Recent Advances in Chitosan-based Nanocomposite Membrane Materials for Water Treatment
Abstract - 501
PDF

Keywords

Nanofillers
Water purification
Preparation process
Performance optimization
Chitosan-based nanocomposites membrane

How to Cite

1.
Zhang Z, Lu Y, Zhao Y, Wu S. Recent Advances in Chitosan-based Nanocomposite Membrane Materials for Water Treatment. J. Chem. Eng. Res. Updates. [Internet]. 2023 Dec. 29 [cited 2025 Mar. 12];10:53-80. Available from: https://avantipublishers.com/index.php/jceru/article/view/1516

Abstract

In recent years, research on chitosan (CS)-based nanocomposite membranes has made significant progress in the field of water treatment. This innovative membrane material incorporates a variety of excellent biological properties, including the biocompatibility and adsorption properties of the natural polymer chitosan (CS) and the introduction of nanotechnology. Furthermore, it enables the composite material to have excellent functional characteristics, such as higher water flux and selectivity. Furthermore, the enhancement of the structural and intrinsic properties of membrane materials will facilitate the attainment of further advancements in a multitude of performance characteristics, including stability, durability, and adsorption selectivity. Consequently, this field has become a promising area of research in water treatment technology, attracting extensive research and attention. However, the publication of a large number of related research reports in recent years, accompanied by numerous and complex performance optimization schemes and research ideas, has resulted in a paucity of articles that summarize these performance optimization strategies and research paths. Consequently, there are few meaningful references for subsequent research. In light of the aforementioned considerations, this paper will provide a comprehensive review of the most recent research advances in the field of water treatment, with a particular focus on the latest research strategies and frameworks for optimizing the performance of related materials. Furthermore, this paper will illustrate the innovative and beneficial applications of such materials from various vantage points, including their sources and preparation processes. It is anticipated that this paper will serve as a valuable source of inspiration for further research in this field.

https://doi.org/10.15377/2409-983X.2023.10.5
PDF

References

Abdelkareem MA, El Haj Assad M, Sayed ET, Soudan B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination. 2018; 435: 97-113. https://doi.org/10.1016/j.desal.2017.11.018

Asif Z, Chen Z, Sadiq R, Zhu Y. Climate change impacts on water resources and sustainable water management strategies in North America. Water Resour Manage. 2023; 37: 2771-86. https://doi.org/10.1007/s11269-023-03474-4

He C, Liu Z, Wu J, Pan X, Fang Z, Li J, et al. Future global urban water scarcity and potential solutions. Nat Commun. 2021; 12: 4667. https://doi.org/10.1038/s41467-021-25026-3

Qalyoubi L, Zuburtikudis I, Abu Khalifeh H, Nashef E. Adsorptive membranes incorporating ionic liquids (ILs), deep eutectic solvents (DESs) or graphene oxide (GO) for metal salts extraction from aqueous feed. Membranes. 2023; 13(11): 874. https://doi.org/10.3390/membranes13110874

Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, et al. Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci U S A. 2013; 111(9): 3245-50. https://doi.org/10.1073/pnas.1222460110

Eke J, Yusuf A, Giwa A, Sodiq A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination. 2020; 495: 114633. https://doi.org/10.1016/j.desal.2020.114633

Suwaileh W, Johnson D, Hilal N. Membrane desalination and water re-use for agriculture: State of the art and future outlook. Desalination. 2020; 491: 114559. https://doi.org/10.1016/j.desal.2020.114559

Das TK, Folley M, Lamont-Kane P, Frost C. Performance of a SWRO membrane under variable flow conditions arising from wave powered desalination. Desalination. 2024; 571: 117069. https://doi.org/10.1016/j.desal.2023.117069

Ali I, Hasan SZ, Garcia H, Danquah MK, Imanova G. Recent advances in graphene-based nano-membranes for desalination. Chem Eng J. 2024; 483: 149108. https://doi.org/10.1016/j.cej.2024.149108

Rustum R, Kurichiyanil A, Forrest S, Sommariva C, Adeloye A, Zounemat-Kermani M, et al. Sustainability ranking of desalination plants using mamdani fuzzy logic inference systems. Sustainability. 2020; 12(2): 631. https://doi.org/10.3390/su12020631

Voutchkov N. Energy use for membrane seawater desalination–current status and trends. Desalination. 2018; 431: 2-14. https://doi.org/10.1016/j.desal.2017.10.033

Yuan SS, Li X, Zhu JY, Zhang G, Van Puyvelde P, Van der Bruggen B. Covalent organic frameworks for membrane separation. Chem Soc Rev. 2019; 48: 2665-81. https://doi.org/10.1039/C8CS00919H

Saavedra A, Valdés H, Mahn A, Acosta O. Comparative analysis of conventional and emerging technologies for seawater desalination: Northern Chile as a case study. Membranes. 2021; 11(3): 180. https://doi.org/10.3390/membranes11030180

Anis SF, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination. 2019; 452: 159-95. https://doi.org/10.1016/j.desal.2018.11.006

Khan NA, Khan SU, Ahmed S, Farooqi IH, Dhingra A, Hussain A, et al. Applications of nanotechnology in water and wastewater treatment: A review. J Nanosci Nanotechnol. 2014; 14(1): 613-26. https://doi.org/10.1166/jnn.2014.8898

Cohen-Tanugi D, Grossman JC. Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation. Desalination. 2015; 366: 59-70. https://doi.org/10.1016/j.desal.2014.12.046

Rambabu K, Bharath G, Banat F, Show PL. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater. 2021; 402: 123560. https://doi.org/10.1016/j.jhazmat.2020.123560

Yadav S, Saleem H, Ibrar I, Naji O, Hawari AA, Alanezi AA, et al. Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination. 2020; 482: 114375. https://doi.org/10.1016/j.desal.2020.114375

Ramírez C, Belmonte M, Miranzo P, Osendi MI. Applications of ceramic/graphene composites and hybrids. Materials (Basel). 2021; 14(8): 2071. https://doi.org/10.3390/ma14082071

Silva AO, Cunha RS, Hotza D, Machado RAF. Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydr Polym. 2021; 272: 118472. https://doi.org/10.1016/j.carbpol.2021.118472

Bakshi PS, Selvakumar D, Kadirvelu K, Kumar N. Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. Int J Biol Macromol. 2020; 150: 1072-83. https://doi.org/10.1016/j.ijbiomac.2019.10.113

Kravanja G, Primozic M, Knez Z, Leitgeb M. Chitosan-based (nano)materials for novel biomedical applications. Molecules. 2019; 24(10): 23. https://doi.org/10.3390/molecules24101960

Wu SP, Xu C, Zhao YR, Shi WJ, Li H, Cai JW, et al. Recent advances in chitosan-based hydrogels for flexible wearable sensors. Chemosensors. 2023; 11(1): 39. https://doi.org/10.3390/chemosensors11010039

Li BL, Elango J, Wu WH. Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. Appl Sci. 2020; 10(14): 4719. https://doi.org/10.3390/app10144719

Wu SP, Li KH, Shi WJ, Cai JW. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. Int J Biol Macromol. 2022; 210: 76-84. https://doi.org/10.1016/j.ijbiomac.2022.05.017

Ali I, Raza MA, Mehmood R, Islam A, Sabir A, Gull N, et al. Novel maleic acid, crosslinked, nanofibrous chitosan/poly (vinylpyrrolidone) membranes for reverse osmosis desalination. Int J Mol Sci. 2020; 21(19): 7338. https://doi.org/10.3390/ijms21197338

Xu D, Hein S, Wang K. Chitosan membrane in separation applications. Mater Sci Technol. 2008; 24(9): 1076-87. https://doi.org/10.1179/174328408X3417

Tang YJ, Wang LJ, Xu ZL, Zhang HZ. Novel chitosan-piperazine composite nanofiltration membranes for the desalination of brackish water and seawater. J Polym Res. 2018; 25: 118. https://doi.org/10.1007/s10965-018-1514-6

Orta MD, Martín J, Santos JL, Aparicio I, Medina-Carrasco S, Alonso E. Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Appl Clay Sci. 2020; 198: 105838. https://doi.org/10.1016/j.clay.2020.105838

Shi WJ, Xu C, Cai JW, Wu SP. Advancements in material selection and application research for mixed matrix membranes in water treatment. J Environ Chem Eng. 2023; 11(6): 111292. https://doi.org/10.1016/j.jece.2023.111292

Wu C, Li J, Zhang YQ, Li X, Wang SY, Li DQ. Cellulose dissolution, modification, and the derived hydrogel: a review. ChemSusChem. 2023; 16(21): e202300518. https://doi.org/10.1002/cssc.202300518

Qian XW, Li N, Wang QZ, Ji SC. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation. Desalination. 2018; 438: 83-96. https://doi.org/10.1016/j.desal.2018.03.031

Shameem MM, Sasikanth SM, Annamalai R, Raman RG. A brief review on polymer nanocomposites and its applications. Mater Today. 2021; 45(Part 2): 2536-9. https://doi.org/10.1016/j.matpr.2020.11.254

Fard AK, McKay G, Buekenhoudt A, Al Sulaiti H, Motmans F, Khraisheh M, et al. Inorganic membranes: preparation and application for water treatment and desalination. Materials. 2018; 11(1): 74; https://doi.org/10.3390/ma11010074

Ray SS, Chen SS, Li CW, Nguyen NC, Nguyen HT. A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv. 2016; 6(88): 85495-514. https://doi.org/10.1039/C6RA14952A

Hofmann-Amtenbrink M, Grainger DW, Hofmann H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomed-Nanotechnol Biol Med. 2015; 11(7): 1689-94. https://doi.org/10.1016/j.nano.2015.05.005

Borrego B, Lorenzo G, Mota-Morales JD, Almanza-Reyes H, Mateos F, López-Gil E, et al. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine. 2016; 12(5): 1185-92. https://doi.org/10.1016/j.nano.2016.01.021

Sirohi R, Kumar Y, Madhavan A, Sagar NA, Sindhu R, Bharathiraja B, et al. Engineered nanomaterials for water desalination: Trends and challenges. Environ Technol Innov. 2023; 30: 12. https://doi.org/10.1016/j.eti.2023.103108

Sharif S, Ahmad KS, Rehman F, Bhatti Z, Thebo KH. Two-dimensional graphene oxide based membranes for ionic and molecular separation: Current status and challenges. J Environ Chem Eng. 2021; 9(4): 105605. https://doi.org/10.1016/j.jece.2021.105605

Lee J, Kim IS, Hwang MH, Chae KJ. Atomic layer deposition and electrospinning as membrane surface engineering methods for water treatment: a short review. Environ Sci-Wat Res Technol. 2020; 6(7): 1765-85. https://doi.org/10.1039/C9EW01134J

Liyanage AAH, Biswas PK, Dalir H, Agarwal M. Engineering uniformity in mass production of MWCNTs/epoxy nanofibers using a lateral belt-driven multi-nozzle electrospinning technique to enhance the mechanical properties of CFRPs. Polym Test. 2023; 118: 107883. https://doi.org/10.1016/j.polymertesting.2022.107883

Li F, Huang X, Liu JX, Zhang GJ. Sol-gel derived porous ultra-high temperature ceramics. J Adv Ceram. 2020; 9(1): 1-16. https://doi.org/10.1007/s40145-019-0332-6

Sabzi M, Anijdan SHM, Shamsodin M, Farzam M, Hojjati-Najafabadi A, Feng P, et al. A review on sustainable manufacturing of ceramic-based thin films by chemical vapor deposition (CVD): reactions kinetics and the deposition mechanisms. Coatings. 2023; 13(1): 188. https://doi.org/10.3390/coatings13010188

Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for biomedical applications: production, characterisations, recent trends and difficulties. Molecules. 2021; 26(4): 1077. https://doi.org/10.3390/molecules26041077

Ali M, Shakeel M, Mehmood K. Extraction and characterization of high purity chitosan by rapid and simple techniques from mud crabs taken from Abbottabad. Pak J Pharm Sci. 2019; 32(1): 171-5.

Suyambulingam I, Gangadhar L, Sana SS, Divakaran D, Siengchin S, Kurup LA, et al. Chitosan biopolymer and its nanocomposites: emerging material as adsorbent in wastewater treatment. Adv Mater Sci Eng. 2023; 2023: 1-20. https://doi.org/10.1155/2023/9387016

Chakravarty J, Yang C-L, Palmer J, Brigham CJ. Chitin extraction from lobster shell waste using microbial culture-based methods. J Appl Food Biotechnol. 2018; 5(3): 141-54. https://doi.org/10.22037/AFB.V5I3.20787

Marzieh MN, Zahra F, Tahereh E, Sara KN. Comparison of the physicochemical and structural characteristics of enzymatic produced chitin and commercial chitin. Int J Biol Macromol. 2019;139: 270-6. https://doi.org/10.1016/j.ijbiomac.2019.07.217

Sasi A, Duraipandiyan N, Marikani K, Dhanasekaran S, Al-Dayan N, Venugopal D. Identification and characterization of a newly isolated chitinase-producing strain bacillus licheniformis SSCL-10 for chitin degradation. Archaea. 2020; 2020: 8844811. https://doi.org/10.1155/2020/8844811

Gong XX, Tian WJ, Bai J, Qiao KL, Zhao J, Wang L. Highly efficient deproteinization with an ammonifying bacteria Lysinibacillus fusiformis isolated from brewery spent diatomite. J Biosci Bioeng. 2019; 127(3): 326-32. https://doi.org/10.1016/j.jbiosc.2018.08.004

Philibert T, Lee BH, Fabien N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol. 2017; 181(4): 1314-37. https://doi.org/10.1007/s12010-016-2286-2

Barbosa PFP, Cumba LR, Andrade RDA, do Carmo DR. Chemical modifications of cyclodextrin and chitosan for biological and environmental applications: metals and organic pollutants adsorption and removal. J Polym Environ. 2019; 27(6): 1352-66. https://doi.org/10.1007/s10924-019-01434-x

Liu X-Q, Zhao X, Liu Y, Zhang T-A. Review on preparation and adsorption properties of chitosan and chitosan composites. Polym Bull. 2022; 79(4): 2633-65. https://doi.org/10.1007/s00289-021-03626-9

Madera-Santana TJ, Herrera-Méndez CH, Rodríguez-Núñez JR. An overview of the chemical modifications of chitosan and their advantages. Green Mater. 2018; 6(4): 131-42. https://doi.org/10.1680/jgrma.18.00053

Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol. 2016; 48: 40-50. https://doi.org/10.1016/j.tifs.2015.11.007

Xie MH, Hu B, Wang Y, Zeng XX. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J Agric Food Chem. 2014; 62(37): 9128-36. https://doi.org/10.1021/jf503207s

Luan F, Wei LJ, Zhang JJ, Tan WQ, Chen Y, Dong F, et al. Preparation and characterization of quaternized chitosan derivatives and assessment of their antioxidant activity. Molecules. 2018; 23(3): 516. https://doi.org/10.3390/molecules23030516.

Huo MR, Fu Y, Liu YH, Chen QY, Mu Y, Zhou JP, et al. N-mercapto acetyl-N′-octyl-O, N"-glycol chitosan as an efficiency oral delivery system of paclitaxel. Carbohydr Polym. 2018; 181: 477-88. https://doi.org/10.1016/j.carbpol.2017.10.066.

Benettayeb A, Ghosh S, Usman M, Seihoub FZ, Sohoo I, Chia CH, et al. Some well-known alginate and chitosan modifications used in adsorption: a review. Water. 2022; 14(9): 1353. https://doi.org/10.3390/w14091353

Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Pardo S, Bucio E. Interaction between filler and polymeric matrix in nanocomposites: magnetic approach and applications. Polymers. 2021; 13(17): 2998. https://doi.org/10.3390/polym13172998

Kolya H, Kang CW. Next-generation water treatment: exploring the potential of biopolymer-based nanocomposites in adsorption and membrane filtration. Polymers (Basel). 2023; 15(16): 3421. https://doi.org/10.3390/polym15163421.

Roy S, Singha NR. Polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes (Basel). 2017; 7(3): 53. https://doi.org/10.3390/membranes7030053.

Basavegowda N, Baek KH. Advances in functional biopolymer-based nanocomposites for active food packaging applications. Polymers (Basel). 2021; 13(23): 4198. https://doi.org/10.3390/polym13234198

Gangarapu S, Sunku K, Babu PS, Sudarsanam P. Fabrication of polymer-graphene nanocomposites. in: hussain cm, thomas s, eds., handbook of polymer and ceramic nanotechnology. Springer; 2021. p. 1053-67. https://doi.org/10.1007/978-3-030-40513-7_31

Poshina D, Otsuka I. Electrospun polysaccharidic textiles for biomedical applications. Textiles. 2021; 1(2): 152-69; https://doi.org/10.3390/textiles1020007

Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri MYM, Asyraf MRM, et al. Natural-fiber-reinforced chitosan, chitosan blends and their nanocomposites for various advanced applications. Polymers. 2022; 14(5): 874. https://doi.org/10.3390/polym14050874

Liaw B-S, Chang T-T, Chang H-K, Liu W-K, Chen P-Y. Fish scale-extracted hydroxyapatite/chitosan composite scaffolds fabricated by freeze casting—An innovative strategy for water treatment. J Hazard Mater. 2020; 382: 121082. https://doi.org/10.1016/j.jhazmat.2019.121082

Yin K, Divakar P, Wegst UG. Freeze-casting porous chitosan ureteral stents for improved drainage. Acta Biomater. 2019; 84: 231-41. https://doi.org/10.1016/j.actbio.2018.11.005

Hajiali F, Shojaei A. Silane functionalization of nanodiamond for polymer nanocomposites-effect of degree of silanization. Colloid Surf A-Physicochem Eng Asp. 2016; 506: 254-63. https://doi.org/10.1016/j.colsurfa.2016.06.028

Nguyen QT, Baird DG. An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer. 2007; 48(23): 6923-33. https://doi.org/10.1016/j.polymer.2007.09.015

Mittal M, Tripathi S, Shin DK. Biopolymeric nanocomposites for wastewater remediation: an overview on recent progress and challenges. Polymers (Basel). 2024; 16(2): 294. https://doi.org/10.3390/polym16020294

Yousefi A, Etemadi H, Sattari H. Study on the fabricated PC/PDA-modified TiO2 hybrid membranes for oily wastewater treatment in a submerged membrane system. J Inorg Organomet Polym Mater. 2023; 33(9): 2861-72. https://doi.org/10.1007/s10904-023-02726-5

Kebria MRS, Rahimpour A, Bakeri G, Abedini R. Experimental and theoretical investigation of thin ZIF-8/chitosan coated layer on air gap membrane distillation performance of PVDF membrane. Desalination. 2019; 450: 21-32. https://doi.org/10.1016/j.desal.2018.10.023

Liu F, Long QW, Che GQ, Zhang ZH, Cooper M, Zhang J, et al. Enhanced desalination and water transport performance of polyelectrolyte-modified ?holey? graphene oxide film. J Clean Prod. 2023; 385: 9. https://doi.org/10.1016/j.jclepro.2022.135580

Fahrina A, Arahman N, Aprilia S, Bilad MR, Silmina S, Sari WP, et al. Functionalization of PEG-AgNPs hybrid material to alleviate biofouling tendency of polyethersulfone membrane. Polymers. 2022; 14(9): 1908. https://doi.org/10.3390/polym14091908

Li MN, Huang GH, Chen XJ, Xiao HN, An CJ, Yin JN, et al. Development of an antimicrobial and antifouling PES membrane with ZnO/ poly(hexamethylene biguanide) nanocomposites incorporation. Chem Eng J. 2024; 481: 148744. https://doi.org/10.1016/j.cej.2024.148744

Zeng H, Hao H, Wang X, Shao Z. Chitosan-based composite film adsorbents reinforced with nanocellulose for removal of Cu (II) ion from wastewater: Preparation, characterization, and adsorption mechanism. Int J Biol Macromol. 2022; 213: 369-80. https://doi.org/10.1016/j.ijbiomac.2022.05.103

Yang XM, Tu YF, Li LA, Shang SM, Tao XM. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces. 2010; 2(6): 1707-13. https://doi.org/10.1021/am100222m

Balakrishnan A, Appunni S, Chinthala M, Jacob MM, Vo D-VN, Reddy SS, et al. Chitosan-based beads as sustainable adsorbents for wastewater remediation: a review. Environ Chem Lett. 2023; 21: 1881-1905. https://doi.org/10.1007/s10311-023-01563-9

Balakrishnan A, Gopalram K, Appunni SJES, Research P. Photocatalytic degradation of 2, 4-dicholorophenoxyacetic acid by TiO 2 modified catalyst: Kinetics and operating cost analysis. Environ Sci Pollut Res. 2021; 28: 33331-43. https://doi.org/10.1007/s11356-021-12928-4

Liu C, Liu H, Zheng Y, Luo J, Lu C, He Y, et al. Schiff base crosslinked graphene/oxidized nanofibrillated cellulose/chitosan foam: An efficient strategy for selective removal of anionic dyes. Int J Biol Macromol. 2023; 252: 126448. https://doi.org/10.1016/j.ijbiomac.2023.126448

Tlili I, Alkanhal TA. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalination. 2019; 9(3): 232-48. https://doi.org/10.2166/wrd.2019.057

Khalid A, Khan I, Khan A, Shafie S, Tlili I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud Therm Eng. 2018; 12: 374-80. https://doi.org/10.1016/j.csite.2018.04.004

Abou Kana MTH, Radi M, Elsabee MZ. Wastewater treatment with chitosan nano-particles. Int J Nanotechnol Appl. 2013; 3: 39-50.

Vakili M, Deng S, Cagnetta G, Wang W, Meng P, Liu D, et al. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep Purif Technol. 2019; 224: 373-87. https://doi.org/10.1016/j.seppur.2019.05.040

Ahmed MA, Mohamed AA. The use of chitosan-based composites for environmental remediation: A review. Int J Biol Macromol. 2023; 242: 124787. https://doi.org/10.1016/j.ijbiomac.2023.124787

Roy K, Mukherjee A, Maddela NR, Chakraborty S, Shen BX, Li M, et al. Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment-A review. J Environ Chem Eng. 2020; 8(1): 20. https://doi.org/10.1016/j.jece.2019.103572

Das R, Leo BF, Murphy F. The toxic truth about carbon nanotubes in water purification: a perspective view. Nanoscale Res Lett. 2018; 13(1): 183. https://doi.org/10.1186/s11671-018-2589-z

Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health. 2017; 59(5): 394-407. https://doi.org/10.1539/joh.17-0089-RA

Ihsanullah. Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Sep Purif Technol. 2019; 209: 307-37. https://doi.org/10.1016/j.seppur.2018.07.043

Zhang MF, Deng YM, Yang M, Nakajima H, Yudasaka M, Iijima S, et al. A simple method for removal of carbon nanotubes from wastewater using hypochlorite. Sci Rep. 2019; 9: 1284. https://doi.org/10.1038/s41598-018-38307-7

Qu X, Alvarez PJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013; 47(12): 3931-46. https://doi.org/10.1016/j.watres.2012.09.058

Rouf TB, Kokini JL. Biodegradable biopolymer-graphene nanocomposites. J Mater Sci. 2016; 51(22): 9915-45. https://doi.org/10.1007/s10853-016-0238-4

Balakrishnan A, Gaware GJ, Chinthala M. Heterojunction photocatalysts for the removal of nitrophenol: A systematic review. Chemosphere. 2023; 310: 136853. https://doi.org/10.1016/j.chemosphere.2022.136853

Chakraborty P, Snow D. Legacy and emerging contaminants in water and wastewater: monitoring, risk assessment and remediation techniques. In Hashmi MZ, Strezov V, Eds., Emerging Contaminants and Associated Treatment Technologies. Springer; 2022. p. 231-61.

Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019; 17: 145-55. https://doi.org/10.1007/s10311-018-0785-9

Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr Polym. 2021; 251: 116986. https://doi.org/10.1016/j.carbpol.2020.116986

Aramesh N, Bagheri AR, Bilal M. Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms. Int J Biol Macromol. 2021; 183: 399-422. https://doi.org/10.1016/j.ijbiomac.2021.04.158

Wei Y, Zou R, Xia Y, Wang Z, Yang W, Luo J, et al. Enhanced arsenite adsorption from water by activated MOF embedded in macroporous chitosan bionanocomposite beads. Mater Today Chem. 2022; 26: 101091. https://doi.org/10.1016/j.mtchem.2022.101091

Ediati R, Aulia W, Nikmatin BA, Hidayat ARP, Fitriana UM, Muarifah C, et al. Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution. Mater Today Chem. 2021; 21: 100533. https://doi.org/10.1016/j.mtchem.2021.100533

Kumar S, Mukherjee A, Dutta J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci Technol. 2020; 97: 196-209. https://doi.org/10.1016/j.tifs.2020.01.002

Chen SJ, Tian HR, Mao JL, Ma F, Zhang MT, Chen FX, et al. Preparation and application of chitosan-based medical electrospun nanofibers. Int J Biol Macromol. 2023; 226: 410-22. https://doi.org/10.1016/j.ijbiomac.2022.12.056

Dang QF, Liu K, Liu CS, Xu T, Yan JQ, Yan FL, et al. Preparation, characterization, and evaluation of 3,6-O-N-acetylethylenediamine modified chitosan as potential antimicrobial wound dressing material. Carbohydr Polym. 2018; 180: 1-12. https://doi.org/10.1016/j.carbpol.2017.10.019

Raja AN. Recent development in chitosan-based electrochemical sensors and its sensing application. Int J Biol Macromol.2020; 164: 4231-44. https://doi.org/10.1016/j.ijbiomac.2020.09.012

Zouaoui F, Bourouina-Bacha S, Bourouina M, Jaffrezic-Renault N, Zine N, Errachid A. Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC Trends Analy Chem. 2020; 130: 115982. https://doi.org/10.1016/j.trac.2020.115982

Jiang R, Zhu H-Y, Zang X, Fu Y-Q, Jiang S-T, Li J-B, et al. A review on chitosan/metal oxide nanocomposites for applications in environmental remediation. Int J Biol Macromol. 2023; 254: 127887. https://doi.org/10.1016/j.ijbiomac.2023.127887

Zuo Y, Xu J, Jiang F, Duan X, Lu L, Xing H, et al. Voltammetric sensing of Pb (II) using a glassy carbon electrode modified with composites consisting of Co3O4 nanoparticles, reduced graphene oxide and chitosan. Microchim Acta. 2017; 801: 146-52. https://doi.org/10.1007/s00604-013-0959-x

Huser BJ, Bajer PG, Kittelson S, Christenson S, Menken K. Changes to water quality and sediment phosphorus forms in a shallow, eutrophic lake after removal of common carp (Cyprinus carpio). Inland Waters. 2022; 12(1): 33-46. https://doi.org/10.1080/20442041.2020.1850096

Samaei SM, Gato-Trinidad S, Altaee A. Performance evaluation of reverse osmosis process in the post-treatment of mining wastewaters: Case study of Costerfield mining operations, Victoria, Australia. J Water Process Eng. 2020; 34: 101116. https://doi.org/10.1016/j.jwpe.2019.101116

Hashmat S, Shahid M, Tanwir K, Abbas S, Ali Q, Niazi NK, et al. Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of Pisum sativum L. fertigated with diluted and treated wastewater. Agric Water Manage. 2021; 247: 106720. https://doi.org/10.1016/j.agwat.2020.106720

Sfetsas T, Patsatzis S, Chioti A, Kopteropoulos A, Dimitropoulou G, Tsioni V, et al. A review of advances in valorization and post-treatment of anaerobic digestion liquid fraction effluent. Waste Manag Res. 2022; 40(8): 1093-1109. https://doi.org/10.1177/0734242X211073000.

Saleem MH, Mfarrej MFB, Khan KA, Alharthy SA. Emerging trends in wastewater treatment: Addressing microorganic pollutants and environmental impacts. Sci Total Environ. 2024; 913: 169755. https://doi.org/10.1016/j.scitotenv.2023.169755

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Ziao Zhang, Yujie Lu, Yiman Zhao, Shuping Wu

Downloads

Download data is not yet available.