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Abstract: By means of a hybrid lattice Boltzmann method, thermocapillary flow, driven by the surface tension owing to a 
horizontal temperature gradient along the interface in immiscible two-layer liquid system, is simulated numerically. The 
dynamic behavior of the interface is captured by using phase-field theory. The dependence of flow and interface 
deformation on the density ratio, Capillary number and aspect ratio, is investigated. 
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1. INTRODUCTION 

Thermocapillary flow, a surface tension-driven flow, 
has received considerable attention in numerous 
engineering applications, particularly for the liquid 
encapsulation crystal (LEC) growth technique under 
microgravity [1-4]. It is important to understand the 
behavior of thermocapillary flow and the dynamical 
deformation of the interface in two liquid layers to 
achieve the significant advantages of the LEC 
technique. 

Liu et al. [5] simulated a flow in a two layers system 
subject to a horizontal temperature gradient, and 
assumed a flat interface between two immiscible fluids. 
They applied liquid encapsulation to suppress 
thermocapillary flow in the melt under microgravity 
conditions. Gupta et al. [6] adopted the finite difference 
method with a staggered grid and domain mapping 
technique to solve the temperature field and flow field, 
an effective single-layer model, approximating the flow 
within the encapsulated layer, was developed. Koster 
et al. [7] pointed out that, from the experimental view, a 
more detailed investigation of thermocapillary flow in 
multilayered fluid system is needed to account for finite 
interface deformations. 

In the present paper, thermocapillary flow with the 
deformable interface in an annular two-layer liquid 
system is simulated with an axisymmetric hybrid model, 
coupling finite difference method (FDM) with a multiple 
relaxation-time (MRT) lattice Boltzmann method (LBM). 
The phase-field theory is introduced to capture the 
deformation of the liquid-liquid interface. 
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2. NUMERICAL METHOD 

2.1. Axisymmetric LBM for Fluids 

In LBM, fα(x, t) is defined as a particle distribution 
function at position x(r, z), time t with velocity eα. The 
evolution equation for fα(x, t) with a single relaxation 
time collision model is: 
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where 
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eq (x, t)  is the equilibrium distribution function, 
and τ, the single relaxation time, is related to the 
kinematic viscosity ν. In a two dimensional nine-velocity 
(D2Q9) model, the eα is: 
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where c=δx/δt is the lattice velocity. The equilibrium 
distribution function 
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Next, the external force is added directly in the right 
hand side of the evolution equation (1): 
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where 
 
F

0,axis
 is a source term to account for the 

axisymmetric effect in the continuity equation, and 

  
F

1,axis
 is the parts to mimic the axisymmetric 

contribution for the momentum equation: 
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Because of the drawback of the instability at low 
viscosity values in the single relaxation time LBM 
model, a multiple-relaxation-time (MRT) collision model 
is adopted. The collision step in the right hand side of 
the Eq.(5) is implemented in the moment space: 
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where m and meq are moments and their 
corresponding equilibriums, and S is a diagonal matrix: 
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whose components represent the inverse of the 
relaxation time for the transformed distribution function 
 m  relaxing to the equilibrium distribution function 
  m

eq in moment space. The transformation between the 
velocity space and moment space is achieved by the 
matrix M, which serves as a transformation matrix, and 
maps the distribution functions 

  
f x,  t( )  to their 

moments: 
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The transformation matrix M is constructed via the 
Gram-Schmidt orthogonalization procedure from some 
polynomials of the components of the discrete 
velocities. The equilibrium moments can be obtained 
from   m

eq
= Mf

eq . 

In the numerical implementation of this 
axisymmetric MRT LBM model, the collision step is 

conducted in the moment space, whereas the 
streaming step is still operated in the velocity space. 
The hydrodynamic fields, such as the dynamic 
pressure p and the velocity u, are derived from the 
appropriate moments of the distribution function as: 
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2.2. Phase-Field Theory 

In the phase-field model, a sharp fluid interface is 
replaced by a thin but nonzero thickness transition 
region where the interfacial forces are smoothly 
distributed and an order parameter φ is used to 
distinguish the different phases: φ=1 represents the 
phase one and φ=-1 for the other. The time dependent 
interface profile and the evolution of order parameter φ 
can be described by the Cahn-Hilliard equation [8, 9] 
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M is a diffusion parameter named as mobility or 
Onsager coefficient and µ

!
 is the chemical potential 

which is related to the free energy of the system [8]: 
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where V is the region of space occupied by the system. 
The term ! "( )  is the bulk energy density and takes 
the form: 
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The chemical potential µ
!

 is defined as the 
variation derivative of the free-energy function with 
respect to the order parameter: 
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where the Laplacian of !  for axisymmetric flows in 
cylindrical coordinates is: 
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2.2.1 Variable Properties of the Fluids 

In terms of two-phase flow, each phase is assumed 
as incompressible flow, and the fluid properties are 
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taken as constant in each phase. The reconstruction of 
the fluid properties 

 
b !,  t( )  at time t in the whole two-

layer liquid system is achieved through the order 
parameter; 
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where b represents the fluid density ρ, thermal 
conductivity κ, kinematic viscosity ν and heat capacity 
cp. In the following presentation, subscripts ‘1’ and ‘2’ 
denote the variable associated with the upper layer 
liquid and the lower layer liquid, respectively. 

2.2.2 Surface Tension Model 

The surface tension is a result of unbalanced forces 
exerted to the molecules near the interface of the two 
phases. In the numerical simulation, the continuum 
surface force model (CSF) [10] has been widely used 
and the surface tension is reformulated as a volume 
force in the momentum equation which only acts in the 
vicinity of the interface. The expression for the surface 
tension Fs is given by; 
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where the first term in the right side is the normal 
surface tension and the second term expresses the 
tangential force, which appears due to non-uniform 
surface tension. 
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operator and δs is the Dirac function [8]. The interface 
normal n and curvature k can be obtained from the 
order parameter; 
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The surface tension !  is considered to be linearly 
dependent on temperature as; 
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where 
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 is the surface tension coefficient at a 

reference temperature 
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 is a negative 

constant for most of fluids. 

2.3 Temperature Equation 

The governing equation of the temperature field can 
be formulated as; 
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In the present hybrid model, the equations (11) and 
(20) are discretized on the same grid as the evolution 
Eq.(4) by a finite difference method and they are 
updated at the same time. The two equations can be 
rewritten in the following manner; 
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where !  can be the order parameter or temperature, 
!  equal to 

 
!c

p
 in the temperature equation, and !  

represents the diffusion parameter. The right hand side 
in Eq.(21) contains all the spatial derivatives, and the 
time stepping, in the left side, an explicit fourth-order 
Runge–Kutta scheme is employed. 

3. NUMERICAL RESULTS 

As shown in Figure 1, the top and bottom rigid walls 
of the cavity are insulated, whereas the inner and outer 
walls are maintained at constant temperatures: the 
inner wall with a low temperature Tc and the outer wall 
with a high temperature Th. Here, ri is inner radius, H is 
the total thickness and L is the length of the annular 
cavity, respectively. Each liquid layer is characterized 
by its thickness Hi, density ρi, thermal conductivity κi, 
and kinematic viscosity νi (the subscript i=1, 2). The 
important non-dimensional parameters are the Reynol-
ds (Re), Marangoni (Ma), and Capillary number (Ca) as; 

 
Figure 1: Schematic of the two liquid layers annular cavity 
with the outer heated wall and inner cooled wall. 
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where the subscript 2 represents the lower liquid layer, 
and U is the reference velocity defined by the balance 
of tangential stress at the interface [1]; 

 

U = !
"

T
#T

$
2
%

2

         (24) 

where ΔT (ΔT=Th-Tc) is temperature difference 
imposed across the annular cavity. The Prandtl number 
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(Pr) is defined as Pr=ν/κ. Non-slip (bounce-back) 
boundary conditions are employed at all the solid walls. 
The relaxation rates s7 and s8 are determined by the 
kinematic viscosity s7=s8=1.0/(3.0ν+0.5). 

The streamlines and isotherms of the 
thermocapillary flow is exhibited in Figure 2 for Re=10 
with ρ1=ρ2=1.0, cp1=cp2=1.0, σT=-1×10-4, σ0=2.5×10-3, 
Pr=1.0, and ΔT=20. The computa-tional domain is  
H×L=100×200 and ri=0.5L lattice units. For Re=10, the 
convection has little influence on the temperature field, 
and the isotherms remain nearly vertical as in Figure 2. 
The flow features of the two liquid layers are 
thermocapillary convection cells, counter-rotating, and 
each layer is occupied by one. In addition, there is no 
deformation of interface shape because the 
thermocapillary flows in upper and lower liquid layers 
are fully symmetric owing to the same physical 
properties and geometrical conditions. 

The comparison of radial velocity profile with 
different density ratios is demonstrated in Figure 3. The 

different ratios are achieved by varying the density of 
the upper layer liquid while the lower is fixed at 1.0. 
Clearly, a heavier upper liquid layer (ρ1/ρ2=10, 30, and 
50) leads to a reduction of the velocities in both layers, 
while for ρ1/ρ2=0.1, the velocities in both layers is 
increased apparently. In fact, a larger density ratio, 
represents a larger dynamic viscosity (the kinematic 
viscosities between the two layers keeping equal) for 
upper layer liquid because of the fixed density at lower 
liquid layer, and it takes more energy to overcome a 
larger viscosity resistance for thermocapillary flow, and 
therefore, the flow intensity decreases with increasing 
ρ1/ρ2. Figure 3 also shows that the magnitude of the 
velocities in both layers is not equal when the densities 
between the upper and lower layer are different, and 
the interface deformation with different density ratios is 
shown in Figure 4. 

Figure 5 illustrates the influence of different aspect 
ratios on the radial velocity profile. The different aspect 
ratios are achieved by varying the H1 while the lower is 
fixed at H2=75 lattice units. For H1/L<0.375 (H1<H2), the 
velocity in the upper layer is reduced which resulting 

 
               (a)                  (b) 

Figure 2: The streamlines (a) and isotherms (b) for thermocapillary convection with Re=10. 

 
Figure 3: The radial velocity profiles along the z-axis at 
r=0.5L with different density ratios: ρ1/ρ2=0.1, ρ1/ρ2=1.0, 
ρ1/ρ2=10, ρ1/ρ2=30, and ρ1/ρ2=50. 

 
Figure 4: The interface deformation with different density 
ratios: ρ1/ρ2=0.1, ρ1/ρ2=10, and ρ1/ρ2=50. 
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the flow intensity in the lower layer is retarded through 
the viscous coupling at the interface, while for 
H1/L>0.375 (H1>H2), in the upper layer, the magnitude 
of velocity is relatively unaffected by the aspect ratios 
which also reflecting in the lower layer. The results 
indicate that the retarding effect of the top rigid wall to 
the flow is more obvious with a small H1. Figure 6 
indicates the effect of the aspect ratios on the interface 
deformation. 

 
Figure 5: The radial velocity profiles along the z-axis at 
r=0.5L with different aspect ratios: H1/L=0.175, H1/L=0.275, 
H1/L=0.375, H1/L=0.475, and H1/L=0.575. 

 

 
Figure 6: The interface deformation with two different aspect 
ratios: H1/L=0.175, and H1/L=0.575. 

In the last, we examine the effect of the Ca number 
on the interface deformation. With ρ1=ρ2=1.0, ν1=10ν2, 
cp1=cp2=1.0, σT=-1×10-4, and ΔT=20, The different Ca 
numbers are achieved by varying the σ0. Figure 7 
clearly exhibits that the interface deformation becomes 

more obvious at larger Ca. The corresponding radial 
velocity profiles along the z-axis at r=L are shown in 
Figure 8. The intensity of the thermocapillary flow in the 
upper layer liquid is only slightly changed for different 
Ca numbers. In contrast, the intensity of the 
thermocapillary flow in the lower layer liquid is 
enhanced with increasing Ca. 

 
Figure 7: The interface deformation for different Ca numbers: 
Ca=0.2, Ca=0.4, and Ca=0.8, with ν1/ν2=10. 

 

 
Figure 8: The radial velocity profiles along the z-axis at 
r=0.5L with different Ca numbers. 

CONCLUSION  

A numerical study on thermocapillary flow within a 
differentially heated annular cavity containing two-layer 
liquids in the absence of gravity is carried out by using 
the hybrid lattice Boltzmann model, which combines 
MRT LBM and FDM. The results indicate that, while the 
density in lower layer is fixed, the flow intensities in 
both the lower and upper liquid layers are reduced with 
increasing the ratio of density and the interface 
deformation also related to the density ratio. In 
addition, the effect of Capillary number on the interface 



38     Journal of Advanced Thermal Science Research, 2016, Vol. 3, No. 1 Xie et al. 

deformation is investigated, and the results show that 
the interface deformation becomes more obvious at 
larger Ca number. 
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NOMENCLATURE 

fα Density distribution function 

feq Equilibrium distribution function 

mα Moment 

meq Equilibrium moment 

eα Discrete particle speeds 

cp Heat capacity 

u Velocities 

p Pressure  

T Temperature 

n Interface normal 

k Interface curvature 

Re Reynolds number 

Ma Marangoni number 

Ca Capillary number 

Greeks 

σ Surface tension 

φ Order parameter 

κ Thermal conductivity 

ν Kinematic viscosity 

ρ Density 

Subscripts/Superscripts 

α Discrete speed directions (α =0,…,8) 

eq Equilibrium 
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