A Review of Micellar Enhanced Ultrafiltration Technique in the Removal of Heavy Metals from Aqueous Solutions
Abstract - 267
PDF

Keywords

Critical micelle concentration
Heavy metal ions
Membrane types
Micellar-enhanced ultrafiltration
Surfactant

How to Cite

1.
Deniz ŞAHİN. A Review of Micellar Enhanced Ultrafiltration Technique in the Removal of Heavy Metals from Aqueous Solutions. J. Chem. Eng. Res. Updates. [Internet]. 2020 Nov. 10 [cited 2024 Nov. 7];7(1):34-46. Available from: https://avantipublishers.com/index.php/jceru/article/view/1018

Abstract

The pollution of the aquatic ecosystems with heavy metal ions has become a global problem in recent years. Heavy metals normally occur in nature and are essential to life at trace levels. However, they can be toxic when their concentrations exceed the upper permissible limits. Heavy metal contaminated habitats have the ability to bioaccumulate in aquatic ecosystems, which, in turn, may enter into the food chain and lead to health problems. Therefore, it is necessary to remove these heavy metals from aquatic ecosystems. Several technologies are already in operation, but these conventional technologies involve high operational costs and may produce harmful impacts on aquatic ecosystems. Micellar enhanced ultrafiltration (MEUF) is an alternative technique to remove the trace concentrations of heavy metals from aquatic ecosystems. The uniqueness of MEUF is that it requires less energy due to low membrane cost and working pressure. Although various researchers have been carried out the MEUF study on the removal of heavy metal ions, few review papers indicate the factors on MEUF technique. That is the reason why this article focuses on reviewing of different parameters such as membranes, surfactants, operating conditions in the MEUF technique. In this technique, heavy metal ions’ removal even at lower concentrations has reached over 99%, which is evidently demonstrated in the presented review. The use of water-soluble ligands in combination with MEUF is a hybrid process to remove selectively and enhance the recovery of heavy metals. As understood in this study, an investigation is needed to treat highly concentrated solutions and real wastewater.

https://doi.org/10.15377/2409-983X.2020.07.5
PDF

References

Fu F, Wang Q. Removal of heavy metal ions from waste- waters: a review. Journal of Environmental Management 2011; 92: 407-418.https://doi.org/10.1016/j.jenvman.2010.11.011

Barakat MA. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry 2011; 4: 361-377.https://doi.org/10.1016/j.arabjc.2010.07.019

Thomas M, Białecka B, Zdebik D. Sources of copper ions and selected methods of their removal from wastewater from the printed circuits board production. Inzynieria Ekologiczna 2014; 37: 31-49.

Fu F, Chen R, Xiong Y. Application of a novel strategy -coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters. Separation and Purification Technology 2006; 52: 388-393.https://doi.org/10.1016/j.seppur.2006.05.017

Al-Zboon KK, Al-Harahsheh MS, Hani FB. Fly ash-based geopolymer for Pb removal from aqueous solution. J.Hazard.Mater 2011; 1883: 414-421.https://doi.org/10.1016/j.jhazmat.2011.01.133

Al-Zboon KK, Al-smadi BM, Al-Khawaldh S. Natural volcanic tuff-based geopolymer for Zn removal: Adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut 2016; 227: 248-309.https://doi.org/10.1007/s11270-016-2937-5

Hawari AH, Mulligan CN. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour. Technol 2006; 97: 692-700.https://doi.org/10.1016/j.biortech.2005.03.033

Tenório JAS, Espinosa DCR. Treatment of chromium plating process effluents with ion exchange resins. Waste Manage. 2001; 21: 637-642.https://doi.org/10.1016/S0956-053X(00)00118-5

Mohsen-Nia M, Montazeri P, Modarress H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent andreverse osmosis processes. Desalination 2007; 217: 276-281.https://doi.org/10.1016/j.desal.2006.01.043

Leung PS. Surfactant micelle enhanced ultrafiltration, in: A.R. Cooper (Ed.), Ultrafiltration Membranes and Applications, Plenum Press, 1979; New York, pp. 415-421.https://doi.org/10.1007/978-1-4613-3162-9_28

Dunn RO, Scamehorn JF, Christian SD. Use of micellar-enhanced ultrafiltration to remove dissolved organics from aqueous streams, Sep. Sci. Technol 1985; 20: 257-284. https://doi.org/10.1080/01496398508060679

Christian SD, Scamehorn JF. Use of micellar-enhanced ultrafiltration to remove dissolved organics from aqueous streams, in: J.F. Scamehorn. J.H. Harwell (Eds.), Surfactant-Based Separation Processes, Marcel Dekker, New York, 1989; pp. 3-28.

Scamehorn JF, Christian SD, Ellington RT. Use of micellar-enhanced ultrafiltration to remove multivalent metal ions from aqueous streams, in: J.F. Scamehorn, J.H.Harwell (Eds.), Surfactant-Based Separation Processes, Marcel Dekker, New York, 1989; pp. 29-51.

Huang C, Batchelor B, Koseoglu SS. Crossflow surfactant-based ultrafiltration of heavy metals from waste streams. Sep. Sci. Technol 1994; 29: 1979-1998. https://doi.org/10.1080/01496399408002185

Sadaoui Z, Azoug C, Charbit G, Charbit F. Surfactants for separation processes: enhanced ultrafiltration. J. Environ.Eng. ASCE 1998; 124: 695-700. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:8(695)

Zaghbani N, Hafiane A, Dhahbi M. Removal of Direct Blue 71 from wastewater using micellar enhanced ultrafiltration. Desalination and Water Treatment 2009; 6: 204-210.https://doi.org/10.5004/dwt.2009.638

Schwarze M. Micellar-enhanced ultrafiltration (MEUF)-State of the art. Environ. Sci. Water Res. Technol 2017; 3: 598-624.https://doi.org/10.1039/C6EW00324A

Jana DK, Roy K, Dey S. Comparative assessment on lead removal using micellar-enhanced ultrafiltration (MEUF) based on a type-2 fuzzy logic and response surface methodology. Sep Purif Technol 2018; 207: 28-41.https://doi.org/10.1016/j.seppur.2018.06.028

Huang J, Li H, Zeng G, Shi L, Gu Y, Shi Y, Tang B, Li X. Removal of Cd (II) by MEUF-FF with anionic-nonionicmixture at low concentration. Sep Purif Technol. 2018; 207: 199-205.https://doi.org/10.1016/j.seppur.2018.06.039

Grzegorzek M, Majewska-Nowak K. The use of micellar-enhanced ultrafiltration (MEUF) for fluoride removal from aqueous solutions. Sep Purif Technol 2018; 195: 1-11. https://doi.org/10.1016/j.seppur.2017.11.022

Aoudia M, Allal N, Djennet A, Toumi L. Dynamic micellar enhanced ultrafiltration use of anionic (SDS)-nonionic(NPE) system to remove Cr3+ at low surfactant concentration. J. Membr. Sci 2003; 217: 181-192.https://doi.org/10.1016/S0376-7388(03)00128-5

Baek K, Kim BK, Cho HJ, Yang JW. Removal characteristics of anionic metals by micellar-enhanced ultrafiltration. J. Hazard. Mater 2003; 99: 303-311. https://doi.org/10.1016/S0304-3894(03)00063-3

Juang RS, Xu YY, Chen CL. Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. J. Membr. Sci 2003; 218: 257-267.https://doi.org/10.1016/S0376-7388(03)00183-2

Shi YH, Huang J H, Zeng GM, Gu YL, Hu Y, Tang B, Zhou JX, Yang Y, Shi LX. Evaluation of soluble microbial products (SMP) on membrane fouling in membrane bioreactors (MBRs) at the fractional and overall level: a review. Rev. Environ. Sci. Bio 2018; 17: 17-85.https://doi.org/10.1007/s11157-017-9455-9

Hajdu I, Bodnar M, Csikos Z, Wei S, Daróczi L, Kovács B, Győri Z, J Tamás, Borbély J. Combined nano-membrane technology for removal of lead ions. 2012; 409: 44-53.https://doi.org/10.1016/j.memsci.2012.03.011

Sohan S, Lee SE, Lee TK. Micellar-Enhanced Ultrafiltration (MEUF): Activated carbon fiber (ACF) hybrid process using low surfactant concentration for zinc(II) removal from synthetic wastewater. Desalin Water Treat 2015; 54: 929-943.https://doi.org/10.1080/19443994.2014.912160

Huang JH, Zeng G-M, Fang YY, Qu YH, Li X. Removal of cadmium ions using micellar-enhanced ultrafiltration with mixed anionic-nonionic surfactants. Journal of Membrane Science 2009; 326: 303-309.https://doi.org/10.1016/j.memsci.2008.10.013

Puasa SW, Ruzitah MS, Sharifah ASAK. An overview of Micellar-Enhanced Ultrafiltration in wastewater treatment process, Int. Conf. Environ. Ind. Innov 2011; 12: 167-172.

Ankita A, Singh A. A brief review of micellar enhanced ion (MEUF) techniques for treatment of wastewater in India. Jrn. of Water Eng. and Mng 2020; 1: 14-30.https://doi.org/10.47884/jweam.v1i1pp14-30

Bade R, Lee SH. A review of studies on Micellar Enhanced Ultrafiltration for heavy metals removal from wastewater. J. Water Sustain 2011; 1: 85-102.

Şahin D, Taş O, Taşcıoglu S. Determination of Pb(II) ions in wastewater by differential pulse polarography combined with surfactants and membrane filtration process. Fresenius Environmental Bulletin 2017; 26: 7128-7136.

Bade R, Lee SH, Jo S, Lee H, Lee S. Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for chromate removal from wastewater. Desalination 2008; 229: 264-278.https://doi.org/10.1016/j.desal.2007.10.015

El-Abbassi A, Khayet M, Hafidi A. Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater Water Research 2011; 45: 4522-4530.https://doi.org/10.1016/j.watres.2011.05.044

Myers D. Surfactant Science and Technology, Third Edition ed. New Jersey: John Wiley & Sons. Inc, 2006.

Samper E. Rodríguez M, De la Rubia MA, Prats D. Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology 2009; 65: 337-342.https://doi.org/10.1016/j.seppur.2008.11.013

Şahin D, Taşcıoglu S. Removal of Cu(II) ions from single component and Cd(II) containing solutions by micellar enhanced ultrafiltration utilizing micellar effects on comple x formation. Desalination and Water Treatment 2016; 57: 11143-11153. https://doi.org/10.1080/19443994.2015.1042059

Baek K, and Yang, JW. Competitive binding of anionic metal with cetylpiridinium chloride micelle in micellar enhanced ultrafiltration. Desalination 2004; 167: 101-110. https://doi.org/10.1016/j.desal.2004.06.117

Luo F, Zeng GMT, Huang JH, Zhang C, Fang YY, Qu YH, Li X, Lin D, Zhou CF. Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF. Journal of Hazardous Materials 2010; 173: 455-461.https://doi.org/10.1016/j.jhazmat.2009.08.106

Şahin DT. Removal of Zinc from an Aqueous Solution Using Micellar-Enhanced Ultrafiltration (MEUF) with Surfactants. Journal of the Turkish Chemical Society, Section A:Chemistry 2018; 5: 691-700.https://doi.org/10.18596/jotcsa.288933

Liu CK, and Li CW. Combined electrolysis and micellar enhanced ultrafiltration process for metal removal.Separation and Purification Technology 2005; 43: 25-31.https://doi.org/10.1016/j.seppur.2004.09.010

Beolchini F, Pagnanelli F, De Michelis I, Veglio F. Treatment of concentrated arsenic (V) solutions by micellar enhanced ultrafiltration with high molecular weight cut-off membrane. J Hazard Mater 2007; 148: 116-121.https://doi.org/10.1016/j.jhazmat.2007.02.031

Gzara L, Dhahbi M. Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination 2001; 137: 241-250.https://doi.org/10.1016/S0011-9164(01)00225-9

Xu K, Zeng GM, Huang J H, Wu J-Y, Fang YY, Huang G, Li J, Xi B, and Liu H. Removal of Cd2+ from synthetic wastewater using micellar enhanced ultrafiltraion with hollow fiber membrane. Colloids and Surfaces A: Physicocemical and Engineering Aspects 2007; 294: 140-146.https://doi.org/10.1016/j.colsurfa.2006.08.017

Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. 4th ed. John Wiley & Sons; 2012. https://doi.org/10.1002/9781118228920

Yenphan P, Chanachai A, Jiraratananon R. Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination 2010; 253: 30-37.https://doi.org/10.1016/j.desal.2009.11.040

Lee J, Yang JS, Kim HJ, Baek K, Yang JW. Simultaneous removal of organic and inorganic contaminants by micellar enhanced ultrafiltration with mixed surfactant. Desalination 2005; 184: 395-407. https://doi.org/10.1016/j.desal.2005.03.050

Tanhaei B, Chenar MP, Saghatoleslami N, Saghatoleslami N, Hesampour M, Kallioine M, Sillanpää M, Mänttäri M. Removal of nickel ions from aqueous solution by micellar-enhanced ultrafiltration, using mixed anionic-non-ionic surfactants. Sep.Purif.Technol 2014; 138: 169-176. https://doi.org/10.1016/j.seppur.2014.10.018

Tung C, Yang Y, Chang C, Maa J. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Waste Management 2002; 22: 695-701.https://doi.org/10.1016/S0956-053X(02)00049-1

Zhang B, Li R, Zhong J, Zhang L. Micellar-enhanced ultrafiltration of copper ions using sodium dodecyl sulfate and its mixture with Brij 35, Tween 80 and Triton X-100. Water Sci Technol 2013; 67: 2154-2159.https://doi.org/10.2166/wst.2013.126

Ferella F, Prisciandaro M, De Michelis I, Veglio F. Removal of heavy metals by surfactant-enhanced ultrafiltration from wastewaters. Desalination 2007; 207: 125-133.https://doi.org/10.1016/j.desal.2006.07.007

Nguyen LAT, Schwarze M, Schomäcker R. Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes. J. Membr. Sci. 2015; 493: 120-133.https://doi.org/10.1016/j.memsci.2015.06.026

Chung YS, Yoo SH, Kim CK. Effects of membrane hydrophilicity on the removal of a trihalomethane via micellar-enhanced ultrafiltration process. Journal of Membrane Science 2009; 326: 714-720.https://doi.org/10.1016/j.memsci.2008.11.004

Karate VD, Marathe KV. Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J. Hazard Mater 2008; 157: 464-71.https://doi.org/10.1016/j.jhazmat.2008.01.013

Rafique RF, Lee S. Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of cadmium from an aqueous solution. KoreanChem.Eng. Res 2014; 52: 775-780. https://doi.org/10.9713/kcer.2014.52.6.775

Rafique RF, Chowdhury ZZ, Moon J, Lee S. Application of micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of nickel from an aqueous solution. Int. J. Innov. Eng. Technol 2018; 10: 112-120.

Landaburu-Aguirre J, García V, Pongrácz E, Keiski RL. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: Statistical design of experiments. Desalination 2009; 240: 262-269.https://doi.org/10.1016/j.desal.2007.11.077

Xiarchos I, Jaworska A, Zakrzewska-Trznadel G. Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration. Journal of Membrane Science 2008; 321: 222-231.https://doi.org/10.1016/j.memsci.2008.04.065

Kim H, Baek K, Kim B-K, Shin H-J, Yang J-W. Removal characteristics of metal cations and their mixtures using micellar-enhanced ultrafiltration. Korean Journal of Chemical Engineering 2008; 25: 253-258.https://doi.org/10.1007/s11814-008-0045-y

Das C, Maity P, DasGupta S, De S. Separation of cation-anion mixture using micellar-enhanced ultrafiltration in a mixed micellar system. Chemical Engineering Journal 2008; 144: 35-41.https://doi.org/10.1016/j.cej.2008.01.006

Muthumareeswaran MR, Alhoshan M, Agarwal GP. Ultrafiltration membrane for effective removal of chromium ions from potable water. Scientific Reports 2017; 1-12.https://doi.org/10.1038/srep41423

Huang J, Liu L, Zeng G, Peng L, Li F, Jiang Y. Influence of feed concentration and transmembrane pressure on membrane fouling and effect of hydraulic flushing on the performance of ultrafiltration. Desalination 2014; 335: 1-8. https://doi.org/10.1016/j.desal.2013.11.038

Ghazi MM, Qomi MH. Removal of manganese from an aqueous solution using Micellar-Enhanced Ultrafiltration (MEUF) with SDS surfactants. Advances in Environmental Technology 2015; 1: 17-23.

Purkait MK, DasGupta S, De S. Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J. Colloid Interface Sci 2004; 270: 496-506.https://doi.org/10.1016/j.jcis.2003.10.030

Urbański R, Góralska E, Bart HJ, Szymanowski J. Ultrafiltration of surfactant solutions. J. Colloid Interface Sci 2002; 253: 419-426.Chen M, Shafer-Peltier K, Randtke SJ, Peltier E. Modeling arsenic https://doi.org/10.1006/jcis.2002.8539

Chen M, Shafer-Peltier K, Randtke SJ, Peltier E. Modeling arsenic (V) removal from water by micellar enhancedultrafiltration in the presence of competing anions. Chemosphere 2018; 213: 285-294.

Kowalska I, Majewska-Nowak K, and Ksch-Korbutowicz M. Influence of temperature on anionic surface active agent removal from a water solution by ultrafiltration. Desalination 2006; 198: 124-131. https://doi.org/10.1016/j.desal.2006.01.022

Purkait MK, DasGupta S, De S. Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. J. Hazard. Mater 2006; 137: 827-835. https://doi.org/10.1016/j.jhazmat.2006.03.003

Miyagishi S, Okada K, and Asakawa T. Salt Effect on Critical Micelle Concentrations of Nonionic Surfactants, N-Acyl-N-methylglucamides (MEGA-n). Journal of Colloid and Interface Science 2001; 238: 91-95.https://doi.org/10.1006/jcis.2001.7503

Yang JS, Baek K, and Yang J.W. Cross-flow ultrafiltration of surfactant solutions. Desalination 2005; 185: 385-394.https://doi.org/10.1016/j.desal.2005.03.051

Chaudhari RR, Marathe KV. Separation of dissolved phenolics from aqueous waste stream using micellar enhanced ultrafiltration. Sep. Sci. Technol 2010; 45: 1033-1041.https://doi.org/10.1080/01496391003696970

Baek K, Yang JW. Micellar-enhanced ultrafiltration of chromate and nitrate: Binding competition between chromate and nitrate. Desalination 2004; 167: 111-118. https://doi.org/10.1016/j.desal.2004.06.118

Baek K, and Yang J.W. Effect of valences on removal of anionic pollutants using micellar- enhanced ultrafiltraion. Desalination 2004; 167: 119-125.https://doi.org/10.1016/j.desal.2004.06.119

Li X, Zeng GM, Huang J H, Zhang M, Shi LJ, He SB, Ruan M. Simultaneous removal of cadmium ions and phenol with MEUF using SDS and mixed surfactants. Desalination 2011; 276: 136-141.https://doi.org/10.1016/j.desal.2011.03.041

Channarong B, Lee SH, Bade R, and Shipin OV. Simultaneous Removal of Nickel and Zinc from aqueous Solution by Micellar Enhanced Ultrafiltration and Activated Carbon Fibre Hybrid Process. Desalination 2010; 262: 221-227.https://doi.org/10.1016/j.desal.2010.06.016

Ghezzi L, Monteleone G, Robinson B, and Secco F, Tin'e MR and Venturini M. Metal extraction in water/micelle systems: Complex formation, stripping and recovery of Cd(II). Colloids and Surfaces A: Physicochem. Eng. Aspects 2008; 317: 717-721.https://doi.org/10.1016/j.colsurfa.2007.12.008

Poźniak G and Poźniak R. Modified polyethersulfone membranes for micellar enhanced ultrafiltration of chromium. Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 2007; 16-20.

Schwarze M, Groß M, Moritz M , Buchner G, Kapitzki L, Chiappisi L, Gradzielski M. Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. Journal of Membrane Science 2015; 478(15): 140-147.https://doi.org/10.1016/j.memsci.2015.01.010

Patil PN and Marathe KV. Selective Separation of Nickel (II) and Cobalt (II) from waste water by using continuous cross-flow micellar enhanced ultrafiltration with addition of chelating agent. Separation Science and Technology 2013; 48(4): 547-553.https://doi.org/10.1080/01496395.2012.690485

Schwarze M, Milano-Brusco JS, Strempel V, Hamerla T, Wille S, Fischer C, Baumann W, Arlt W, Schomäcker R. Rhodium Catalyzed Hydrogenation Reactions in Aqueous Micellar Systems as Green Solvents. RSC Adv. 2011; 1: 474-483.https://doi.org/10.1039/c1ra00397f

Nguyen LAT. Adsorption of non-ionic surfactants onto ultrafiltration membranes in aqueous and organic solutions. pHD. Dissertation. Berlin, Germany, 2015; pp.46.

Liu CK, Li CW, Lin CY.Liu CK, et al. Micellar-enhanced ultrafiltration process (MEUF) for removing copper from synthetic wastewater containing ligands. Chemosphere 2004; 57(7): 629-634.https://doi.org/10.1016/j.chemosphere.2004.06.035

Biver T, Paoletti C, Secco F, Venturini M. Extraction, separation and recovery of palladium and platinum by a kinetic method combined with ultrafiltration. Colloids and Surf. A Physicochem.Eng. Asp. 2014; 441: 466-473.https://doi.org/10.1016/j.colsurfa.2013.09.035

Kedari CS, Pandit SS, Parikh KJ, Tripathi SC, and Gandhi PM. Extraction of plutonium (IV) from aqueous nitrate solutions into ligand modified micellar phase (LMMP) of Tergitol 15-S-9 with tri-octylphosphine oxide and separation by ultrafiltration. Desalination and Water Treatment 2014; 52: 446-451.https://doi.org/10.1080/19443994.2013.808460

Yurlova LY. Removal of U(VI) from waters by ultrafiltration using dynamic membranes formed from montmorillonite and the layered double Hydroxide Zn-Al-EDTA. Journal of Water Chemistry and Technology 2020; 42: 120-125.https://doi.org/10.3103/S1063455X20020101

Kedari CS, Pandit SS, Tripathi SC. Extraction of Am(III) from aqueous nitrate solutions into micellar pseudo phase of anionic or non-ionic surfactant and separation by ultrafiltration Journal of Membrane Science 2009; 341: 122-130.https://doi.org/10.1016/j.memsci.2009.06.027

Roach JD, Zapien JH. Inorganic ligand-modified, colloid-enhanced ultrafiltration: a novel method for removing uranium from aqueous solution. Water Res 2009; 43: 4751-4759.https://doi.org/10.1016/j.watres.2009.08.007

Şahin D,Taşcıoğlu S. Separation of Cu(II) ions from single-component and Cd(II)- containing solutions by LM-MEUF utilizing micellar effects of CTAB and TX100 on comple x formation. Desalination and Water Treatment 2018; 118: 143-152.https://doi.org/10.5004/dwt.2018.22317

Roach JD, Christian SD, Tucker EE, Taylor RW, Scamehorn JF. Ligand-Modified Colloid Enhanced Ultrafiltration. use of nitrilotriacetic acid derivatives for the selective removal of lead from aqueous solution. Separation Science and Technology 2003; 38: 1925-1947. https://doi.org/10.1081/SS-120020127

Vieira M, Tavares CR, Bergamasco R, Petrus JCC. Application of ultrafiltration-complexation process for metal removal from pulp and paper industry wastewater. J Membr Sci. 2001; 194:273-276.https://doi.org/10.1016/S0376-7388(01)00525-7

Leclercq LD, Giroux S, Parant S, Khoudour L, Henry B, Rubini P. Complexation of Cu (II) by Original Tartaric Acid−Based Ligands in Nonionic Micellar Media: Thermodynamic Study and Applications. Langmuir 25(6): 3450-3458. https://doi.org/10.1021/la803931g

Rahmanian B, Pakizeh M, Mansoori SAA, Abedini R. Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. Journal of hazardous materials 2011; 187 (1-3): 67-74.https://doi.org/10.1016/j.jhazmat.2010.11.135

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Downloads

Download data is not yet available.