunable size, high stability, and isolation, have
emerged as a versatile platform across disciplines [1, 2]. Each droplet functions as an independent “microreactor,”
enabling high-throughput and well-controlled experimentation while minimizing reagent consumption [3]. Owing
to these advantages, droplet microfluidics holds great promise in precision medicine, single-cell analysis, chemical
synthesis, and the fabrication of advanced materials [2].

Despite these advantages, several fundamental challenges persist [4]. The formation process is governed by
the complex coupling of multiphase fluid dynamics, which experimental methods struggle to fully capture,
particularly in transient regimes [5]. Traditional approaches suffer from poor controllability, risk of cross-
contamination, and excessive reagent consumption. Moreover, experimental observations provide only
fragmented snapshots of droplet formation, hindering the establishment of a generalizable theoretical framework
[6-8]. These limitations severely constrain the precise control of droplet size, frequency, and morphology [9].

To address these bottlenecks, computational fluid dynamics (CFD)-based numerical simulation has emerged as
a powerful tool for studying droplet formation [10]. Simulations can resolve details inaccessible to experiments,
including flow field distribution, interface evolution, and stress transfer, while also guiding channel design and
optimization of operating conditions, thereby reducing costs [10, 11]. Although still developing, CFD studies of
microfluidic droplet formation have already proven invaluable in elucidating formation dynamics, optimizing
device structures, and tuning operating parameters [12]. A comprehensive and up-to-date review of these
advances is therefore timely and essential.

In recent years, advances in microfabrication and novel materials have expanded the applications of
microfluidic droplet systems into biomedicine, chemical engineering, and advanced manufacturing [13-18]. These
developments place increasing demands on droplet size, structure, composition, uniformity, and generation
frequency. However, most existing studies remain focused on specific device geometries or application scenarios,
and a comprehensive review that integrates preparation methods, dynamic mechanisms, and application
prospects into a unified framework is still lacking. This review therefore aims to provide a systematic summary of
droplet generation mechanisms, highlight recent progress in numerical simulations of droplet formation dynamics,
and explore representative applications in biomedicine, chemical reactions, and materials fabrication. The article
is organized as follows: Section 2 introduces typical droplet generation methods and their underlying physical
mechanisms; Section 3 reviews numerical simulation approaches for elucidating droplet dynamics; Section 4
summarizes case studies across key application domains; and Section 5 discusses current challenges and outlines
future directions.

Fig. (1) outlines the methodology adopted in this review. Literature was retrieved from the Web of Science,
PubMed, and Google Scholar databases, with a focus on journal articles and related publications from 2015 to
2025 to capture current research hotspots and emerging trends. The search employed keywords such as
microfluidic monodisperse droplets, droplet generation mechanism, biomedical applications, numerical
simulation, VOF method, and phase-field model. In total, 216 studies related to microfluidic droplet generation
were identified. Among them, 100 addressed experimental and theoretical investigations of droplet formation,
biomedical applications, and strategies for numerical simulation and validation. By synthesizing and comparing
these works, this review aims to provide a comprehensive reference for future advances in droplet design,
application, and multi-physics simulation.

2. Microfluidic Techniques for Monodisperse Droplet Generation

Methods for generating monodisperse droplets in microfluidics can be broadly categorized into flow-driven
and array-based strategies. Flow-based approaches rely on the shear between two immiscible fluids to induce
droplet breakup [19]. Array-based approaches, by contrast, generate droplets through specially designed
micropores, microcavities, or hydrophilic micropattern arrays, often combined with an oil-water separation step
[20, 21]. Among flow-based techniques, the most common configurations are the T-junction, flow-focusing, and
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co-flow methods. These devices operate without external forces; instead, droplet size and frequency are governed
by parameters such as flow-rate ratio, fluid properties, and channel geometry. Collectively, they are referred to as
passive droplet generation methods. The following sections introduce the basic principles and recent advances of
these three representative structures.
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Figure 1: PRISMA flow diagram illustrating the study selection process.
2.1. T-channel Method

The T-channel was the earliest microfluidic unit employed for droplet generation, first proposed by Thorsen et
al. [22]. Its principle is straightforward (Fig. 2a,b): shear and compression from the continuous phase induce
momentum instabilities in the dispersed phase, leading to the formation of monodisperse droplets. In this
configuration, hydrodynamic parameters are the key determinants. For example, when the flow rate ratio of the
dispersed phase to the continuous phase decreases, the droplet generation rate rises markedly [23].

Geometric factors also exert strong influence. Using a T-channel system (Fig. 2d), Yin et al. [11] demonstrated
that increasing the channel width ratio of dispersed to continuous phases from 0.33 to 1.0 reduces droplet
diameter from ~112 pm to ~52 um, while the generation frequency rises from 5 Hz to 18 Hz. Numerical
simulations by De Menech et al. further revealed three formation modes—squeezing, dripping, and jetting—
strongly governed by the width ratio of the two inlets and the size of the orifice [24-26]. Operating conditions are
equally critical. Cramer et al. [27] showed that higher continuous-phase velocity yields smaller droplets, and
greater interfacial tension likewise reduces droplet size. Shen et al. [28] reported that raising the continuous-to-
dispersed phase flow ratio from 2:1 to 10:1 decreases droplet size from ~90 pm to ~35 pm, while increasing
generation frequency from 8 Hz to 26 Hz. Efforts have also been made to optimize T-channel designs. Kumar et al.
[29] inserted a 30 pm x 25 pm rib 30 pm downstream of the junction (Fig. 2e), lowering the critical flow-rate ratio
from @c = 0.08 to 0.0667 and enabling monodisperse droplets even at low capillary numbers (Ca = 0.012).
Additional rib arrangements further transformed unconfined droplets into confined ones, allowing symmetric
splitting in branch channels. Building on the classical T-junction, numerous variants have been developed,
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including asymmetric T-type (Fig. 2c), Y-type (Fig. 2f), double-T (Fig. 2g), modified T-type (Fig. 2h), K-type (Fig. 2j), V-
type (Fig. 2k), and designs with variable downstream channels [30-33]. Rhee et al. [32] further integrated a micro-
dispensing pump into a variable downstream channel chip (Fig. 2i), enabling on-demand droplet generation. This
strategy allows droplets to form only when target particles are detected, thereby avoiding the large number of
empty droplets characteristic of conventional passive methods.

(a) (b) (©)

c
—> - Wy,
—
w A /
d w
y °
Q c 4 — - Qf 4
— (W w Wy — |(w w
y ¢ o Q v v °
d
(d) (e)
Main channel Continuous
phase(Oil) oo 5 Outlet IT
! =25+
4T T : f
n . 1 - -
) ; Units: pm 30 ! 13 10, 15
Wc! Side channel Wa H : ! ! 4+ -
2 ! ; l-15 —15
Dispersed phase (water) ! H 5 55
\ / ” N pmm—y i
Wc=280 pm Wa/We=1 “onti —{ T \ 7 e ] :
C O C O C onlmunug Wo \ _ ¥ :S.e.quenfnll Lt
We/Wa=1 % Wd=250 pm phase ¥ i nn I-junction
-
- juncti f—Lo —{
Ne50nm pOWel B - — Tzlsuom——mn 550 : 460
We/Wa=1.4 Wd=360 pm a6
We=440 pm Wd/We=1.64
> O O
We/Wa=1.76 Wd=460 pm Wi
R
1
Dispersed phase Outlet I

O S Yw, (8) - Mlg‘,_ )

Control
Continuous Ground line port,
phase inlet Outlet

Left S
shenthl

i Focused o G ff";l'--‘\ d
On-demand Stream ] 1 FEOME : \\‘ & Cell suspension
Dispensing Pump . sfencnnigrs 1 N1z Inlet .
(Stand-by) % b .\ — . i

A Cont. % Diep. E ',' \ Droplet

. 5
! phase pllase_.// generation

S TR, junction
Droplet —

1 Right
sheath

Droplet outlet

Figure 2: Schematics of T-junction microchannel structures and their variants. (a,b) Conventional T-junction microchannels for
droplet generation [34]. (c) T-junction with an inlet angle between dispersed and continuous phases less than 90° (0°<8<90°)
[34]. (d) Influence of T-junction geometry and operating parameters on droplet formation [11]. (e) Modified T-junction structure
[29]. (f-h). Y-junction (0°<8<180°) and double T-junction configurations [34]. (i). Improved K-junction design in a microfluidic
chip [33]. (j) K-junction structure [35]. (k) V-junction structure [31].
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2.2. Co-flowmethod

The co-flow method, also referred to as coaxial focusing, employs a capillary aligned along the axis of the
continuous-phase channel [36]. The dispersed phase flows through the inner capillary and merges with the
continuous phase at the outlet, where droplets are generated. Cramer first introduced this technique and
identified two primary regimes of droplet formation: tip dripping and downstream jetting [27]. In the dripping
regime, increasing the continuous-phase flow rate reduces droplet size. At low dispersed-phase flow rates, surface
tension governs droplet breakup. At higher flow rates, inertial forces dominate, and droplets are produced via
jetting [371].

Building on this, Shao et al. [38] used a co-flow device to generate W/O/W double emulsions. They
systematically analyzed the relationship between flow rates and droplet size, and showed that modifying channel
geometry significantly affects droplet characteristics. Wang et al. [39] developed a self-assembled co-flow device
using a 200 pm inner-diameter steel needle and an 800 pym outer-diameter capillary (Fig. 3a). Experiments in a
styrene/SDS-PVP system, combined with 3D surface fitting, revealed droplet diameters ranging from 70 to 377 pm,
which were negatively correlated with continuous-phase flow rate (0.5-3 mL/min) and surfactant concentration
(0.5-7%). Furthermore, Zhang et al. [40] employed a co-flow microplatform with a 0.16 mm oil-phase needle and a
4.8 mm aqueous channel (Fig. 3b), successfully preparing B/Bi,O; high-energy microspheres. In terms of
mechanism, Deng et al. [41] generated W/O droplets using a co-flow device (Fig. 3c) and applied the VOF method
to show that higher continuous-phase flow rates and viscosities both significantly reduced droplet size. Jiang et al.
[42] investigated three types of collection capillaries—conical, concave, and parallel straight—across flow rates
from 0.5 to 20 mL/h (Fig. 3d). They demonstrated that the conical capillary produced the strongest necking effect,
yielding smaller droplets (= 150 pm) at relatively low outer-phase flow rates and lowering the threshold for the
transition from single-core to multi-core double emulsions to 6.5 mL/h.

2.3. Flow Focusing Method

Flow focusing was first introduced by Anna and Dreyfus [45, 46]. In this design, the continuous phase enters
from two lateral channels and exerts shear and compression on the dispersed phase injected from a vertical
channel. Droplets are then formed at the junction. Compared with the T-channel structure, flow focusing enables
more stable droplet formation, better size uniformity, and a broader size range [34].

When the chip was transversely stretched by 25%, the neck width increased, causing the droplet diameter to
grow from 88 pym to 102 um (= 20%), while the generation frequency dropped from 14 Hz to 8 Hz (= 45%). Jung et
al. [43] used a similar device (channel height 80 pm, neck width controlled by flow rate; Fig. 3e) to generate PVCL-
TA aqueous droplets under pH 8.4. Gelation was triggered downstream by introducing an acid phase, producing
spherical microgels of 130-150 um. By adjusting the aqueous-phase flow rate (10-40 pL/h), rod-shaped microgels
with aspect ratios of 2.5-3.9 were continuously produced. Roshan et al. [44] fabricated a flow focusing chip
(continuous-phase channel width 40 pm, dispersed-phase inlet 63 pm, neck 29 pm; Fig. 3f) that yielded highly
monodisperse droplets.

Structurally, axisymmetric flow focusing provides additional advantages. Takeuchi [47] showed that droplet
diameters remain consistently between 50-300 pm, with droplets stably aligned in the channel center and
minimally affected by external disturbances, thus enhancing integrity and uniformity. Castro-Hernandez et al. [48]
further proposed four optimized designs based on numerical simulations and validated them through
photolithography. In 50 pm-wide channels, they successfully generated monodisperse droplets as small as ~1 pm,
demonstrating the critical role of simulation-guided design in enhancing device performance and reliability.

2.4. Summary

In summary, the T-channel, flow focusing, and co-flow methods represent the most widely used passive droplet
generation strategies. As summarized in Table 1, all three rely on the shear and compression of the continuous
phase to break up the dispersed phase into monodisperse droplets. Nevertheless, they differ markedly in
controllability, uniformity, and application scope. The T-channel is conceptually the simplest, with droplet size
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primarily determined by flow-rate ratio and channel-width ratio. Flow focusing provides superior stability and
uniformity, with a broader tunable size range. Co-flow, owing to its axial symmetry, is well suited for generating
both single and double emulsions, and is highly sensitive to continuous-phase flow rate, viscosity, and interfacial
tension. Future progress will rely on integrating high-fidelity simulations with experimental validation to optimize
device architectures and broaden the scope of droplet-based applications. Future optimization of these passive
structures will increasingly rely on high-fidelity simulations to refine geometries and physical mechanisms of
droplet formation.
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Figure 3: Schematics of co-flow and flow-focusing microfluidic devices. (a) Co-flow device for generating styrene droplets [39].
(b) Co-flow device for synthesizing B/Bi,O; high-energy microspheres [40]. (c) Oil-in-water (O/W) droplet formation in a co-flow
capillary system [41]. (d) Glass capillary co-flow device for producing colloidal single or double emulsions [42]. (e) Flow-focusing
chip for preparing cylindrical supramolecular microgels with tunable aspect ratios [43]. (f) Droplet generation process in a flow-
focusing microfluidic chip [44].
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Table 1: Comparison of three representative passive droplet generation structures.

Structural
Key Parameters Advantages Ref.
Feature
. . ' . Simplest principle and intuitive design; Easy to fabricate and compare in experiments; Clear
T-junction Width ratio, flow rate plest princip .  desig y : pal P ) [27,
. . and well-defined relationship between droplet size, flow rate ratio, and channel ratio;
method ratio, surface tension . ) ) : . e . 28]
Highly suitable for studying droplet generation mechanisms and validating simulations
Continuous-phase flow Suitable for preparing multiple emulsions (single, double, and composite emulsions);
Co-flow rate, viscosity, surface Droplet diameter can be flexibly tuned by adjusting outer/inner phase flow rates; Coaxial [40,
tension, collection tube configuration enhances interfacial stability and reduces droplet coalescence; Compatible 41]
structure with diverse material systems (polymers, particle suspensions, etc.)
Provides better droplet uniformity and stability than T-junction; Droplets remain centered
Flow Channel geometry, flow ) pletun y N ] orop . [43,
: in the channel with minimal external disturbance; Covers a wider droplet size range;
focusing rate, external stress ) . ) . 34]
Suitable for functional droplet and multiphase system preparation

3. Numerical Simulation of Monodisperse Droplet Generation
3.1. Numerical Methods and Implementation Platforms

Computational fluid dynamics (CFD) offers distinct advantages for studying microfluidic droplet generation,
including low experimental cost, flexible parameter control, and powerful visualization capability. It provides direct
access to key parameters such as pressure distribution, flow evolution, and phase volume fraction inside
microchannels.

Numerical methods for droplet simulation are generally divided into discrete methods and continuous
interface-tracking methods [49]. The lattice Boltzmann method (LBM) is the most representative discrete approach.
Continuous methods, in contrast, describe the dynamics of multiphase fluid interfaces and include the volume of
fluid (VOF), level set (LS), and phase field (PF) methods [50]. When parameters are properly configured, simulations
based on these methods typically show deviations from experimental data that are minimal or even negligible [51].

In practice, these methods are implemented on both commercial and open-source platforms. ANSYS Fluent is
widely employed for VOF-based simulations of droplet formation, coalescence, and breakup [52]. COMSOL
Multiphysics, by contrast, commonly integrates LS and PF methods to track interface evolution [53]. The modular
structure and multiphysics coupling capabilities of these platforms allow researchers to flexibly construct
microfluidic models and systematically probe the complex interfacial dynamics underlying droplet generation.

3.2. Numerical Simulation of Two-phase Flow

Van der Graaf et al. [54] applied the lattice Boltzmann method (LBM) to simulate droplet formation at junctions
and reported that the method cannot independently prescribe interfacial tension, thereby limiting its accuracy.
Although LBM shows advantages for certain microscale flows, its weak mass conservation significantly constrains
its ability to capture interfacial tension effects [55]. The level set (LS) method suffers from another drawback—its
high computational cost [54]. To overcome these issues, Li et al. [56] developed a full-cycle multiphysics model
using the phase-field (PF) method, covering droplet generation through mixing evolution. Their study revealed that
co-flow focusing structures can regulate both the initial component distribution and vortex patterns within
droplets. A contraction-type focusing nozzle enhanced mixing efficiency by ~15%, underscoring the role of
structural optimization in strengthening internal mixing.

In contrast, the volume-of-fluid (VOF) method inherently conserves mass by solving the transport of volume
fractions across computational cells [57]. This property has made VOF one of the most widely adopted approaches
in microfluidic droplet simulations. For instance, Nguyen et al. [58] employed a three-dimensional VOF model to
analyze droplet formation in a double T-junction. They introduced a droplet-generation phase diagram
incorporating the channel aspect ratio (¢), identifying four distinct regimes and their stability boundaries. Similarly,
Mardain et al. [59] applied a 3D VOF framework to flow-focusing geometries, systematically evaluating the effects
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of flow-rate ratio, capillary number, and channel dimensions on droplet frequency and mass flux. Their work
proposed an optimal parameter set (Q = 5, AR = 1) and established a predictive scaling law between droplet size
and channel geometry. The applicability of VOF extends to more complex conditions. Bi et al. [60] demonstrated
controllable generation of monodisperse droplets using the VOF model by microfluidic chips and the relative error
between experiment and simulation results was less than 5.43%. Nek et al. [61] examined droplet generation
under high viscosity ratios (A = 1-100). They found that extrusion time increased markedly with A, while filling time
remained nearly constant, causing their ratio to approach unity. Furthermore, Rajes [62] validated the method
against experiments on gas-liquid-liquid segmented flows in microchannels. At oil, water, and air flow rates of 5.00,
2.76, and 5.24 mL/min, the simulated droplet length (2.5 mm) closely matched the experimental measurement
(2.45 mm), with only a 2% error. Jammula et al. [63] used VOF to simulate 3-D oil breakup into droplets driven by
carboxymethylcellulose(CMC) aqueous flow in a microchannel, and confirming VOF's accuracy for high-throughput
droplet control in non-Newtonian fluids.

Together, these studies demonstrate that while LBM, LS, and PF each provide valuable insights under specific
conditions, the VOF method has emerged as the most robust and reliable approach for capturing the complex
dynamics of droplet formation in microfluidics.

3.3. Machine Learning-assisted Microfluidic Droplet Generation

In recent years, machine learning (ML) has become a key driver advancing microfluidic droplet generation
toward automation and intelligent control. The research focus has shifted from pure prediction accuracy to a
balanced pursuit of efficiency, interpretability, and automated design [64-66]. Solanki et al. [67] employed
convolutional neural networks to rapidly predict droplet behavior directly from complex geometries, while Wang et
al. [68] developed a bidirectional deep learning model with active learning, achieving precise droplet size control
under limited data. The model predicts both droplet size and flow regime while inversely determining the discrete
phase flow rate from a target droplet size. It achieved an average relative error of only 9.90%, a 45.6%
improvement over the unidirectional model, demonstrating high accuracy in droplet control under small-sample
conditions. Chagot et al. [69] used Bayesian-regularized neural networks and XGBoost models to predict
surfactant-laden droplet size in flow-focusing microchannels. By introducing variational autoencoders for
synthetic data generation, they showed that data-driven methods outperform semi-empirical models and
effectively address data scarcity, and Talebjedi et al. [70] integrated neural networks with multi-objective genetic
algorithms for inverse design of droplet size, frequency, and quality. At the mechanistic insight level, Liu et al. [71]
applied tree-based models with Shapley Additive exPlanations (SHAP) analysis to over 1,800 experimental data,
systematically quantifying feature contributions and revealing that geometric parameters alone account for 22.9%
of the droplet size prediction. Eslami et al. [72] constructed a metaheuristic-optimized hybrid model for rapid
droplet size prediction, which achieved an R? of 0.937, and its reliability was further verified through symbolic
regression and SHAP analysis.

3.4. Summary

This section has reviewed the critical role of numerical simulation in elucidating the dynamics of monodisperse
droplet generation. Established computational methods, particularly the VOF technique, have proven
indispensable for reliably predicting droplet formation across various microgeometries, owing to their robust
mass conservation and accuracy. Emerging ML paradigms are now instigating a shift towards intelligent design
and autonomous control, utilizing generative Al for inverse design and reinforcement learning for real-time
optimization. The convergence of high-fidelity physical simulations with data-driven ML algorithms is poised to
underpin the next generation of predictive and scalable droplet-based microfluidic systems.

4. Applications of Microfluidic Monodisperse Droplet Technology

Conventional bulk droplet generation methods, such as high-speed stirring, often suffer from poor selectivity,
high reagent consumption, safety concerns, and limited reproducibility [73]. In contrast, microfluidic
monodisperse droplet technology has rapidly emerged as a powerful alternative, offering high precision, efficiency,
and minimal material consumption [74]. By enabling exquisite control over droplet size, morphology, and

28



Monodisperse Droplets in Microfluidics: Fabrication and Applications Bi et al.

generation frequency, microfluidic systems not only improve experimental reliability but also expand
opportunities across biomedicine, chemical synthesis, and advanced materials engineering.

4.1. Biomedical Applications

Microfluidic droplets have become a versatile platform for three-dimensional (3D) cell culture and disease
modeling. Unlike conventional two-dimensional culture, 3D droplet-based culture more faithfully reproduces the
in vivo microenvironment, thereby capturing physiologically relevant cell states [75]. The intrinsic laminar flow
protects fragile cells from shear-induced damage, while the picoliter-scale volume makes droplets ideal carriers
for bacteria, viruses, and even single cells.

A number of studies illustrate these advantages. Kwak et al. [76] used a flow-focusing device to encapsulate
cancer cell suspensions, precisely controlling cell number while tuning droplet diameters between 50 and 150 pym.
The resulting spheroids closely mimicked in vivo tumors, providing a robust model for cancer pathogenesis.
Similarly, Jing et al. [77] adopted a jetting mode with mineral oil as the carrier phase, achieving efficient single-cell
encapsulation. At a cell concentration of 10° cells/mL, the encapsulation efficiency reached 80%, enabling single-
cell assays of metalloproteinase activity. Lin et al. [78] reviewed microfluidic systems for COVID-19 diagnosis and
antiviral research. These lab-on-a-chip devices detect viral targets with high sensitivity and low cost. They also
enable drug screening and mRNA vaccine production. Wang et al. [79] combined optoelectrowetting and deep
learning for droplet control. The system precisely manipulates droplets in real time without sensors. It enables
automated, parallel cell culture. This work advances intelligent digital microfluidics.

Microfluidics also facilitates multicellular tumor spheroid formation. Wang et al. [80] employed alginate-matrix
hydrogels to generate highly monodisperse spheroids, achieving > 90% viability in cervical cancer cells. Sun et al.
[81] reported a high-throughput system that produced 200 alginate-based spheroids per minute, with tunable
composition and uniform morphology. A hybrid 3D glass-PDMS chip has further been developed, where electric-
field modulation controlled droplet size, and CaCl,-induced crosslinking preserved ~90% viability of encapsulated
E. coli. Beyond modeling, microfluidic droplets are being engineered as therapeutic carriers. Wang et al. [82]
created nitric oxide-responsive y-polyglutamic acid microgels that shielded probiotics in gastric acid and selectively
released them at inflamed intestinal sites, markedly improving oral bioavailability and mitigating colitis (Fig. 4a).
Sandra et al. [83] reported lipid-polymer hybrid nanoparticles co-loaded with siRNA and budesonide, achieving
macrophage-targeted dual anti-inflammatory and gene-silencing effects. Melika et al. [84] used enzymatic
crosslinking within microfluidic reactors to fabricate phenol-functionalized PVA microspheres for sustained
dexamethasone release over seven days (Fig. 4b,c). These microspheres exhibited excellent cytocompatibility and
mechanical stability, supporting applications in localized anti-inflammatory therapy and tissue regeneration.
Collectively, these advances underscore how microfluidic droplets provide precise, high-throughput, and
physiologically relevant platforms for biomedical research. Their ability to combine cell encapsulation with
therapeutic delivery positions them as a cornerstone technology for next-generation cell models and drug
screening.

4.2. Chemical Reactions

Microfluidic monodisperse droplets offer distinct advantages for chemical reactions owing to their microscale
volume, rapid kinetics, operational simplicity, and intrinsic safety [86]. With typical sizes ranging from 50 to 300 pm,
droplets provide a dramatically enlarged interfacial area, which accelerates reaction rates, reduces reagent
consumption, and minimizes hazardous exposure. Each droplet functions as an isolated microreactor,
independent from its neighbors and from channel walls, thereby eliminating cross-contamination. Several studies
illustrate how this technology reshapes chemical processing. Bringer et al. [87] demonstrated that droplet volume
can be tuned by adjusting the cross-sectional geometry of microchannels, while reactant concentrations can be
controlled by regulating the two-phase flow rates. Moreover, twisted or folded channel designs induce efficient
internal recirculation within droplets, ensuring rapid mixing and uniform reaction conditions-an essential feature
for analytical chemistry. Loh et al. [88] developed a droplet-on-demand microfluidic system coupled with ESI/MS
for real-time monitoring of single-cell biocatalysis. Using hydrodynamic gating, the method enabled precise
nanoliter droplet generation and successfully detected yeast-catalyzed ketoester conversion by mass
spectrometry with high sensitivity.

29



Bi et al. Journal of Advanced Thermal Science Research, 12, 2025

Liquid paraffin + 11202 a® ® 4 w
; R 3G L” ® . #?" % %%, Removing
i e NE < H o surf:
b ° - & surfac ants.
s s 3 . 5 -ﬁm
1111 - e ) . - > .o 6
4 0
TR

‘The temperature
2
reached 490°C

Q
Sle Oy

(=N =3
.~ w o ' o, slg ©
‘i"l? temperntua % “React continuousTy, 170 . =3 =] g'
/ reached 490°C - at high temperatures 2 o =) ()
’ 2 Tl o ol 5 ; 5
el s el S S L W & 55 -
¥, gls =
£lg %
=8 3
2vg 2
SAVAWL | + g ~ =

»

Screening Binder F2603 Boron Bi203

Molecular
Dynamics

—
-~ X XXX/
Feasibility analysis of S—

Microchannel platform Co-flow Microchannel
Computational
Fluid Dynamics

Figure 4: Representative applications of microfluidic monodisperse droplet technology. (a) y-Polyglutamic acid microgels for
colitis relief [82]. (b,c) Dexamethasone-loaded droplets prepared by microfluidics [84]. (d) pH-responsive supramolecular
microgels constructed from tannic acid and PVCL [43]. (e) Boron/Bi,03/F2603 composite microspheres synthesized via
microfluidics [40]. (f) Microcapsules for encapsulating drugs, flavors, or nutrients [85].
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To expand throughput, Kikutani et al. [89] developed an integrated parallel reactor by etching microchannels
onto a glass substrate. This system enabled 2x2 combinatorial amide syntheses, achieving yields above 90%
without detectable cross-contamination. Nonetheless, the device complexity poses challenges for large-scale
implementation. In another example, Chen et al. [90] employed a flow-focusing device to generate monodisperse
droplets, followed by argon-segmented flow in downstream heated serpentine channels. The enhanced heat
transfer facilitated the controlled synthesis of nanoparticles, underscoring the promise of droplet reactors for fine
chemical production. Microfluidics also enables the creation of stimuli-responsive soft materials. Jung et al. [43]
engineered pH-responsive supramolecular microgels from tannic acid and PVCL (Fig. 4d). These microgels could
encapsulate microcapsules or cells and rapidly release their payload in alkaline environments. Furthermore,
droplet templates allowed precise control over particle morphology, yielding spherical or rod-shaped carriers that
are degradable and suitable for probiotic or drug delivery applications. Together, these advances highlight how
microfluidic droplet technology transforms chemical synthesis into a process that is faster, safer, and more
controllable, while enabling novel functional materials that would be difficult to achieve with bulk methods.

4.3. Material Preparation

Microfluidic monodisperse droplets enable precise control over droplet size, morphology, composition, and
spatial arrangement during generation. Such tunability imparts the resulting materials with exceptional uniformity
and predictable performance [91]. This capability not only improves the structural homogeneity of materials but
also facilitates reproducible tuning of their physical and chemical properties. At the same time, microfluidic
platforms support high-throughput droplet generation and manipulation, markedly enhancing the efficiency and
cost-effectiveness of material production [92]. With modular chip architectures, multifunctional units can be
integrated, allowing one-step synthesis and complex structure construction, thereby expanding the design space
of functional materials. At the theoretical level, the formation and stability of droplets are governed by the Young-
Laplace equation, which defines the relationship between interfacial pressure differences and surface tension [93].
In microscale environments, surface effects dominate droplet dynamics, making this equation fundamental for
both modeling and simulation. Thus, numerical simulation of droplet dynamics not only clarifies formation
mechanisms but also provides a powerful framework for the rational design and fine-tuned control of functional
materials.

Practical applications illustrate the versatility of this approach. Deng et al. [94] fabricated embolic microspheres
using chitosan (CS) as the base and genipin as the crosslinker. The microspheres (20-90 pm) exhibited tunable size,
a coefficient of variation below 5%, and favorable swelling and elasticity, making them suitable for interventional
radiology. Wang et al. [95] prepared intestinal-targeted probiotic microcapsules by combining bacterial
nanoencapsulation with microfluidics. Lactobacillus was encapsulated with chitosan/polydopamine coatings
(CS@PDA-LAB) and further embedded in calcium alginate droplets, significantly improving probiotic survival and
oral delivery.Yu et al. [96] reported fiber materials composed of a superelastic polyurethane shell and a liquid
metal core via programmed microfluidic spinning. These fibers showed tunable morphologies and conductive
properties, functioning as pressure sensors and motion monitors when integrated into elastic films, and offering
promise for energy conversion and wearable electronics.

Microfluidics also enables high-energy and responsive materials. Zhang et al. [40] employed coaxial channels to
generate boron/Bi,03/F2603 droplets, which solidified into spherical composite microspheres with improved
flowability, ignition, and combustion. Sun et al. [85] developed a one-step microfluidic strategy for microcapsules
capable of controlled release triggered by pH, mechanical stress, or time (Fig. 4f), suitable for drugs, fragrances,
and nutrients. Han [74] fabricated PMMA-PETRA-coated n-hexadecane microcapsules that combined high
monodispersity, low supercooling, and optical switching across UV-visible-mid-infrared ranges. These capsules are
promising for intelligent radiative cooling and energy storage applications.

4.4. Summary

As summarized in Table 2, microfluidic monodisperse droplet technology offers distinct advantages across
three domains. In biomedicine, it accelerates the development of three-dimensional cell culture, disease modeling,
and drug screening. In chemical reactions, it enhances efficiency and safety by confining processes within isolated
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microreactors. In materials science, it enables high-precision construction and functional customization of
advanced materials. Overall, microfluidic monodisperse droplets are not merely an experimental technique, but a
strategic platform driving interdisciplinary innovation and translational applications. The next critical step for the
field lies in translating these compelling laboratory demonstrations into scalable, robust, and standardized
platforms that can meet the stringent demands of industrial manufacturing and clinical practice.

Table 2: Representative applications of microfluidic monodisperse droplet technology across different fields.

Application . . Potential Application
PP . Main Functions and Advantages R }?p Ref.
Field Directions
3D cell culture closely mimics the in vivo environment; Protects cell Construction of in vitro disease (77,79
Biomedicine morphology and prevents mechanical damage; Enables high-throughput models; Drug screening; 82 ’83]’
and controlled encapsulation of single cells or bacteria Probiotic delivery; Gene therapy '
Chemical Droplets act as independent microreactors, avoiding cross- Fine chemical synthesis; [43, 88
Reactions contamination; High reaction uniformity with efficient mass/heat combinatorial chemistry; High- 9’O]
transfer; Reduced reagent consumption and improved safety throughput reaction screening
Materials Droplets allow precise control over size, arrangement, and solidification; | Photonic crystals; Sensors; Smart [74, 85
Preparation Enable scalable fabrication of functional materials; Facilitate construction materials; Energy storage 76-’96]’
P of complex structures and performance tuning systems

5. Lab-to-industry Translation

Recently, numerous efforts have been devoted to translating microfluidic droplet technologies from laboratory
research to industrial applications [97]. Li et al. [98] introduced a centrifuge-assisted droplet generation method
using injection-molded microchannel arrays. The approach produces uniform droplets within minutes and
supports applications such as hydrogel synthesis and droplet digital polymerase chain reaction. It is low-cost,
efficient, and easy to operate, offering a practical route from laboratory research to scalable production. Chen et al.
[99] simplified droplet digital polymerase chain reaction by introducing a device-free droplet generation method
using crescent-shaped microbeads, achieving high droplet uniformity and detection accuracy comparable to
commercial systems while eliminating the need for complex instruments. In contrast, Cong et al. [100] emphasized
a manufacturing-oriented perspective, outlining a roadmap from laboratory prototypes to scalable production
through design-for-manufacturing, early team integration, material selection, and process standardization. Overall,
these studies highlighted the deployment of advanced microfluidic technologies from laboratory innovation to
industrial-level commercialization.

6. Conclusion

Microfluidic monodisperse droplets have demonstrated unique advantages as controllable multiphase systems,
enabling precision in droplet size, frequency, and morphology regulation. Through this review, three major
contributions can be distilled. First, passive droplet generation strategies—T-junction, flow-focusing, and co-flow—
each provide distinct benefits, yet their performance remains highly sensitive to geometry and operating
parameters. Second, computational fluid dynamics (CFD), particularly the volume-of-fluid (VOF) method, has
proven indispensable for revealing interfacial dynamics and guiding device optimization, though limitations in
mass conservation (LBM), computational cost (LS, PF), and resolution persist. Third, applications across
biomedicine, chemical engineering, and materials science illustrate the interdisciplinary potential of droplet
microfluidics, from single-cell assays to functional material fabrication.

Despite this progress, current research faces three major shortcomings: (i) insufficient balance between
accuracy and efficiency in numerical modeling; (ii) weak integration between simulations and experiments, limiting
predictive reliability; and (iii) inadequate frameworks for scaling droplet technologies toward industrial and clinical
use.
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Looking forward, future development will rely on three directions. The first is the creation of high-fidelity yet
computationally efficient algorithms capable of capturing complex interfacial phenomena. A deeper theoretical
understanding is also needed, moving from empirical correlations to predictive, universal scaling laws that govern
droplet formation for complex fluids and multi-physical fields. The second is the establishment of systematic
experiment-simulation integration, including unified parameter calibration and iterative validation. Concurrently, a
dedicated focus on addressing industrialization challenges is crucial. This includes developing high-throughput,
parallelized systems for mass production, ensuring long-term operational stability, and promoting standardization
to bridge the gap between laboratory prototypes and robust commercial and clinical applications. The third is the
incorporation of Al and ML into microfluidic design and droplet control. AI/ML frameworks are expected to
autonomously discover design rules from high-dimensional simulation and experimental data, thereby
accelerating geometry optimization, parameter tuning, and process control. Furthermore, the coupling of Al-
driven models with digital twins could enable real-time feedback and self-optimization in droplet microfluidic
systems, bridging the gap between virtual prototyping and physical realization.

In summary, microfluidic monodisperse droplets are not only a versatile research tool but also a strategic
innovation platform. By overcoming current methodological bottlenecks and embracing data-centric, Al-driven
design paradigms, the field is poised to evolve toward fully autonomous, predictive, and scalable droplet
technologies with broad impact in both fundamental science and translational technologies.
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