Carbonization Kinetics of Various Biomass Sources
Abstract - 121
PDF

Keywords

Carbonization kinetics
hazelnut shell
apricot stone
grapeseed
chestnut shell.

How to Cite

1.
Didem Özcimen, Ayşegül Ersoy-Mericboyu. Carbonization Kinetics of Various Biomass Sources. J. Chem. Eng. Res. Updates. [Internet]. 2014 Nov. 23 [cited 2024 Nov. 15];1(1):20-8. Available from: https://avantipublishers.com/index.php/jceru/article/view/120

Abstract

Hazelnut shell, apricot stone, grapeseed and chestnut shell samples were carbonized in a thermogravimetric (TG) analyzer at different conditions to determine the carbonization kinetic parameters. Three different calculation methods and 22 different model equations concerning solid-state rate controlling mechanisms were used for the kinetic analysis of the carbonization TG curves. A computer program in BASIC which enables regression analysis, was used to calculate the kinetic parameters from experimental TG data. It was observed that the different values of Arrhenius parameters (E and Log A) were obtained depending on the method of calculation, the gaseous atmosphere and the sample properties. The most appropriate kinetic model which represents the carbonization of the cellulosic and lignin ingredients of the biomass samples were found as f(α)=(1−α)2 and f(α)=0.5·(1−α)·[−ln(1−α)]−1, respectively.

https://doi.org/10.15377/2409-983X.2014.01.01.2
PDF

References

Vuthaluru HB. Thermal Behaviour of Coal/Biomass Blends During Co-Pyrolysis. Fuel Process Technol 2003; 85: 141-155. http://dx.doi.org/10.1016/S0378-3820(03)00112-7

Kissenger HE. Reaction Kinetics In DTA. Anal Chem 1957; 29: 1702-1706.

Wentlandt WW. Thermal Analysis, 3rd ed. John Wiley and Sons Inc.: New York 1986.

Orfao JJM, Antunes FJA, Figueiredo JL. Pyrolysis Kinetics of Lignocellulosic Materials-Three Independent Reactions Model. Fuel 1999; 78: 349-358. http://dx.doi.org/10.1016/S0016-2361(98)00156-2

Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of Hemicellulose, Cellulose And Lignin Pyrolysis. Fuel 2007; 86: 1781-1788. http://dx.doi.org/10.1016/j.fuel.2006.12.013

Antal MJ, Varhegyi G. Cellulose Pyrolysis Kinetics: The Current State of Knowlodge. Ind Eng Chem Res 1995; 34: 703-717. http://dx.doi.org/10.1021/ie00042a001

Milosavljevic I, Suuberg EM. Cellulose Thermal Decomposition Kinetics: Global Mass Loss Kinetics. Ind Eng Chem Res 1995; 34: 1081. http://dx.doi.org/10.1021/ie00043a009

Orfao JJM, Figueiredo F. A Simplified Merhod For Determination of Lignocellulosic Materials Pyrolysis Kinetics From Isothermal Thermogravimetric Experiments. Thermochim Acta 2001; 380: 67-78. http://dx.doi.org/10.1016/S0040-6031(01)00634-7

Hagedorn MM, Bockhorn H, Krebs L, Müller U. A Comparative Kinetic Study on the Pyrolysis of Three Different Wood Species. J Anal Appl Pyrol 2003; 68: 231-249. http://dx.doi.org/10.1016/S0165-2370(03)00065-2

Sharma A, Rao TR. Kinetics of Pyrolysis of Rice Husk. Bioresource Technol 1999; 67: 53-59. http://dx.doi.org/10.1016/S0960-8524(99)00073-5

Balcı S, Doğu T, Yücel H. Pyrolysis Kinetics of Lignocellulosic Materials. Ind Eng Chem Res 1993; 32: 2573-2579. http://dx.doi.org/10.1021/ie00023a021

Gonzalez JF, Encinar JM, Canito JL, Sabio E, Chacon M. Pyrolysis of Cherry Stones: Energy Uses of the Different Fractions And Kinetic Study. J Anal Appl Pyrol 2003; 67: 165-190. http://dx.doi.org/10.1016/S0165-2370(02)00060-8

Vamvuka D, Troulinos S, Kastanaki E. The Effect of Mineral Matter on the Physical And Chemical Activation of Low Rank Coal And Biomass Materials. Fuel 2006; 85: 1763-1771. http://dx.doi.org/10.1016/j.fuel.2006.03.005

Wang J, Wang G, Zhang M, Chen M, Li D, Min F, Chen M, Zhang S, Ren Z, Yan Y. A Comparative Study of Thermolysis Characteristics And Kinetics of Seaweeds And Firwood. Process. Biochem 2006; 41: 1883-1886. http://dx.doi.org/10.1016/j.biochi.2006.07.017

Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis And Combustion Kinetics of Date Palm Biomass Using Thermogravimetric Analysis. Bioresource Technology 2012; 118: 382-389. http://dx.doi.org/10.1016/j.biortech.2012.04.081

Reschmeier R, Roveda D, Müller D, Karl J. Pyrolysis Kinetics of Wood Pellets In Fluidized Beds. Journal of Analytical and Applied Pyrolysis 2014; 108: 117-129. http://dx.doi.org/10.1016/j.jaap.2014.05.009

Ceylan S, Topçu Y. Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis. Bioresource Technology 2014; 156: 182-188. http://dx.doi.org/10.1016/j.biortech.2014.01.040

Flynn JH, Wall LA. General Treatment of the Thermogravimetry of Polymers. J Res Nat Bur Stand 1966; 70: 487-489. http://dx.doi.org/10.6028/jres.070A.043

Keattch CJ, Dollimore D. An Introduction To Thermogravimetry, 2nd ed. Heyden: London 1975.

Ozawa T. A New Method of Analyzing Thermogravimetric Data. B Chem Soc Jpn 1965; 38: 1881-1886. http://dx.doi.org/10.1246/bcsj.38.1881

Doyle CD. Series Approximations to the Equation of Thermogravimetric Data. J Nature 1965; 207: 290-291. http://dx.doi.org/10.1038/207290a0

Coats AW, Redfern JP. Kinetic Parameters from Thermogravimetric Data. J Nature 1964; 201: 68. http://dx.doi.org/10.1038/201068a0

Horowitz HH, Metzger G. A New Analysis of Thermogravimetric Traces. Anal Chem 1923; 35: 1464-1468. http://dx.doi.org/10.1021/ac60203a013

Ozawa T. Kinetic Analysis of Derivative Curves in Thermal Analysis. J Therm Anal 1970; 2: 301-324. http://dx.doi.org/10.1007/BF01911411

Dharwadkar SR, Karkhanavala MD. Calculation of Activation Energy of Decomposition Reactions from Thermogravimetric Analysis. Therm Anal 1969; 2: 1049-1059. http://dx.doi.org/10.1016/B978-0-12-395734-4.50031-X

Van Krevelen DW, Van Heerden C, Huntjens FJ. Physicochemical Aspects of the Pyrolysis of Coal and Related Organic Compounds. Fuel 1951; 30: 253-258.

Garn PD. An Examination of the Kinetic Compensation Effect. J Therm Anal 1975; 7: 475-478. http://dx.doi.org/10.1007/BF01911956

Mericboyu AE, Küçükbayrak S. Kinetic Analysis of Non- Isothermal TG Curves of Natural Turkish Dolomites. Thermochim Acta 1994; 232: 225-232. http://dx.doi.org/10.1016/0040-6031(94)80062-6

Koçkar OM, Onay O, Pütün AE, Pütün E. Fixed Bed Pyrolysis of Hazelnut Shell: A Study on the Mass Transfer Limitations on Product Yields and Characterization of the Pyrolysis Oil. Energ Sources 2000; 22: 913-924. http://dx.doi.org/10.1080/00908310051128291

Zaror CA, Pyle DL. The Pyrolysis of Biomass: A General Review, P. Indian. Acad Sci (Eng Sci) 1982; 5: 269-85.

Demirbaş A. Determination of Calorific Values of Bio-Chars and Pyro-Oils from Pyrolysis of Beech Trunkbarks. Anal Appl Pyrol 2004; 72: 215-219. http://dx.doi.org/10.1016/j.jaap.2004.06.005

Seebauer V, Petek J, Standinger G. Effect of Particle Size, Heating Rate And Pressure on Measurement of the Pyrolysis Kinetics By Thermogravimetric Analysis. Fuel 1997; 76(13): 1277-1282. http://dx.doi.org/10.1016/S0016-2361(97)00106-3

Katyal S. Carbonisation of Bagasse In A Fixed Bed Reactor: Influence of Process Variables on Char Yield And Characteristics. Renew Energ 2003; 28: 713-725. http://dx.doi.org/10.1016/S0960-1481(02)00112-X

Tsamba AJ, Yang W, Blasiak W. Pyrolysis Characteristics and Global Kinetics of Coconut And Cashew Nut Shells. Fuel Process Technol 2006; 87(6): 523-530. http://dx.doi.org/10.1016/j.fuproc.2005.12.002

Reina J, Velo E, Puigjaner L. Thermogravimetric Study of the Pyrolysis of Waste Wood. Thermochim Acta 1998; 320: 161-167. http://dx.doi.org/10.1016/S0040-6031(98)00427-4

Gao X, Chen D, Dollimore D. The Effect of the Reaction Heat on Kinetic Analysis By TG Under a Rising Temperature Program. Thermochim Acta 1993; 215: 83-95. http://dx.doi.org/10.1016/0040-6031(93)80083-M

Özyurtkan, MH, Özçimen D, Ersoy-Meriçboyu A. Investigation of the carbonization behavior of hybrid poplar. Fuel Process Technol 2008; 89(9): 858-863.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Didem Özcimen, Ayşegül Ersoy-Mericboyu

Downloads

Download data is not yet available.