A Comprehensive Review on Third-Generation Photovoltaic Technologies
Abstract - 343
PDF

Keywords

Stability
Perovskite cell
Dye-sensitized
Organic solar cells
Third-generation photovoltaics

How to Cite

1.
De A, Bhattacharjee J, Chowdhury SR, Roy S. A Comprehensive Review on Third-Generation Photovoltaic Technologies. J. Chem. Eng. Res. Updates. [Internet]. 2023 Oct. 9 [cited 2024 May 20];10:1-17. Available from: https://avantipublishers.com/index.php/jceru/article/view/1428

Abstract

The renewable energy industry has revolutionized due to photovoltaic (PV) technologies, which offer a clean and sustainable alternative to conventional energy sources. Third-generation photovoltaic technologies refer to a group of emerging PV technologies aiming to surpass the efficiency and cost-effectiveness of traditional silicon-based solar cells. Different ceramic materials have also been investigated for use in these advanced PV technologies. This review examines the science, current state, and advancements of third-generation PV systems for wide-scale implementation. The first section of this study provides an overview of the development of PV technologies from the first to the third generation, highlighting the most significant novel developments made at each step. Organic photovoltaic (OPV) cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs) are discussed here as a few new technologies that constitute the third generation, also known as the next generation of advanced PV. This review presents how these devices can be used in specialized settings, including indoor and low-light environments, thereby expanding the range of energy harvesting potential. The brief history of these emerging technologies, their current status, future developments, and key challenges are discussed in this review paper.

https://doi.org/10.15377/2409-983X.2023.10.1
PDF

References

Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD, Potter SD, et al. Energy implications of future stabilization of atmospheric CO2 content. Nature. 1998; 395: 881-4. https://doi.org/10.1038/27638

Moyez SA, Roy S. Dual-step thermal engineering technique: A new approach for fabrication of efficient CH3NH3PbI3-based perovskite solar cell in open air condition. Sol Energy Mater Sol Cells. 2018; 185: 145-52. https://doi.org/10.1016/j.solmat.2018.05.027

Bello S, Urwick A, Bastianini F, Nedoma AJ, Dunbar A. An introduction to perovskites for solar cells and their characterization. Energy Rep. 2022; 8: 89-106. https://doi.org/10.1016/j.egyr.2022.08.205

Suresh Kumar N, Chandra Babu Naidu K. A review on perovskite solar cells (PSCs), materials and applications. J Materiomics. 2021; 7: 940-56. https://doi.org/10.1016/j.jmat.2021.04.002

Du X, Heumueller T, Gruber W, Classen A, Unruh T, Li N, et al. Efficient polymer solar cells based on non-fullerene acceptors with a potential device lifetime approaching 10 years. Joule. 2019; 3: 215-26. https://doi.org/10.1016/j.joule.2018.09.001

Petrus ML, Schlipf J, Li C, Gujar TP, Giesbrecht N, Müller‐Buschbaum P, et al. Capturing the Sun: A review of the challenges and perspectives of perovskite solar cells. Adv Energy Mater. 2017; 7: 1700264. https://doi.org/10.1002/aenm.201700264

Ikpesu JE, Iyuke SE, Daramola M, Okewale AO. Synthesis of improved dye-sensitized solar cell for renewable energy power generation. Solar Energy. 2020; 206: 918-34. https://doi.org/10.1016/j.solener.2020.05.002

Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-super structured organometal halide perovskites. Science. 2012; 338: 643-7. https://doi.org/10.1126/science.1228604

Roy S, Botte GG. Perovskite solar cell for photocatalytic water splitting with a TiO2/Co-doped hematite electron transport bilayer. RSC Adv. 2018; 8: 5388-94. https://doi.org/10.1039/C7RA11996H

Maitra S, Pal S, Datta S, Maitra T, Dutta B, Roy S. Nickel doped molybdenum oxide thin film counter electrodes as a low-cost replacement for platinum in dye sensitized solar cells. Mater Today Proc. 2021; 39: 1856-61. https://doi.org/10.1016/j.matpr.2020.07.531

Bera S, Saha A, Mondal S, Biswas A, Mallick S, Chatterjee R, et al. Review of defect engineering in perovskites for photovoltaic application. Mater Adv. 2022; 3: 5234-47. https://doi.org/10.1039/D2MA00194B

Saliba M, Tan KW, Sai H, Moore DT, Scott T, Zhang W, et al. Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead Trihalide Perovskites. J Phys Chem C. 2014; 118: 17171-7. https://doi.org/10.1021/jp500717w

Tan KW, Moore DT, Saliba M, Sai H, Estroff LA, Hanrath T, et al. Thermally-induced structural evolution and performance of mesoporous block copolymer-directed Alumina Perovskite solar cells. ACS Nano. 2014; 8: 4730-9. https://doi.org/10.1021/nn500526t

Imran T, Rauf S, Raza H, Aziz L, Chen R, Liu S, et al. Methylammonium and bromide‐free tin‐based low bandgap perovskite solar cells. Adv Energy Mater. 2022; 12: 2200305. https://doi.org/10.1002/aenm.202200305

Xing Z, Zang Z, Li H, Ning Z, Wong KS, Chow PCY. Improved structural order and exciton delocalization in high-member quasi-two-dimensional tin halide perovskite revealed by electroabsorption spectroscopy. J Phys Chem Lett. 2023; 14: 4349-56. https://doi.org/10.1021/acs.jpclett.3c00400

Yu B-B, Wu Y, Wang H, Hu X, Zhang Z, Wang S, et al. High-efficiency tin perovskite solar cells by the dual functions of reduced voltage loss and crystal regulation. Mater Des. 2023; 228: 111850. https://doi.org/10.1016/j.matdes.2023.111850

Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, et al. Perovskite solar cells employing organic charge-transport layers. Nat Photonics. 2014; 8: 128-32. https://doi.org/10.1038/nphoton.2013.341

Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013; 501: 395-8. https://doi.org/10.1038/nature12509

Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013; 4: Article number: 2761. https://doi.org/10.1038/ncomms3761

Xiao M, Liu L, Meng Y, Fan B, Su W, Jin C, et al. Approaching 19% efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive. Sci China Chem. 2023; 66: 1500-10. https://doi.org/10.1007/s11426-023-1564-8

Zhou H, Chen Q, Li G, Luo S, Song T, Duan H-S, et al. Interface engineering of highly efficient perovskite solar cells. Science. 2014; 345: 542-6. https://doi.org/10.1126/science.1254050

Mei D, Qiu L, Chen L, Xie F, Song L, Wang J, et al. Incorporating polyvinyl pyrrolidone in green anti-solvent isopropanol: A facile approach to obtain high efficient and stable perovskite solar cells. Thin Solid Films. 2022; 752: 139196. https://doi.org/10.1016/j.tsf.2022.139196

Min H, Lee DY, Kim J, Kim G, Lee KS, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 2021; 598: 444-50. https://doi.org/10.1038/s41586-021-03964-8

Bush KA, Palmstrom AF, Yu ZJ, Boccard M, Cheacharoen R, Mailoa JP, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy. 2017; 2: Article number: 17009. https://doi.org/10.1038/nenergy.2017.9

Liao JH-H. Behind the breakthrough of the ∼30% perovskite solar cell. Joule. 2021; 5: 295-7. https://doi.org/10.1016/j.joule.2021.01.008

Patwardhan S, Cao DH, Hatch S, Farha OK, Hupp JT, Kanatzidis MG, et al. Introducing perovskite solar cells to undergraduates. J Phys Chem Lett. 2015; 6: 251-5. https://doi.org/10.1021/jz502648y

Dastoor P, Belcher W. How the west was won? A history of organic photovoltaics. Substantia. 2019; 3: 99-110.

Bernède JC. Organic photovoltaic cells: History, Principle and Techniques. J Chil Chem Soc. 2008; 53: 1549-64. https://doi.org/10.4067/S0717-97072008000300001

Chidichimo G, Filippelli L. Organic solar cells: problems and perspectives. Int J Photoenergy. 2010; 2010: 1-11. https://doi.org/10.1155/2010/123534

Mikhnenko O V., Blom PWM, Nguyen T-Q. Exciton diffusion in organic semiconductors. Energy Environ Sci. 2015; 8: 1867-88. https://doi.org/10.1039/C5EE00925A

Li T, Chen Z, Wang Y, Tu J, Deng X, Li Q, et al. Materials for interfaces in organic solar cells and photodetectors. ACS Appl Mater Interfaces. 2020; 12: 3301-26. https://doi.org/10.1021/acsami.9b19830

Gevaerts VS, Koster LJA, Wienk MM, Janssen RAJ. Discriminating between bilayer and bulk heterojunction polymer: fullerene solar cells using the external quantum efficiency. ACS Appl Mater Interfaces. 2011; 3: 3252-5. https://doi.org/10.1021/am200755m

Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B. 2005; 72: 085205. https://doi.org/10.1103/PhysRevB.72.085205

Zhang J, Tan HS, Guo X, Facchetti A, Yan H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy. 2018; 3: 720-31. https://doi.org/10.1038/s41560-018-0181-5

Zhang S, Yang X, Numata Y, Han L. Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ Sci. 2013; 6: 1443-64. https://doi.org/10.1039/c3ee24453a

Moyez SA, Roy S. Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. J Nanoparticle Res. 2018; 20: 1-13. https://doi.org/10.1007/s11051-017-4108-z

Roy S, Dey A, Das BC. Improved photoresponse in association with a synthesized dielectric material for quantum dots solar cells. Mater Sci Res Ind. 2019; 16: 230-4. https://doi.org/10.13005/msri/160305

Dhar A, Kumar NS, Paul PK, Roy S, Vekariya RL. Influence of tagging thiophene bridge unit on optical and electrochemical properties of coumarin based dyes for DSSCs with theoretical insight. Org Electron. 2018; 53: 280-6. https://doi.org/10.1016/j.orgel.2017.12.007

Kapil G, Bessho T, Sanehira Y, Sahamir SR, Chen M, Baranwal AK, et al. Tin-lead perovskite solar cells fabricated on hole selective monolayers. ACS Energy Lett. 2022; 7: 966-74. https://doi.org/10.1021/acsenergylett.1c02718

Nabil E, Hasanein AA, Alnoman RB, Zakaria M. Optimizing the cosensitization effect of SQ02 dye on BP-2 dye-sensitized solar cells: A computational quantum chemical study. J Chem Inf Model. 2021; 61: 5098-116. https://doi.org/10.1021/acs.jcim.1c00739

Sivaraj S, Rathanasamy R, Kaliyannan GV, Panchal H, Jawad Alrubaie A, Musa Jaber M, et al. A comprehensive review on current performance, challenges and progress in thin-film solar cells. Energies (Basel). 2022; 15(22): 8688. https://doi.org/10.3390/en15228688

Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater. 2014; 26: 1584-9. https://doi.org/10.1002/adma.201305172

Chen Q, De Marco N, Yang Y (Michael), Song T-B, Chen C-C, Zhao H, et al. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today. 2015; 10: 355-96. https://doi.org/10.1016/j.nantod.2015.04.009

Jesper Jacobsson T, Correa-Baena J-P, Pazoki M, Saliba M, Schenk K, Grätzel M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ Sci. 2016; 9: 1706-24. https://doi.org/10.1039/C6EE00030D

Xu S, Zhang L, Liu B, Liang Z, Xu H, Zhang H, et al. Constructing of superhydrophobic and intact crystal terminal: Interface sealing strategy for stable perovskite solar cells with efficiency over 23%. Chem Eng J. 2023; 453: 139808. https://doi.org/10.1016/j.cej.2022.139808

Asghar MI, Zhang J, Wang H, Lund PD. Device stability of perovskite solar cells – A review. Renew Sustain Energy Rev. 2017; 77: 131-46. https://doi.org/10.1016/j.rser.2017.04.003

Singh R, Parashar M. Origin of hysteresis in perovskite solar cells. Soft-Matter Thin Film Solar Cells, AIP Publishing LLCMelville, New York; 2020, p. 1-42. https://doi.org/10.1063/9780735422414_001

Chen S, Dai X, Xu S, Jiao H, Zhao L, Huang J. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science. 2021; 373: 902-7. https://doi.org/10.1126/science.abi6323

Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok S Il, et al. Challenges for commercializing perovskite solar cells. Science. 2018; 361: eaat8235. https://doi.org/10.1126/science.aat8235

Huang J, Wang K-X, Chang J-J, Jiang Y-Y, Xiao Q-S, Li Y. Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. J Mater Chem A Mater. 2017; 5: 13817-22. https://doi.org/10.1039/C7TA02670F

Min H, Lee DY, Kim J, Kim G, Lee KS, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 2021; 598: 444-50. https://doi.org/10.1038/s41586-021-03964-8

Li F, Wang C, Liu P, Xiao Y, Bai L, Qi F, et al. Fully air-processed carbon-based efficient hole conductor free planar heterojunction perovskite solar cells with high reproducibility and stability. Solar RRL. 2019; 3: 1800297. https://doi.org/10.1002/solr.201800297

Yang Y, Liu Z, Ng WK, Zhang L, Zhang H, Meng X, et al. An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material-free carbon-based halide perovskite solar cells. Adv Funct Mater. 2019; 29: 1806506. https://doi.org/10.1002/adfm.201806506

Zhou X, Zhang L, Hu H, Jiang Z, Wang D, Chen J, et al. Highly efficient and stable hole-transport-layer-free inverted perovskite solar cells achieved 22% efficiency through p-type molecular synergistic doping. Nano Energy. 2022; 104: 107988. https://doi.org/10.1016/j.nanoen.2022.107988

Liao J, Wu W, Jiang Y, Kuang D, Wang L. Maze-like halide perovskite films for efficient electron transport layer-free perovskite solar cells. Solar RRL. 2019; 3: 1800268. https://doi.org/10.1002/solr.201800268

Wu W, Liao J, Zhong J, Xu Y, Wang L, Huang J. Suppressing interfacial charge recombination in electron‐transport‐layer‐free perovskite solar cells to give an efficiency exceeding 21 %. Angew Chem Int Ed. 2020; 59: 20980-7. https://doi.org/10.1002/anie.202005680

Jang CW, Shin DH, Choi S-H. Photostable electron-transport-layer-free flexible graphene quantum dots/perovskite solar cells by employing bathocuproine interlayer. J Alloys Compd. 2021; 886: 161355. https://doi.org/10.1016/j.jallcom.2021.161355

Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano. 2021; 15: 10775-981. https://doi.org/10.1021/acsnano.0c08903

Wang C, Xiao C, Yu Y, Zhao D, Awni RA, Grice CR, et al. Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv Energy Mater. 2017; 7: 1700414. https://doi.org/10.1002/aenm.201700414

Chen LX. Organic solar cells: Recent progress and challenges. ACS Energy Lett. 2019; 4: 2537-9. https://doi.org/10.1021/acsenergylett.9b02071

Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl Sci Rev. 2019; 7: 1239-46. https://doi.org/10.1093/nsr/nwz200

Cheng P, Zhan X. Stability of organic solar cells: challenges and strategies. Chem Soc Rev. 2016; 45: 2544-82. https://doi.org/10.1039/C5CS00593K

Lee ST, Gao ZQ, Hung LS. Metal diffusion from electrodes in organic light-emitting diodes. Appl Phys Lett. 1999; 75: 1404-6. https://doi.org/10.1063/1.124708

Deschler F, De Sio A, von Hauff E, Kutka P, Sauermann T, Egelhaaf H-J, et al. The effect of ageing on Exciton Dynamics, charge separation, and recombination in P3HT/PCBM photovoltaic blends. Adv Funct Mater. 2012; 22: 1461-9. https://doi.org/10.1002/adfm.201101923

Tessarolo M, Guerrero A, Gedefaw D, Bolognesi M, Prosa M, Xu X, et al. Predicting thermal stability of organic solar cells through an easy and fast capacitance measurement. Sol Energy Mater Sol Cells. 2015; 141: 240-7. https://doi.org/10.1016/j.solmat.2015.05.041

Prosa M, Tessarolo M, Bolognesi M, Margeat O, Gedefaw D, Gaceur M, et al. Enhanced ultraviolet stability of air-processed polymer solar cells by al doping of the zno interlayer. ACS Appl Mater Interfaces. 2016; 8: 1635-43. https://doi.org/10.1021/acsami.5b08255

Watson J, Santaloci TJ, Cheema H, Fortenberry RC, Delcamp JH. Full visible spectrum panchromatic triple donor dye for dye-sensitized solar cells. J Phys Chem C. 2020; 124: 25211-20. https://doi.org/10.1021/acs.jpcc.0c07003

Lee S-Y, Yoo S-M, Lee HJ. Adsorption and cation-exchange behavior of zinc sulfide on mesoporous tio2 film and its applications to solar cells. Langmuir. 2020; 36: 4144-52. https://doi.org/10.1021/acs.langmuir.0c00095

Roy A, Ghosh A, Bhandari S, Selvaraj P, Sundaram S, Mallick TK. Color comfort evaluation of dye-sensitized solar cell (DSSC) based building-integrated photovoltaic (BIPV) glazing after 2 years of ambient exposure. J Phys Chem C. 2019; 123: 23834-7. https://doi.org/10.1021/acs.jpcc.9b05591

Pérez RL, Ayala CE, Warner IM. Group of uniform materials based on organic salts (GUMBOS): A review of their solid state properties and applications. In: Murshed SMS, Ed., Ionic Liquids - Thermophysical Properties and Applications. IntechOpen; 2021, p. 465. https://doi.org/10.5772/intechopen.96417

Wu X, Trinh MT, Niesner D, Zhu H, Norman Z, Owen JS, et al. Trap states in lead iodide perovskites. J Am Chem Soc. 2015; 137: 2089-96. https://doi.org/10.1021/ja512833n

Li D, Zhang D, Lim K, Hu Y, Rong Y, Mei A, et al. A review on scaling up perovskite solar cells. Adv Funct Mater. 2020; 31: 2008621. https://doi.org/10.1002/adfm.202008621

Liu S, Biju VP, Qi Y, Chen W, Liu Z. Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater. 2023; 15: Article number: 27. https://doi.org/10.1038/s41427-023-00474-z

Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang T-Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature. 2019; 567: 511-5. https://doi.org/10.1038/s41586-019-1036-3

Brennan MC, Draguta S, Kamat P V, Kuno M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2017; 3: 204-13. https://doi.org/10.1021/acsenergylett.7b01151

Brennan MC, Draguta S, Kamat P V., Kuno M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2017; 3: 204-13. https://doi.org/10.1021/acsenergylett.7b01151

Li T, Mao K, Meng H, Zhu Z, Peng W, Yuan S, et al. Understanding the interfacial reactions and band alignment for efficient and stable perovskite solar cells built on metal substrates with reduced upscaling losses. Adv Mater. 2023; 35: 2211959. https://doi.org/10.1002/adma.202211959

Mariotti N, Bonomo M, Fagiolari L, Barbero N, Gerbaldi C, Bella F, et al. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020; 22: 7168-218. https://doi.org/10.1039/D0GC01148G

Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater. 2022; 21: 656-63. https://doi.org/10.1038/s41563-022-01244-y

Moser M, Wadsworth A, Gasparini N, McCulloch I. Challenges to the success of commercial organic photovoltaic products. Adv Energy Mater. 2021; 11: 2100056. https://doi.org/10.1002/aenm.202100056

Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, et al. A history and perspective of non‐fullerene electron acceptors for organic solar cells. Adv Energy Mater. 2021; 11: 2003570. https://doi.org/10.1002/aenm.202003570

Barreiro-Argüelles D, Ramos-Ortiz G, Maldonado J-L, Pérez-Gutiérrez E, Romero-Borja D, Meneses-Nava M-A, et al. Stability study in organic solar cells based on PTB7:PC71BM and the scaling effect of the active layer. Solar Energy. 2018; 163: 510-8. https://doi.org/10.1016/j.solener.2018.01.090

Lee S, Kim Y, Kim D, Jeong D, Kim G-U, Kim J, et al. Electron transport layers based on Oligo(ethylene glycol)-incorporated polymers enabling reproducible fabrication of high-performance organic solar cells. Macromolecules. 2021; 54: 7102-12. https://doi.org/10.1021/acs.macromol.1c01215

Camaioni N, Carbonera C, Ciammaruchi L, Corso G, Mwaura J, Po R, et al. Polymer solar cells with active layer thickness compatible with Scalable Fabrication Processes: A meta‐analysis. Adv Mater. 2023; 35: 2210146. https://doi.org/10.1002/adma.202210146

Datt R, Bishnoi S, Lee HKH, Arya S, Gupta S, Gupta V, et al. Down‐conversion materials for organic solar cells: Progress, challenges, and perspectives. Aggregate. 2022; 3: e185. https://doi.org/10.1002/agt2.185

Reese MO, Gevorgyan SA, Jørgensen M, Bundgaard E, Kurtz SR, Ginley DS, et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Sol Energy Mater Sol Cells. 2011; 95: 1253-67. https://doi.org/10.1016/j.solmat.2011.01.036

Ren Y, Zhang D, Suo J, Cao Y, Eickemeyer FT, Vlachopoulos N, et al. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature. 2022; 613: 60-5. https://doi.org/10.1038/s41586-022-05460-z

Haque SA, Palomares E, Cho BM, Green ANM, Hirata N, Klug DR, et al. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. J Am Chem Soc. 2005; 127: 3456-62. https://doi.org/10.1021/ja0460357

Sharma K, Sharma V, Sharma SS. Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Res Lett. 2018; 13: 2760-6. https://doi.org/10.1186/s11671-018-2760-6

Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD. Progress on electrolytes development in dye-sensitized solar cells. Materials. 2019; 12: 1998. https://doi.org/10.3390/ma12121998

Liu Y, Balsamo D, Degenaar P. Developing clinical grade flexible implantable electronics. Flex Print Electron. 2023; 8: 013002. https://doi.org/10.1088/2058-8585/aca779

Nie Q, Tang A, Guo Q, Zhou E. Benzothiadiazole-based non-fullerene acceptors. Nano Energy. 2021; 87: 106174. https://doi.org/10.1016/j.nanoen.2021.106174

Ilmi R, Haque A, Khan MS. High efficiency small molecule-based donor materials for organic solar cells. Org Electron. 2018; 58: 53-62. https://doi.org/10.1016/j.orgel.2018.03.048

Zhou R, Jiang Z, Yang C, Yu J, Feng J, Adil MA, et al. All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nat Commun. 2019; 10: Article number: 5393. https://doi.org/10.1038/s41467-019-13292-1

Ma X, Mi Y, Zhang F, An Q, Zhang M, Hu Z, et al. Efficient ternary polymer solar cells with two well-compatible donors and one Ultranarrow bandgap nonfullerene acceptor. Adv Energy Mater. 2018; 8: 1702854. https://doi.org/10.1002/aenm.201702854

Ren M, Zhang G, Chen Z, Xiao J, Jiao X, Zou Y, et al. High-performance ternary organic solar cells with controllable morphology via sequential layer-by-layer deposition. ACS Appl Mater Interfaces. 2020; 12: 13077-86. https://doi.org/10.1021/acsami.9b23011

Giannouli M. Current status of emerging PV technologies: A comparative study of dye-sensitized, organic, and perovskite solar cells. Int J Photoenergy. 2021; 2021: 1-19. https://doi.org/10.1155/2021/6692858

Cui Y, Yao H, Zhang T, Hong L, Gao B, Xian K, et al. 1 cm2 organic photovoltaic cells for indoor application with over 20% efficiency. Adv Mater. 2019; 31: 1904512. https://doi.org/10.1002/adma.201904512

Orona-Navar A, Aguilar-Hernández I, Nigam KDP, Cerdán-Pasarán A, Ornelas-Soto N. Alternative sources of natural pigments for dye-sensitized solar cells: Algae, cyanobacteria, bacteria, archaea and fungi. J Biotechnol. 2021; 332: 29-53. https://doi.org/10.1016/j.jbiotec.2021.03.013

Fang H, Ma J, Wilhelm MJ, DeLacy BG, Dai H. Influence of solvent on dye‐sensitized solar cell efficiency: What is so special about acetonitrile? Part Part Sys Charact. 2021; 38: 2000220. https://doi.org/10.1002/ppsc.202000220

Zhao Y, Zhang L, Liu J, Adair K, Zhao F, Sun Y, et al. Atomic/molecular layer deposition for energy storage and conversion. Chem Soc Rev. 2021; 50: 3889-956. https://doi.org/10.1039/D0CS00156B

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Arko De, Jyoti Bhattcharjee, Sahana R. Chowdhury, Subhasis Roy