
 Journal of Chemical Engineering Research Updates, 2014, 1, 3-19 3 

 
 E-ISSN: 2409-983X/14  © 2014 Avanti Publishers 

Frost Heave and Ice Lenses Formation in Freezing Soils 
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Abstract: A generalized model for secondary frost heave in freezing fine-grained soils is presented and discussed. The 
cryostatic suction effect, which increases upward water permeation, ice-lens growth during freezing, and, as a 
consequence, the increase of soil heave, is considered to be the main mechanism of moisture transfer. We recognize 
the need to determine the distribution of the moisture within the frozen fringe by approximation of the experimental data 
for the equilibrium unfrozen water content. This distribution is the result of the complicated interaction between water, ice 
and the mineral skeleton during the freezing process. The generalization of the Clapeyron relation, which is used in the 
studies of other authors, estimates only the drop in initial freezing temperature and does not define the connection with 
the external temperature gradient ∇T, which is responsible for the frost heave process. This very important aspect is 
discussed in detail in the introduction to our paper. We take also into account the ratio Pe/Ste ≠ 1 (where Pe<<1). This 
approach allows us to obtain a more general solution. The criterion of the ice lenses formation in fine-grained soils and 
the model for calculation of the lenses’ thickness and spacing are derived. The dynamics of the lenses formation in 
histogram form is presented and discussed. The theoretical results obtained from the solution for fine-grained soils are 
compared in good agreement with experimental investigations. The model presented predicts the frost heave and ice 
lenses formation in freezing soils with reasonable accuracy, satisfactorily reflects observed phenomena, and thus can be 
suitable for engineering practice.  

Keywords: Frost heave, Frozen fringe, Ice lenses formation, Equilibrium unfrozen water content, Frozen and 
unfrozen soil, Overburden pressure. 

1. INTRODUCTION  

The effects of the harsh climate found in regions 
such as Canada, The United States and North-East 
Asia on civil engineering structures cannot be 
neglected by designers and contractors. For example, 
in the Province of Quebec, with freezing indices 
ranging from 800 to over 2000 degree-days, frost 
penetrates to depths greater than 1.5m and frost action 
mainly develops in frost-susceptible soils, leading to ice 
lens formation, surface heave, and eventual distress of 
structures [1]. In regions with even colder climates such 
as Siberia in The Russian Federation, freezing indices 
of 4000 to 6000 degree-days are found with frost 
penetration to depths greater than 2.5m [2]. 
Nevertheless, it should be noted that frost action in the 
freezing soils is often ignored. When granular soils, 
such as sand, are subjected to freezing, the moisture in 
the soil undergoes phase change, forming what is 
referred to as pore ice. This freezing process is often 
called freezing ‘in situ’. The presence of finer particles 
in these soils can modify their frost susceptibility. A 
slow-moving freezing front may cause unfrozen 
moisture movement toward the freezing front, and 
induce an accumulation of ice [3-6]. In this case, the 
soil promotes the formation of ice lenses during the 
freezing processes, leading to frost heaving, i.e. the 
upwards displacement of the soil surface. 
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Understanding the phenomenon and the development 
of predictive tools will allow for the anticipation of the 
adverse consequences of frost heaving on structures 
and preventing these consequences at the design 
stage.  

The scientific investigation of frost heave goes back 
to the 1920s. Studies of soil freezing were performed 
by Taber [7, 8]. They showed that the increase in 
volume is not only due to the different densities of 
water and ice, but mainly due to a water migration 
process from the unfrozen part of the soil towards the 
freezing front and demonstrated the phenomenon of 
frost heave. Other early contributions to frost heave 
research are those of Beskow [9]. He noted the 
similarity between unfrozen water content during soil 
freezing and residual water content encountered during 
soil drying. This led some (e.g. [10,11]) to suggest that 
water transport during frost heave is akin to the 
capillary rise of water into a dry porous medium, driven 
by surface tension at the interfaces between ice and 
pore water. 

It is interesting that the capillary theory of water flow 
and frost heaving based on the Laplace surface tension 
equation both became popular in the 1960's and 
1970's. The simplicity of the capillary theory was 
appealing, but experimental tests did not confirm its 
validity: heaving pressures during freezing tests were 
found to be significantly larger than those predicted by 
the theory. In addition, there was also evidence that ice 
lenses can form within frozen soil at some distance 
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from the freezing front, which could not be explained by 
the capillary theory. Moreover, it is known from 
experimental [3, 4, 12-15] and theoretical [5, 6, 16, 17] 
studies of freezing processes that the front of 
macroscopic ice formation lags significantly behind the 
boundary of incipient freezing. Due to the physical 
incompetence of the capillary mechanism, hypotheses 
about the existence of capillary forces in freezing soils 
have not been further developed.  

It is known that in soils such as silt, clay and loam, 
only a portion of the water (pore water) will freeze at 
the freezing point, and some liquid water will remain at 
sub-freezing temperatures. This equilibrium unfrozen 
moisture content depends on the specific surface of the 
soil [18-20]. The lowering of the water freezing 
temperature in porous media is a result of the very 
complicated energetic interactions of the active mineral 
surface with free and bound water. In this respect the 
equilibrium unfrozen water content distribution, which 
can be determined experimentally, reflects the total 
effect of these interactions during the crystallization 
process and ice formation [3,4,20-24].  

There is a significant amount of literature that 
considers the mathematical analysis of, so called, 
primary frost heave models without frozen fringe 
formation (see e.g. review by Fasano and Primicerio 
[25]). Nevertheless, in general, these models do not 
consider ice lens formation or any heave of the soil 
surface. However, as experimental investigations show 
[3, 5, 12, etc.], the macroscopic ice formation (ice 
lenses) lags significantly behind the boundary of 
incipient freezing.  

An approach for the prediction of segregation 
potential using the frost heave response was carried 
out by Konrad [1]. This approach was based on frost 
heave characteristics of fine-grained soils. 

It is well known in practice, that the frost heave 
mechanics can be regarded as a problem of impeded 
penetration of a layered medium by an ice-water 
interface that exists in the frozen soil at the front of 
macroscopic ice formation. In this respect a great deal 
of attention is paid on the studies and models of O’Neill 
[26] and O’Neill and Miller [27]. A mathematical 
description of this model is often called the rigid ice 
model for secondary frost heave. According to this 
model, the pore ice and ice lenses are treated as one 
body and heave rate is related to the ice velocity, 
which, in this case, will be independent of spatial 
coordinates and only a function of time, i.e. 

  
v

s
= v

i
(t) .  

The secondary frost heave theory based on a 
thermal regelation mechanism was first modeled by 
Gilpin [28] and discussed in the context of interfacial 
premelting by Worster & Wettlaufer [29]. In accordance 
with Gilpin's concept, the conditions for frost heave rate 
can be written as 

  
v

i
! v

s
= !"#T , where !  is an 

empirical constant.  

In the work of Fowler & Krantz [30] the generalized 
secondary frost heave model is presented. Although 
the authors' comment that their “Generalized model 
can predict the frost heave behavior of different soils 
and agree with the results of qualitative observations”, 
their study suffers from a common fault of a lack of 
qualitative comparison with the calculations of other 
authors and experimental verification. 

Another important aspect of the problem should be 
noted. In the studies of O'Neill and Miller [27], Fowler 
and Noon [31], Fowler & Krantz [30] and Noon [32] it is 
assumed that the distribution of temperature in the 
frozen fringe is given by a generalization of the 
Clapeyron relation, accounting for the effect of both 
pore pressure and capillary suction at the freezing 
temperature. However, it is well known that the 
Clapeyron relation estimates the reduction  !T  of the 
initial freezing temperature of water in the porous 
media and does not characterize the temperature 
distribution in the frozen fringe. As was shown in study 
by L. Bronfenbrener and R. Bronfenbrener [33], the 
temperatures, calculated according to the Clapeyron 
relation for a wide range of moisture and pressure, are 
around initial freezing temperature of water. In 
particular, it follows from the calculations that 
  !T = 0.4°C . We also note, as the experimental 
investigations show [3, 4, 21, 23, 24, 34], the initial 
temperature of crystallization (phase transition) in fine-
grained soils such as silty loam, silt and clay varies 
from -0.3 to -0.5oC. 

In general the frozen fringe – freezing zone, where 
crystallization and unfrozen water migration take place 
simultaneously, is defined from the solution of the 
boundary movement problem (see for example [25, 35-
37]). The moisture in this zone is characterized by the 
redistribution of the unfrozen water content in a 
relatively wide temperature interval. From experimental 
investigations on the equilibrium unfrozen water 
content, this interval is approximately -0.3 to -14 oC. In 
this context we note (for example) that the moisture at 
the front of lens formation 

 
W

l
 in the study of Fowler & 

Krantz [30, p.1666] is equal to 0.2. From experimental 
distributions (see Figure 1A) this moisture conforms 
(approximately) to the temperature -1.4 oC and -6.6 oC 
for the silt and clay, respectively, and it is not in 
agreement with the temperature distribution based on 
the Clapeyron relation. 
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In contrast to model of Fowler & Krantz [30] in our 
opinion the utilization of an equilibrium unfrozen water 
content for finding the experimental moisture 
distribution allows us to obtain the gradient of the 
moisture at the front of most recent ice lens formation 
and, as a consequence, to estimate the water 
permeation flux. This distribution characterizes a total 
result of the very complicated energetic interaction of 
the active mineral surface with free and bound water 
and ice. It is very important to recognize that the 
distribution of the equilibrium unfrozen water content is 
controlled by the external (given) gradient  !T  and in 
this manner bound up with it. On the contrary, the 
generalization of the Clapeyron relation, which is used 
in the work cited above, only estimates the drop in 
initial freezing temperature and does not define the 
connection with the external temperature gradient ∇T, 
which is responsible for the frost heave process. This 
very important aspect is discussed below. 

In this respect the analysis and treatment of 
experimental data in dimensionless variables carried 
out by Bronfenbrener and Korin [6, 23] leads to the 
following approximation function, which is in close 
agreement with experimental distributions (Figure 1B): 

  

!
eq

"( ) =
1+"

1# a
0
"

,        (1.1) 

in which 

  
! = T "T

f( ) / T
f
"T

s( ) ,       (1.2) 

  
!

eq
= W

eq
"W

min( ) / W
0
"W

min
( ) .     (1.3) 

In these last expressions, !  and 
 
!

eq
"( )  are the 

dimensionless temperature and equilibrium unfrozen 
water content; 

 
T

f
 and 

 
T

s
 are initial phase transition 

temperature at the freezing front and at the soil 
surface. They define the temperature gradient in the 
freezing zone; 

  
W

min
=W

eq
(T

s
)  and 

  
a

0
 are the moisture 

at the cold (top) boundary of the soil (or sample), and 
the constant parameter for approximation of 

 
!

eq
"( )  

related to the type of the soil, respectively.  

In the present study, for the unfrozen water content 
we used the dimensionless approximation (1.1) of the 
experimental data, and verified the model by 
comparison with experimental results for the freezing 
process in clay, silt and sandy soils (Figure 1B). We 
also give the solution in dimensionless form, including 
the criteria which characterize the relative effect of the 
convective and phase transition components on frost 
heave and freezing front propagation. 

Thus, in this paper, based on the generalized model 
of secondary frost heave during the soil freezing 
process [33], we present the criterion of the ice lenses 
formation. In this respect the model for calculation of 
the lenses thickness and spacing are derived. The 
histogram of the lenses formation dynamics with 
appropriate values of the frost heave is presented and 
discussed. The results obtained in this study are in 
close agreement with those from experimental 
investigations. 

2. PHYSICAL BACKGROUND AND STATEMENT OF 
THE PROBLEM 

In this section we present a description of the 
physical background, geometry and equations for frost 
heave during the soil freezing process. The initial, 

  
Figure 1: Equilibrium unfrozen water content: A – experimental data of Ershov [3, 21], Bittelli et al. [24], Bronfenbrener and 
Korin [23]; B – dimensionless approximation. 
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boundary, and supplementary conditions and relations 
for the solution are presented. It is also derived and 
discuss criterion of the ice lenses formation. 

2.1. Energy and Mass Conservation Equations 

We consider the process of soil freezing from the 
top down. The coordinate  z  is positive and above its 
origin that is fixed at some point in the unfrozen part of 
the soil.  

We will also assume that the unfrozen part of the 
soil is kept saturated with water at all times. Initially (at 
  t = 0 ) the homogeneous porous medium has a uniform 
moisture distribution 

  
W =W

0
 and a temperature 

  
T

0
 that 

is higher than 
 
T

f
, which is defined as the initial phase-

transition temperature related to the water content, 

  
W

f
=W

0
. At time   t > 0  the top boundary of the system 

(heaved soil surface) 
  
z

s
(t)  is held at the constant 

temperature 
 
T

s
, which is lower than the initial phase-

transition temperature, and the whole domain is divided 
into three zones: (1) the frozen zone 

  
z

l
(t) < z < z

s
(t) , 

which is defined as the region between the cooling 
boundary 

  
z

s
(t)  and the bottom of the most recently 

formed ice lens position – 
  
z

l
(t) ; (2) the frozen fringe 

(freezing zone) 
  
z

f
(t) < z < z

l
(t)  where 

  
z

f
(t)

 
is the 

freezing front position coordinate; and (3) the unfrozen 
zone 

  
z < z

f
(t) . We also define a basal plane at 

  
z

b
! 0 , 

below the maximum depth of freezing 
 
z

f
, at which the 

temperature and water pressure are assumed to be 
known (Figure 2).  

We note that for the prediction of the laboratory 
experiment or treatment of the experimental data the 

 
z

b
 coordinate can be chosen as the origin of the 

coordinate system, i.e. 
  
z

b
= 0 . In the frozen zone the 

temperature varies within the interval 
 
T

s
! T ! T

l
, 

where 
 
T

l
 is the temperature at the base of the lowest 

ice lens, which is designated 
  
z

l
(t) . This region consists 

of alternating layers of ice lenses and soil. Water 
permeation is not possible in this zone owing to the 
impermeable ice lenses.  

In the frozen fringe the temperature varies within the 
range 

 
T

l
! T ! T

f
, and at coordinate 

  
z

f
(t) , which is 

defined as the freezing front position corresponding to 
the frost penetration depth, the ice content vanishes. 

As experimental investigations show [20, 21, 23, 
24], the moisture distribution in the frozen fringe is 
characterized by the temperature distribution and, 

consequently, by the equilibrium water content which is 
dependent on capillary suction effects and phase 
transitions. The unfrozen zone is that of ice-free soil 

 
z

b
< z < z

f
 which is characterized by a temperature that 

is higher than the temperature 
 
T

f
. In the unfrozen 

zone no freezing is occurring and since the pores are 
saturated with unfrozen water, we state that 

 
W = ! , 

where 
 
! = const  is soil porosity. It is clear that heat 

transfer occurs within all zones in the calculation 
domain. 

The boundary value problem for secondary frost 
heave is based on a nonlinear system of equations. 
Even the numerical solution of this problem is very 
complicated. Therefore, for obtaining the solution, we 
analyze the physical prerequisites and hypothesis for 
the considered problem, and based on the estimations 
of the equation's structure we simplify the generalized 
model. 

In the first stage of the analysis we turn to the 
following dimensionless variables: 

  

z =
z

H
0

, t =
t

t
0

, t
0
=

H
0

U
0

,

U =
U

U
0

, v
s
=

v
s

U
0

, v
i
=

v
i

U
0

! =
T "T

f

T
f
"T

s

, k =
k

k
unfr

, S
fr
=

S
fr

#
w
U

0
H

0

$

%

&
&
&&

'

&
&
&
&

,    (2.1) 

 
Figure 2: Schematic description of model system: cross-
section of soil undergoing a frost heave. 
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in which 
  
H

0
= z

s0
! z

b
 is a length scale and 

  
z

s0
 is the 

initial coordinate of the soil surface. We note that in 
laboratory experiments 

  
z

b
= 0  and 

  
z

s0  are the bottom 

and top of the sample, respectively, so that 
  
H

0
 is the 

height of the sample. Since the frost-penetration depth 
(freezing front coordinate) 

 
z

f
 occurs between 

coordinates 
 
z

b
 and 

  
z

s0
, the value 

  
H

0
 is also a 

representative length scale for the conduction process. 
For the freezing front propagation velocity 

 
V

f
= dz

f
dt , 

ice velocity 
  
v

i
 and, consequently, for the frost heave 

rate 
  
v

s
= dz

s
dt  we define the velocity scale 

  
U

0
, which 

also characterizes the time scale 
  
t
0
. As a scale for both 

the capillary suction and the other pressure variables 
we take !  which is the characteristic value of the 
cryostatic suction; for example 

 
f = f ! ,

 
p

w
= p

w
!  

etc. 

Using these variables and for convenience dropping 
in following the line over values with the understanding 
that the appropriate values have dimensionless form, 
the process can be described by boundary value 
problem in the dimensionless form: 

within the frozen zone, where 
 
z

l
< z < z

s
 

 

Pe
d!

dt
= " # k"!( ) ;       (2.2) 

within the frozen fringe, where 
 
z

f
< z < z

l
 

 
Pe

d!

dt
= " # k"!( ) +

Pe

Ste
S

fr
,      (2.3) 

  
W

t
+!"U = #S

fr
,        (2.4) 

   
I

t
+!"V =

1

1#$
S

fr
,       (2.5) 

 
W + I = ! .        (2.6) 

Within the unfrozen zone the pores of the soil are 
saturated with water, i.e. 

 
W = ! , and the energy 

equation is given by following equation: 

  
z

b
< z < z

f
Pe

d!

dt
= "

2
! .        (2.7) 

In the equations (2. 2), (2.3) and (2.7) d/dt = ∂/∂t + 
U⋅∇  is the substantial (total) derivative. The Stefan and 
Peclet numbers are defined as follows: 

  

Ste =
C

p
(T

f
!T

s
)

"
w

L
, Pe =

U
0
H

0

#
,     (2.8) 

where !  is thermal diffusivity.  

In Eqs. (2.3)-(2.6) 
 
W

t
 and 

 
I

t  denote the derivatives 
of water and ice volume fractions with respect to time, 
respectively;  U  and  V  are the water and ice fluxes; 

 
S

fr
 is the freezing rate; 

  
! = 1" #

i
#

w  characterizes the 
ratio of the ice and water densities. The ice flux  V  in 
Eq. (2.5) is given by  

  
V = I v

i
,          (2.9) 

where 
  
v

i
 is the ice velocity. 

Now we assume that the water permeation flux in 
dimensionless variables is given by Darcy’s law in 
following form: 

   

U = !
k

h
"

#
w
gH

0
U

0

$p
w

,     (2.10) 

in which 
 
g  is gravitational acceleration and 

 
k

h  is 
hydraulic conductivity defined as 

  

k
h
= k

0

W

!
"
#$

%
&'

(
,       (2.11) 

where 
  
k

0
 and !  are constants characteristic of the 

appropriate soil type. In particular, the constant 
  
k

0  is 

  
k

0
= 10

!12
÷10

!10
m s  for clay, 

  
k

0
= 10

!9
÷10

!7
m s  for silt 

and 
  
k

0
= 10

!4
÷10

!2
m s  for sand [30]. 

Hydraulic conductivity is an essential characteristic 
of water migration in porous media under conditions of 
Darcy’s law. In our study in order to obtain an analytical 
solution we use the power function of saturation 

  
S =W /!  in the form of Eq. (2.11). This function 
satisfactorily describes the hydraulic conductivity as a 
function of saturation. For the verification of equation 
(2.11) we compare (Figure 3) the calculated results of 
the hydraulic conductivity 

 
k

h
 for silt loam soil obtained 

on the basis of the present model 
(
  
! = 0,481 , k

0
= 10

"7
m s ) – Eq. (2.11) and model (Eq. 

(15), Figure 8) in the work of Watanabe and Flury [38]. 
It can be seen in Figure 3 that the results of the two 
calculations are in a good agreement. 

It should be noted that in study of O’Neill and Miller 
[27] it was assumed that soil particles are held 
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stationary and thermal regelation will cause ice in the 
frozen fringe to move towards the ice lens. The lens 
and pore ice in this model are continuously connected 
– “rigid ice model”, and the rate of heaved soil surface 
– rate of the frost heave is defined by ice velocity: 

   
v

s
= v

i
(t) .       (2.12) 

As was mention in introduction, Fowler & Krantz 
[30] suggest that, in general, the ice velocity 
established by Gilpin [28]. In accordance with Gilpin's 
concept, the condition for frost heave rate can be 
written as 

  
v

i
! v

s
= !"#T ,      (2.13)  

where !  is an empirical constant. 

Although these two models for thermal regelation 
give different result, for the solution we use both 
models. Moreover, in analysis we estimated and give 
the conditions for the use of each model. 

2.2. Initial, Boundary and Supplementary 
Conditions. Criterion of the Ice Lenses Formation 

According to the problem, the initial and boundary 
conditions can be written as follows. Since we consider 
the porous media to be saturated, in general, the initial 
conditions for the temperature and moisture can be 
described as 

  
t = 0 T = T

0
, W =W

0
     (2.14) 

The boundary conditions are defined by the 
equation using the appropriate physical value, as well 

as by the state of the system undergoing the freezing 
process. For the freezing process at time   t > 0 , at the 
top boundary of the system (heaved soil surface) 

  
z

s
(t)  

and at the bottom boundary of the calculated domain 

 
z

b
, we set the appropriate constant temperatures 

 
T

s
, 

which are lower than the initial phase-transition 
temperature, and 

  
T

b
= T

0
> T

f
. Also at the boundary 

 
z = z

b
 the pressure 

 
p

w
= p

!
 must be specified. At the 

boundary 
 
z

f
we assume the continuity of the 

temperature and water pressure, and also water 
permeation flux. At the most recently formed ice lens 
boundary 

 
z

l
 we assume the continuity of the 

temperature. In this case the temperature at this 
boundary is found in the course of finding the solution 
(as was mentioned in the introduction, we do not use 
the Clapeyron relation for the temperature distribution 
in the frozen fringe). The pressure at the base of the 
lowest ice lens 

 
p

i  is equal to the load (overburden) 
pressure  P . 

It is necessary to note that since the pressures 
 
p

i
 

and 
 
p

w  are related via the cryostatic suction for given 
type soil as following  

  
p

i
! p

w
= f (W ) ,       (2.15) 

the boundary condition at the base of the lowest ice 
lens is equivalent to the boundary condition for the 
unfrozen water pressure: 

  
p

wl
= P ! f (W

l
)        (2.16) 

 
Figure 3: Hydraulic conductivity for the silt loam soil: comparison between calculation results obtained on the basis of the 

present model (
  
! = 0,481 , k

0
= 10

"7
m s ) – Eq. (2.11) and model of Eq. (15) – Figure 8 in study of Watanabe and Flury [38]. 
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In the last equation the index (subscript) ‘l’ indicates 
a value, the quantity of which is found at the boundary 

 
z = z

l
. The capillary relation function 

  
f (W )  for different 

soils is experimentally measured (see for example [26]) 
and is represented in Figure 4A in terms of soil 
saturation 

 
S =W !  or as function of moisture  W  

(Figure 4B). The character of the curves is related to 
the soil type. For all types of soil the function 

  
f (!) = 0 . 

 
Figure 4: Schematic description of cryostatic suction 
function: A – dependence on saturation for different types of 
soil; B – as a function of volumetric moisture for specific soil. 

As a supplementary relation, we consider the total 
pressure balance in the form [30]: 

  
P = p

e
+ (1! " ) p

i
+ " p

w
,     (2.17) 

in which  P  and 
 
p

e
 are the overburden pressure and 

the effective stress exerted by the soil grains when they 
are in contact, respectively; 

  
!(W )  is the stress partition 

function which can be represented as 

 

! =
W

"
#
$%

&
'(

r

,      (2.18) 

where  r  is an empirical constant. 

The relationship (2.17) may be written more 
conveniently as 

  
P = p

e
+ p

w
+ (1! " )( p

i
! p

w
)     (2.19) 

or in the following form: 

  
P = p

e
+ p

w
+ (1! " ) f (W ) .    (2.20) 

Since in the course of ice lens formation soil 
particles will readily separate, in this case the effective 
stress 

  
p

e
= 0 . This fact can be considered as a 

criterion, and therefore from the Eq. (2.20) we obtain, 
after a simple transformation, the mathematical 
description of the criterion for initiating a new ice lens 
as 

  
P ! p

w
= [1! "(W )] f (W )       (2.21) 

In Figure 5 we present a graph of the left- and right-
hand sides of the equation (2.21) in the form 

 
p

w
! P  

and 
  
!(1! " ) f (W ) , respectively, as a function of !  – a 

coordinate measured as the positive downward 
distance from the lowest ice lens coordinate 

 
z

l
 (Figure 

2). , The water pressure 
 
p

w  is obtained by solving 
equation (2.10). 

 
Figure 5: Conditions for ice-lens initiation: distribution of both 

 
! 1! "( )  and 

 
p

w
! P  as a function of coordinate ! . 

Both quantities are monotonic and increasing with 
increasing !  and hence lens initiation will occur when 
these curves have a tangency. From Figure 5 it can be 
seen that the point of tangency for these curves occurs 
within the water pressure boundary layer and the 
shape of 

 
p

w
! P  arises from the value 

  
! f

l
= ! f (W

l
)  at 
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! = 0  to the asymptotic value 

 
p
!
" P  as ! " # . The 

character of the water pressure distribution shows that 
within the permeation boundary layer 

 
p

w
! p

"
. In this 

case according to the solution of the equation (2.21) 
the value of the moisture, corresponding to pressure 

  
p

l
! p

wl
 at the boundary of lowest ice lens, is 

 
W !W

l
. 

Hence, the criterion for new ice lens formation can be 
written as follows: 

  
P ! p

"
= (1! #

l
) f

l
,     (2.22) 

where 
  
!

l
= !(W

l
)  and 

  
f
l
= f (W

l
) . 

For the determination of the frost heave rate and 
freezing front velocity, we reduce the frozen fringe to a 
moving planar boundary, across of which jump 
boundary conditions are prescribed. These conditions 
can be obtained by the integration of the mass and 
energy balances across the frozen fringe [39]. The 
derivation of these relations we will provide in the next 
section after some simplification and conversion of the 
boundary value problem for the dimensionless 
variables. 

3. SIMPLIFICATION OF THE MODEL AND 
SOLUTION 

The dimensionless form of the problem allows us to 
estimate the terms of the equations and to consider 
appropriate simplifications that will permit the solution 
of the problem. For this purpose it can be assumed that 
the length of interval 

 
!

f  
of the local phase transition is 

extremely small. The estimation of this interval can be 
obtained on the base of likeness and dimension 
analysis arising from the following physical 
considerations and have been discussed in details in 
our previous study [33]. Here we note only some 
results.  

In particular, the crystallization process and water 
migration within interval 

 
!

f
 (kinetic zone) should be 

commensurate. Namely, both effects should be values 
of the same order of magnitude. If 

 
t
!

 is the 
characteristic time of the crystallization reaction in the 
frozen fringe and  U  is a permeation flux of unfrozen 
water migration, then the condition of conformity of 
these processes can be written as 

  

O
! I

!t

"
#$

%
&'
= O ( )U( ) .       (3.1) 

If we set the order of magnitude of each value, 
taking into consideration Eq. (2.10), we obtain in 
dimensional variables the following relation: 

  

!
f
=

k
0
"

#
w

gH
0
U

0

,       (3.2) 

where 

  

!
f
=

!
f

H
0

.        (3.3) 

The characteristic values for the parameters into 
Eq. (3.2) are σ ∼ 1 bar, 

  
!

w
= 10

3 kg m3
, g = 10m s2 , 

   
k

0
!10

!11
÷10

!12
m s  (for fine-grained soils), 

  
H

0
∼1m. 

The characteristic magnitude of water permeation 
velocity 

   
U

0
!10

!8
m s  is known from experimental 

investigations [3, 4, 16, 21]. By substituting these 
values into Eq. (3.2) we see that the dimensionless 
length of the frozen fringe has changed approximately 
within interval 

  
10

!3
" #

f
"10

!2 . This estimation implies 
that the frozen fringe can be assumed to be a free 
planar boundary.  

Since the ice lenses prevent any water migration 
into zone 

 
z

l
< z < z

s
 there is no advection above the 

frozen fringe. In this case the equation (2. 2) can be 
rewritten in the simple form: 

for 
 
z > z

l
 

  
! " k!#( ) = 0 .      (3.4) 

In the unfrozen zone the Peclet number, 
characterizing the ratio of the heat advection to heat 
conduction, can be defined as 

   

Pe =
U H

0

!
.        (3.5) 

As was mentioned above, the water permeation 
velocity 

    
U =U

0
!10

!8
m s , 

   
! !10

"6
m

2
s , hence the 

Peclet number    Pe !10
!2 , thus implying that sensible 

heat advection can be ignored, and Eq. (2.7) can be 
represented in the following form: 

for 
  
z < z

f
!

2
" = 0 .      (3.6) 

Attention should be paid to the fact that in the 
freezing of fine-grained soils under natural and 
experimental temperature gradients, the Stefan number 
can be changed within a relatively wide range: from 
0.0083 to 0.056 [3, 16, 21]. Hence, although the Peclet 
number can be far less than one,   Pe <<1  the ratio 

 
Pe Ste  is able to take values smaller, equal and larger 
than one. In this connection, the energy conservation 
equation (2.3) within the frozen fringe can be 
represented in the form:  
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for 
  
z

f
< z < z

l
! " k!#( ) +

Pe

Ste
S

fr
= 0 .     (3.7) 

In order to eliminate the freezing rate 
 
S

fr
, we 

combine the equations (3.7) and (2.4). After some 
simple transformations we obtain: 

   

W
t
+ ! " U # k

Ste

Pe
!$

%

&
'

(

)
* = 0 .      (3.8) 

We note that the equation (3.8) is more general 
than the analogous equation in the work of Fowler and 
Krantz [30] and in case 

  
Pe Ste = 1 , both equations are 

reconciled.  

After integration of the equation (3.8) across a thin 
frozen fringe 

  
z

f
,z

l( )  
we obtained the first equation for 

the solution: 

 

W
l
V

f
=U

l
+

Ste

Pe
k
!"
!n

l

#
!"
!n

f

$

%
&
&

'

(
)
)

,      (3.9) 

where 
 
V

f
! dz

f
dt

 
is velocity of phase front 

propagation. 

We recall that the dimensionless conductivity is 
defined as 

 
k = k k

unfr  
(see (2.1)), and therefore for the 

unfrozen zone   k = 1 . 

Although we have ignored the frozen fringe, we 
preserve in our generalized model the main features of 
the frozen fringe by means of setting appropriate 
boundary conditions, corresponding to the problem 
[33].  

In order to obtain the quantity of the heave rate 
 
V

s
, 

we consider the water mass balance across 
 
z

l  (the 
second equation): 

  
1!"( )Vs

=U
l
+ 1!"( ) # !W

l( )v i
,    (3.10) 

where 
  
v

i  is an ice velocity. 

We remember that the equations (3.9) and (3.10) 
are equations in dimensionless form, and the indexes 
(subscripts) ‘l’ and ‘f” indicate a value, the quantity of 
which is found at the boundary 

 
z = z

l
 and 

 
z = z

f
, 

respectively. 

Obtaining the system of equations (3.9)-(3.10) with 
associated relations makes it possible to find both the 
frost heave and freezing front propagation (frost 
penetration) as a function of time.  

As an example we consider a one-dimensional 
freezing process in region 

 
z

b
< z < z

s
, which allows us 

to illustrate the theoretical concepts, principal features 
and main regularities of secondary frost heave and also 
to compare theoretical results with experimental 
investigations. 

In this respect we consider two-zone model: frozen 
zone, for which 

 
z

f
< z < z

s
 and unfrozen zone, where 

the coordinate  z  varies within the interval 
 
z

b
< z < z

f
.  

The basic heat transfer equation for these zones is 

  

!
2
"

!
2
z

= 0 .      (3.11) 

It is clear that the solutions of Eq. (3.11) for both 
zones are linear functions, and with boundary 
conditions 

  
!(z

s
) = !

s
= "1 , 

  
!(z

f
) = !

f
= 0

 
and 

  
!(z

b
) = !

b
 the temperature gradients at the boundaries 

 
z = z

l
 and 

 
z = z

f
 are given by 

  

!"

!z
l

= #
1

z
s
# z

f

,       (3.12) 

and 

 

!"

!z
f

= #
"

b

z
f
# z

b

.     (3.13) 

We note that for a given overburden pressure  P , 
the 

 
W

l
 can be obtained directly from equation (2.21) 

according to the dependence of 
 
f W( )  and stress 

partition function 
 
! W( ) . In this way, the value 

 
f
l
= f W

l( )  can also be found. The permeation flux 
 
U

l  
at the base of the lowest ice lens 

 
z = z

l
 as a function of 

the temperature gradient can be found from integration 
of Eq. (2.10) with employing the Eq. (1.1): 

  

U
l
= ! !"

#$

#z
l

,      (3.14) 

where 

   

!! = !
l

f
l
" P " p#( )$

%
&
' (

1+ a
0

1" a
0
)

l( )
2
(
W

0
"W

min

W
l

, 

 

!
l
=

" k
l
# L

gk
unfr

T
f
$T

s( )
%
Ste

Pe
.      (3.15) 
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Using the equations (3.12)-(3.14) for the 
temperature gradients and permeation flux, we can 
write the system of equations (3.9)-(3.10) for the 
freezing front propagation coordinate (frost-penetration 
depth) and frost heave in final form: 

 

dz
f

dt
= !

A

z
s
! z

f

+
B

z
f
! z

b

,    (3.16) 

 

dz
s

dt
=

C

z
s
! z

f

,      (3.17) 

where 

   

A = k
Ste

Pe
! !"

#
$%

&
'(
)

1

W
l

B = *
b

Ste

Pe
)

1

W
l

+

,
-
-

.
-
-

.     (3.18) 

The value  C  depends on the model of thermal 
regelation process:  

- for “Rigid ice model” of Miller 

   

C = !
R
=

!!

1"#( ) 1" $ "W
l( )%

&
'
(

,    (3.19) 

- for “Gilpin’s model” 

   

C = !
G
=

!! + !" 1#$( ) % & #W
l( )

1#$( ) 1# & #W
l( )'

(
)
*

,    (3.20) 

With dimensionless parameter 

 
!" =

"

#
$
T

f
%T

s

Pe
.      (3.21) 

Thus equations (3.16) and (3.17) are the closed 
system of equations that allows us to obtain frost-
penetration depth (propagation of the freezing front) 
and frost heave as functions of time. Upon integration, 
the frost-penetration 

 
V

f  
and heave rate 

 
V

s
 can also be 

found. 

The above system of equations is subject to the 
following initial conditions for coordinates 

 
z

f
 and 

 
z

s
: 

at 
  
t = 0 , z

f
= z

s
= z

s0
,     (3.22)  

where 
  
z

s0
 is initial soil surface (Figure 2). 

The non-linear problem (3.16), (3.17), (3.22) was 
solved by Runge-Kutta method.  

4. RESULTS AND DISCUSSION 

The complete analysis of the model for secondary 
frost heave is described in our previous paper [33]. In 

Table 1: Thermal and Physical Properties of Silt-Loamy Soil 

Property Symbol Value 

water density 
 
!

w
 

  
10

3 kg m3  

ice density 
 
!

i
 

  
0.917 !10

3 kg m3  

thermal conductivity  k  
  
4.0W mK( )  

heat capacity 
 
Cp  

  
3.0 !10

6 J kgK( )  

soil porosity !  
 
0.481  

initial volumetric moisture 
  
W

0
 

  
0.41m

3
m

3  

minimal volumetric moisture 
  
W

min
 

  
0.14m

3
m

3  

pressure scale !  
  
1.0bar  

hydraulic conductivity  
exponent 

!  9 

hydraulic conductivity 
  
k
0

 
  
3.58 !10

"8
m s  

Gilpin’s model constant !  
  

10
!10

m
2( ) sK( )  
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this section we confine ourselves to some main results. 
The attention is paid mainly on the evaluation of the 
model for its ability to predict frost heave and freezing 
front propagation. In this respect the comparison 
between calculation results and experimental 
investigations is analyzed. In particular, for the 
verification of model we compare results of the 
modeling with experimental study carried out by 
Konrad [1] and related to the approach for the 
prediction of segregation potential using frost heave.  

In addition, we give the rate of the frost heave 
 
V

s  
and velocity of phase front propagation 

 
V

f  
and also 

discuss the effect of hydraulic conductivity on the 
calculated results and as a consequence on the 
conformity between Miller’s and Gilpin’s models. The 
main information on the thermal and physical 
properties for the silt-loamy soil and additional data 
required for the modeling are listed in Table 1. The 
cryostatic suction function 

  
f (W )  was calculated by 

approximation represented in study by Noon [32].  

Figure 6 illustrates the freezing front propagation 
(frost-penetration) velocity and heave rate.  

 
Figure 6: Freezing front velocity and heave rate as a function 
of time. 

As follows from the graph, the heave rate 
approaches (for the large time) the asymptotic solution 

 
dz

s
dt =V

s
t( ) = const , which characterizes the slope of 

the function 
  
h

s
t( ) = z

s
t( )! z

s0
. For this (large) time the 

function 
 
h

s
t( )  is linear. As was expected, the velocity of 

the freezing front propagation 
 
V

f
t( )  

tends to zero, 

  
lim
t!"

V
f

t( ) = 0  that corresponds to the stoppage of the 

freezing front at certain distance from the cold 
boundary. It should be noted that these characteristics 

are essential for the prediction of frost heave and its 
preventing at the level of design and construction. 

The next figure compares results obtained under 
conditions of the different models of the thermal 
regelation process. In the literature, in particular in the 
study of Fowler, Krantz (1994 p.1655), it is concluded 
that “these two models for thermal regelation will yield 
different result”. Indeed, in general the Miller’s and 
Gilpin’s models lead to different results (see equations 
(3.19) and (3.20)). Nevertheless, it is interesting to find 
under which conditions these two models lead to the 
same results for frost heave characteristics.  

For this purpose the Figure 7A plots the 
dependence of the coefficients 

 
!

R
 for rigid ice 

approximation and 
 
!

G
 for Gilpin’s models, 

respectively, on hydraulic conductivity 
  
k

0
 which is 

defined by soil structure and thereby characterizes the 
type of soil. For convenience the graphs are done in 
logarithmic coordinates. The hydraulic conductivity 
coefficient 

  
k

0
 is varied over a wide range, which 

characterizes the full spectrum of clayey soils. It can be 
seen that beginning from the values of 

  
k

0
! 2.0 "10

#10
m s  and higher (for silt and silty-loam 

soils) the coefficients 
 
!

R
 and 

 
!

G
 are concurrent 

(4.2A), and both models lead to the same results 
(Figure 7B). On the other hand, decreasing the 
coefficient 

0
k  leads to different results in the models 

(Figure 7C) and the discrepancy between the solutions 
increases with decreasing values of hydraulic 
conductivity. These calculation results arise from 
analysis of the coefficients 

 
!

R
 and 

 
!

G
, based on 

equations (3.19) and (3.20). It follows from these 
equations that in the case when 

   
O
!!( )"O !" # 1$%( ) # & $W

l( )( ) , coefficients 
 
!

G
" !

R
 

with high accuracy. 

As a final result, we present the comparison of the 
appropriate distributions of frost heave and freezing 
front propagation (frost depth) calculated using the 
solution from this model and experimental data 
obtained by Konrad [1]. As an example, we considered 
the experiment for the sample of limestone 3, initial 
material thickness of which was 

  
H

0
= 97 mm  and water 

at the boundary 
 
z

l  (in our notation), measured after 

freezing, was 
  
W

l
= 21% , respectively. The 

temperatures at the cold and warm boundaries were 
held constant   !4.1°C  and   1.5°C , respectively. 

We note that the thermal properties of the limestone 
and other information for our solution are absent in the 
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cited work. Therefore, characteristics for frozen and 
unfrozen zones, conforming to given experimental 
values of skeleton density and moisture, were 
borrowed from the book of Feldman ([2], p. 26). Figure 
8 illustrates the comparison of the experimental results 
for the frost heave distribution (Figure 8A) and also for 
freezing front propagation – frost depth (Figure 8B) in 
the sample, subjected to an overburden pressure of 20 
 kPa , with calculations obtained by application of the 
present model.  

It is shown that the calculated frost heave and frost 
depth curves match the experimental results very 
closely. The discrepancy does not exceed 3.0% for the 
frost heave and 5.5% for the frost depth (see error bar 
on the graphs). The results of comparison indicate that 
the model presented can satisfactorily reproduce the 
frost heaving process associated with freezing and can 

be used as predictor for studied phenomenon at the 
design stages. 

5. A MODEL OF ICE LENSES FORMATION 

The ice lenses formation in freezing porous media is 
interesting but at the same time is very complicated 
problem. As was mentioned in introduction the 
theoretical and experimental studies on frost heave 
phenomenon and ice lenses formation goes back to the 
1920s and up to recent time [1, 7, 8, 27, 28, 30, 32, 40-
42].  

For example Taber [7] established that the pressure 
from frost heaving is due to the direction of ice crystal 
growth, which is, in turn, controlled by the direction of 
heat loss. He also observed [8] that the rate of heave is 
continuous under constant temperatures applied at the 
top and bottom of soil specimens even though the ice 

  

 

Figure 7: Comparison between Gilpin’s and Miller’s models: A – dimensionless coefficients of Miller’s (
 
!

R
) and Gilpin’s (

 
!

G
) 

models depending on hydraulic conductivity scale 
  
k

0  
(soil types); B – frost heave evolution for 

  
k

0
= 5 !10

"10
m s ; C – frost heave 

evolution for 
  
k

0
= 5 !10

"11
m s . 
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lenses are separate and distinct from each other. 
Moreover, the experimental investigations show that 
the displacement of ice lenses is normal to the phase 
front propagation; spacing and thickness of ice lenses 
are increased due time (Figure 9A). The same results 
were obtained by Watanabe and Mizoguchi [42] 
seventy years later (Figure 9B).  

It should be noted that there is sufficiently wide 
spectrum of mathematical models in scientific literature 
on the freezing in porous media. Nevertheless, there is 
not common approach to the considered problem. 

In present study, on the basis of physical process 
we try to develop of the mathematical model for 
calculation of the very important parameters of ice 
lenses formation – distance (spacing) 

 
D

l
= z

l
! z

i  

between lenses and their thickness 
 
h

l  as functions of 
time (see Figure 5). In this connection we consider the 
criterion (Eq. (2.21)) of ice lens formation: 

  
P ! p

w
= [1! "(W )] f (W ) .      (5.1) 

The capillary pressure can be obtained from Darcy’s 
law (2.10), which for 1D problem has a form: 

  

U = !
k

h
"

#
w
gH

0
U

0

$
% p

w

%z
. 

Taken into account the relation of derivatives 

 
!p

w
!" =#!p

w
!z  (see Figure 2), the last equation can 

be rewritten as 

  
Figure 8: Comparison of modeling with experimental results (Konrad, 2005) for overburden pressure of 

  
20 kPa : A – frost heave, 

B – frost depth (freezing front propagation). 

 
Figure 9: Ice lenses formation (the ice lenses appear black): A – experiment by Taber [8]; freezing from top of soil specimen. B 
– experiment by Watanabe and Mizoguchi [42] (right-hand side is colder). 
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U
!
=

k
h
"

#
w
gH

0
U

0

$
% p

w

%!
 ,      (5.2) 

where the hydraulic conductivity 
 
k

h
 is defined by Eq. 

(2.11). 

By expansion of the function 
  
W (! )  in Taylor series 

in vicinity of the point 
 
! = 0  that corresponds to point 

 
z = z

l  (Figures 2 and 5) we obtain that 

  

U! =
k

0
"

#
w

gH
0
U

0

$
1

%
&

W
l
+ 'W

l
!( )&

(p
w

(!
 

or in other form: 

  

U! =
k

l
"

#
w

gH
0
U

0

1+
$W

l

W
l

!
%

&
'

(

)
*

+
, -p

w

-!
,     (5.3) 

where 

  

k
l
= k

0

W
l

!
"

#$
%

&'

(
.        (5.4) 

According to the properties of the logarithmic 
function we can rewrite the last equation in following 
form: 

  

U! =
k

l
"

#
w

gH
0
U

0

exp ln 1+
$W

l

W
l

!
%

&
'

(

)
*

+%

&

'
'
'

(

)

*
*
*
, -p

w

-!
.     (5.5) 

By expansion of the logarithmic function in Taylor 
series in vicinity of the point 

 
! = 0  the equation (5.5) 

can be written as 

  

U! =
k

l
"

#
w

gH
0
U

0

exp
$ %W

l

W
l

&

'
(

)

*
+ !

,

-
.
.

/

0
1
1

2p
w

2!
     (5.6) 

Now we represent the Eq. (5.6) in the form of 
differential equation in respect to capillary pressure 

 
p

w
 

  

!p
w

!"
=
#

w
gH

0
U

0

k
l
$

%U"exp &
' (W

l

W
l

"
)

*
+

,

-
. .     (5.7) 

Since 
 
U

!  
varies over the length scale of the frozen 

fringe, whereas the water pressure varies over the 
permeation boundary layer thickness (

 
! <<1 ), and 

 
! = 7 ÷ 9 >>1 , the equation (5.7) can be integrated 
assuming 

 
U

!
 to be constant. Using the boundary 

condition 
 
lim
!"#

p
w
!( ) = p

#
, we obtain the water-pressure 

profile as 

  

p
w
= p! "

#
w

gH
0
U

0

$ k
l
%

U
l

W
l

&W
l

exp "
$ &W

l

W
l

'

(
)

*

+
, -

.

/
0
0

1

2
3
3

.    (5.8) 

Using the condition 
 
p

i
= P  at the boundary 

 
! = 0  

that corresponds to 
 
z = z

l
 (lowest ice lens), in the form 

of Eq. (2.24), the solution (5.8) gives: 

  

P ! f W
l( )! p" = !

#
w

gH
0
U

0

$ k
l
%

U
l

W
l

&W
l

.     (5.9) 

Replacing in Eq. (5.8) the coefficient before 
exponent by Eq. (5.9) leads to the following function for 

 
p

w
!( )  

 

p
w
!( ) = p" + P # f W

l( )# p"( )exp #
$ %W

l

W
l

&

'
(

)

*
+ !

,

-
.
.

/

0
1
1

.  (5.10) 

By substituting solution (5.10) into criterion (5.1) and 
taken into consideration relation between derivatives 

  

!W
l
= "W "#( )

#=0

= $ "W "z( )
z=z

l

(
 
! = z

l
" z ), by invers of 

the exponent, we obtain: 

  

z
l
! z =

1

"
#
W

l

$W
l

# ln
P ! p% ! 1! & W( )'( )* # f W( )

P ! f W
l( )! p%

+

,
-
-

.

/
0
0

.  (5.11) 

In order to obtain distance between lenses we 
consider the last equation at the boundary 

 
z = z

i  of the 
new lens formation (Figure 5). This leads to the 
following solution:  

  

D
l
= z

l
! z

i
=

1

"
#
W

l

$W
l

# ln
P ! p% ! 1! & W

i( )'( )* # f W
i( )

P ! f W
l( )! p%

+

,
-
-

.

/
0
0

(5.12) 

In general it is possible to obtain the second 
equation relatively to 

 
z

i
 and 

 
W

i  by equality of the 
slopes (derivatives) of the left and right functions in Eq. 
(2.21) (Figure 5). Nevertheless, assuming that 

 
z

l
! z

i  is 

small [42] it can be set 
 
W

i
!W

l
 and spacing between 

lenses can be calculated by following expression: 
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The thickness of the lenses can be obtained simply 
from the physical interpretation of the phase front 
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velocity 
 
V

f
, heave rate 

 
V

s  and thermal regelation 
process.  

Let 
  
t

l

n!1  be the time of the formation of the (  n!1)-th 

lens. Then 
 
t

l

n

 is given approximately by 

  
z

l
t

l

n!1( )! z
i

t
l

n( ) = D
l

t
n

l( )      (5.14) 

According to frost heave and thermal regelation 
processes the thickness of the lens 

 
h

l  can be defined 
as  

  
h

l
= z

s
t

l

n( )! z
s

t
l

n!1( ) = " t #V
s
.    (5.15) 

In last equation 

  

! t = t
l

n
" t

l

n"1
=

D
l

V
f

.     (5.16) 

By substitution  !t  into Eq. (5.15) we obtain 
relatively simple model of the lens thickness, which is 
in agreement with experimental results: 

 

h
l
= D

l
!
V

s

V
f

.      (5.17) 

In the equations (5.15)-(5.17) 
 
V

s
= dz

s
dt  and 

 
V

f
= dz

f
dt

 
are rate of the frost heave and frost 

penetration velocity. 

As an example and verification of the model we give 
the calculation of the spacing and thickness of the 
lenses in freezing soil. This calculation was carried out 
on the basis of following main data: high of sample –

  
H

0
= 15cm ; overburden pressure –

  
P = 30kPa ; 

hydraulic conductivity –
  
k

0
= 3.8 !10

"9
m s ; cooling 

temperature at the top of sample (
 
z = z

s
) –

  
T

s
= !1.8°C ; 

temperature at the bottom of sample (
 
z = z

b
) –

  
T

b
= 1.9°C . In calculation it was considered Gilpin’s 

model of thermal regelation as a general model (see 
Introduction and also Section 2). In Figure 10 we plot 
the lens spacing (distance) and thickness against time 
(Figure 10A) and dynamics of the lenses formation in 
histogram form obtained in present study (Figure 10B). 
In the histogram we also give the values of the heaving 
surface coordinate 

 
z

s
.  

From distributions it can be seen that both 
characteristics are increasing function of time that is in 
agreement with experimental investigations (see for 
example [8, 15, 42], etc.). It is also shown that the 
absolute values of the lenses’ parameters are small. 
From graphs it can be found that the spacing and 
thickness of lenses formation after 8 hours exceed 

  
1.2mm  and 

  
0.6mm , respectively.  

6. CONCLUSIONS 

1. The generalized model for secondary frost heave 
is presented. In contrast to the models of other 
authors (in particular, Fowler & Krantz [30]) we 
recognize the need to determine the distribution 
of the moisture within the frozen fringe by 
approximation of experimental data. The 
equilibrium unfrozen water content reflects the 
complicated interactions between water, ice and 
mineral skeleton during the freezing process. 
The generalization of the Clapeyron relation, 
which is used in the work cited above, estimates 
just the drop in initial freezing temperature and 
does not give a connection with external 

   
Figure 10: Ice lenses formation in freezing soil: A – lenses spacing and lenses thickness against time; B – histogram of ice 
lenses formation at different times. 
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temperature gradient which is responsible for the 
frost heave process.  

2. For the determination of freezing front 
propagation and frost heave, a system of 
differential equations has been derived and 
solved by the Runge-Kutta method.  

3. It is very important that the system of equations 
and as a consequence, solution has been 
obtained in the form of characteristic criteria 
Peclet ( Pe ) and Stefan ( Ste ). This approach 
allows obtaining the more general solution as 
well as to analyze the frost heave and 
propagation of the freezing front as dependent 
on the convective and phase transition 
components of the problem. 

4. The analysis and comparison of results obtained 
under conditions of the different models of 
thermal regelation process – “Rigid ice 
approximation” of Miller and “Gilpin’s model” are 
presented. For the first time it is obtained the 
conditions (criterion) for the use of each model. 

5. The criterion of the ice lenses formation in fine-
grained soils and the model for calculation of the 
lenses’ thickness and spacing are derived. The 
histogram of the lenses formation is presented 
and discussed. 

6. The theoretical concepts and the results 
obtained from the solution presented are in 
agreement with appropriate experimental 
investigations. The utilization of this solution for 
the prediction of the frost heave phenomenon 
and ice lenses formation in the soil freezing 
processes shows that the calculated frost heave 
and other components (frost penetration, heave 
rate and front velocity) match the experimental 
results very closely and indicates that the model 
can well reproduce the frost heaving process.  
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