Charcoal-production, Air Pollutant Impacts on Ambient Environment and Associated Health Risks: A Systematic Review
Abstract - 42
PDF

Keywords

Fuel-wood
Health-risks
Air-pollutant
Charcoal-production
Ambient-environment

How to Cite

1.
Okimiji OP. Charcoal-production, Air Pollutant Impacts on Ambient Environment and Associated Health Risks: A Systematic Review. Glob. Environ. Eng. [Internet]. 2024 Dec. 8 [cited 2025 Feb. 22];11:13-36. Available from: https://avantipublishers.com/index.php/tgevnie/article/view/1569

Abstract

Charcoal is a widely utilised fuel produced from the carbonisation of organic materials, such as wood and other biomass sources. Regrettably, airborne contaminants from traditional charcoal producing techniques can negatively impact human health and the environment. This research explore air pollutant emissions from traditional charcoal producing methods and their impacts on human health and the environment. This study utilised a qualitative synthesis methodology, incorporating case studies, archival research, and discourse analysis, to elucidate the impacts of charcoal production. The results demonstrate that the traditional charcoal production method results in substantial carbon loss from fuelwood and emits by-products of incomplete combustion, exacerbating serious health risks and degrading air quality associated with community health problems. Empirical evidence indicates that the majority of charcoal manufacturing workers lack awareness of the health risks associated with their working circumstances and the respiratory problems they face. Unsustainable environmental practices highlight the social and ecological repercussions of charcoal production. It is advisable to apply air pollution mitigation methods around charcoal kiln facilities to protect environmental and community health. The Environmental Protection Agency must actively implement effective oversight and integrated management to improve air quality and safeguard communities from air hazards. This study recommends testing high-efficiency technologies in communities capable of maintaining and assessing their effects on environmental degradation. Both governmental entities and humanitarian organisations should prioritise educational activities centred on effective land management approaches, as this study's findings suggest.

https://doi.org/10.15377/2410-3624.2024.11.2
PDF

References

Getahun Z, Abewaa M, Mengistu A, Adino E, Kontu K, Angassa K, et al. Towards sustainable charcoal production: Designing an economical brick kiln with enhanced emission control technology. Heliyon. 2024; 10(2024): e27797. https://doi.org/10.1016/j.heliyon.2024.e27797

FAO. Enhancing Sustainability and Efficiency of Woodfuel Production and Consumption, Nairobi, 2016. Available from: www.fao.org (Accessed on 10 July 2017).

Rodriguesa T, Junior AB. Charcoal: A discussion on carbonization kilns. J Anal Appl Pyrolysis. 2019; 143: 104670. https://doi.org/10.1016/j.jaap.2019.104670

Jelonek Z, Drobniak A, Mastalerz M, Jelonek I. Environmental implications of the quality of charcoal briquettes and lump charcoal used for grilling. Sci Total Environ. 2020; 747: 141267. https://doi.org/10.1016/j.scitotenv.2020.141267

Kilahama F. Impact of increased charcoal consumption to forests and woodlands in Tanzania. For Ecol Manag. 2008; 308: 45-55.

Toan PV, Kim L, Thanh NT, Toan HL, Tuan LA, Minh HVT, et al. Emission and reduction of air pollutants from charcoal-making process in the vietnamese mekong delta. Climate. 2023; 11: 149. https://doi.org/10.3390/cli11070149

Ankona E, Nisnevitch M, Knop Y, Billig M, Badwan A, Anker Y. The Eastern Mediterranean charcoal industry: Air pollution prevention by the implementation of a new ecological retort system. Earth Space Sci. 2022; 9: e2021EA002044. https://doi.org/10.1029/2021EA002044

Shetty R, Prakash NB. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci Rep. 2020; 10: 12249. https://doi.org/10.1038/s41598-020-69262-x

Marzeddu S, Cappelli A, Ambrosio A, Décima MA, Viotti P, Boni MR. A life cycle assessment of an energy-biochar chain involving a gasification plant in Italy. Land. 2021; 10(11): 1256. https://doi.org/10.3390/land10111256

Slavich PG, Sinclair K, Morris SG, Kimber SWL, Downie A, Van Zwieten L. Contrasting effects of manure and greenwaste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil. 2013; 366(1): 213-27. https://doi.org/10.1007/s11104-012-1412-3

Soinne H, Keskinen R, Heikkinen J, Hyväluoma J, Uusitalo R, Peltoniemi K. et al. Are there environmental or agricultural benefitsin using forest residue biochar in boreal agricultural clay soil? Sci Total Environ. 2020; 731: 138955. https://doi.org/10.1016/j. scitotenv.2020.138955

Pandit R, Parrotta JA, Chaudhary AK, Karlen DL, Vieira DL, Anker MY, et al. A framework to evaluate land degradation and restoration responses for improved planning and. Ecosyst People. 2020; 15(1): 1-18. https://doi.org/10.1080/26395916.2019.1697756

Boni MR, Chiavola A, Antonucci A, Mattıa ED, Marzeddu S. A novel treatment for Cd-contaminated solution through adsorption on beech charcoal: The effect of bioactivation. Desalin Water Treat. 2018; 127: 104-10. https://doi.org/10.5004/dwt.2018.22664

Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environ Sci Pollut Res. 2013; 20(5): 2828-43. https://doi.org/10.1007/s11356-013-1524-1

Joseph S, Cowie AL, Van Zwieten L. How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy. 2021; 13: 1731-64. https://doi.org/10.1111/gcbb.12885

Idowu OS, De Azevedo LB, Zohoori FV, Kanmodi K, Pak T. Health risks associated with the production and usage of charcoal: a systematic review. BMJ Open. 2023; 13: e065914. https://doi.org/10.1136/bmjopen-2022-065914

Leman A, Feriyanto D, Nazri AA, Sunar N, Salleh MNM. Burner characteristics for activated carbon production. MATEC Web Conf. EDP Sci. 2017; 87: 02018. https://doi.org/10.1051/matecconf/20178702018

Ortiz O, Martinez N, Mengual C, Noriega S. Steady state simulation of a rotary kiln for charcoal activation. Lat Am Appl Res. 2003; 33: 51-7.

de Oliveira Vilela A, Lora ES, Quintero QR, Vicintin RA, da Silva e Souza TP. A new technology for the combined production of charcoal and electricity through cogeneration. Biomass Bioenergy. 2014; 69: 222-40. https://doi.org/10.1016/j.biombioe.2014.06.019

Sun M, Zhang J, Li K, Barati M, Liu Z. Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo. Energy. 2022; 241: 122890. https://doi.org/10.1016/j.energy.2021.122890

Qambrani NA, Rahman MM, Won S, Shim S, Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew Sustain Energy Rev. 2017; 79: 255-73. https://doi.org/10.1016/j.rser.2017.05.057

Mukherjee S, Kumar S, Misra AK, Fan M. Removal of phenols from water environment by activated carbon, bagasse ash and wood charcoal. Chem Eng J. 2007; 129(2007): 133-42. https://doi.org/10.1016/J.CEJ.2006.10.030

López S, Castro R, García E, Pazo J, Barroso C. The use of activated charcoal in combination with other fining agents and its influence on the organoleptic properties of sherry wine. Eur Food Res Technol. 2001; 212: 671-75. https://doi.org/10.1007/s002170100300

Laird DA. The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J. 2008; 100(1): 178-81. https://doi.org/10.2134/agronj2007.0161

Ahmad RK, Sulaiman SA, Yusup S, Dol SS, Inayat M, Umar HA. Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng J. 2022; 13(1): 101499. https://doi.org/10.1016/j.asej.2021.05.013

Bekele B, Kemal AW. Determents of sustainable charcoal production in AWI zone; the case of Fagita Lekoma district, Ethiopia. Heliyon. 2022; 8(12): e11963. https://doi.org/10.1016/j.heliyon.2022.e11963

Mensah KE, Damnyag L, Kwabena NS. Analysis of charcoal production with recent developments in sub-Sahara Africa: a review. Afr Geograph Rev. 2022; 41: 35-55. https://doi.org/10.1080/19376812.2020.1846133

Wilkinson P, Smith KR, Joffe M, Haines A. A global perspective on energy: health effects and injustices. Lancet. 2007; 370: 965-78. https://doi.org/10.1016/S0140-6736(07)61252-5

Ezzati M, Kammen DM. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ Health Perspect. 2002; 110: 1057-68. https://doi.org/10.1289/ehp.021101057

Woolley KE, Bartington SE, Kabera T, Lao TQ, Pope FD, Greenfield SM. Comparison of respiratory health impacts associated with wood and charcoal Biomass fuels: a population-based analysis of 475,000 children from 30 low-and middle-income countries. Int J Environ Res Public Health. 2021; 18: 9305. https://doi.org/10.3390/ijerph18179305

Charvet F, Matos A, da Silva JF, Tarelho L, Leite M, Neves D. Charcoal production in Portugal: operating conditions and performance of a traditional brick kiln. Energies. 2022; 15(13): 4775. https://doi.org/10.3390/en15134775

Januszewicz K, Kazimierski P, Klein M, Kardaś D, Łuczak J. Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials. 2020; 13(9): 2047. https://doi.org/10.3390/ma13092047

Zhao C, Jiang E, Chen A. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J Energy Inst. 2017; 90: 902-13. https://doi.org/10.1016/j.joei.2016.08.004

Rizzo AM, Pettorali M, Nistri R, Chiaramonti D. Mass and energy balances of an autothermal pilot carbonization unit. Biomass Bioenergy. 2019; 120: 144-55. https://doi.org/10.1016/j.biombioe.2018.11.009

Demirbas A. Sustainable charcoal production and charcoal briquetting. energy sources, Part A recover. Util Environ Eff. 2009; 31(19): 1694-9. https://doi.org/10.1080/15567030802094060

Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A. Characterization and prediction of biomass pyrolysis products. Prog Energy Combust Sci. 2011; 37: 611-30. https://doi.org/10.1016/j.pecs.2011.01.001

Pfotenhauer DJ, Coffey ER, Piedrahita R, Agao D, Alirigia R, Muvandimwe D, et al. Updated emission factors from diffuse combustion sources in sub-saharan Africa and their effect on regional emission estimates. Environ Sci Technol. 2019; 53: 6392-401. https://doi.org/10.1021/acs.est.8b06155

Malimbwi RE, Zahabu EM. Woodlands and the Charcoal Trade: The Case of Dar Es Salaam City; Working Papers of the Finnish Forest Research Institute; 2008, 98-114; Tanzania, 2008.

Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys. 2011; 11(9): 4039-72. https://doi.org/10.5194/acp-11-4039-2011

Chidumayo EN, Gumbo DJ. The environmental impacts of charcoal production in tropical ecosystems of the world: a synthesis. Energy Sustain Dev. 2013; 17(2): 86-94. https://doi.org/https://doi.org/10.1016/j.esd.2012.07.004

Bailis R, Drigo R, Ghilardi A, Masera O. The carbon footprint of traditional woodfuels. Nat Clim Chang. 2015; 5: 266. https://doi.org/10.1038/nclimate2491

Mwampamba TH. Has the woodfuel crisis returned? Urban charcoal consumption in Tanzania and its implications to present and future forest availability. Energy Policy. 2007; 35(8): 4221-34. https://doi.org/https://doi.org/10.1016/j.enpol.2007.02.010

Sedano F, Lisboa SN, Duncanson L, Ribeiro N, Sitoe A, Sahajpal R, et al. Monitoring forest degradation from charcoal production with historical landsat imagery. A case study in southern Mozambique. Environ Res Lett. 2020; 15(1): 015001. https://doi.org/10.1088/1748-9326/ab3186

FAO. (Food and Agricultural Organization. Sustainable Charcoal Production for Food Security and Forest Landscape Restoration I. 2020; FAO. 2015-2020.

FAO. (Food and Agricultural Organization). Global forest products facts and figures 2018. Italy. 2019.

OEC. Wood charcoal trade, 4402. 2020; Retrieved from https://oec.world/en/profile/hs92/wood-charcoal

Namaalwa J, Hofstad O, Sankhayan PL. Achieving sustainable charcoal supply from woodlands to urban consumers in Kampala, Uganda. Int For Rev. 2009; 11(1): 64-78. https://doi.org/10.1505/ifor.11.1.64

Tomaselli I. Forests and Energy in Developing Countries (Vol. 32). Food and Agriculture Organization of The United Nations; 2007.

Pyshyev S, Miroshnichenko D, Malik I, Bautista Contreras A, Hassan N, Abd Elrasoul A. State of the art in the production of charcoal: A review. Chem Chem Technol. 2021; 15: 61-73. https://doi.org/10.23939/chcht15.01.061

Sparrevik M, Cornelissen G, Sparrevik M, Adam C, Martinsen V, Cornelissen G, et al. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved "retort" kilns. Biomass Bioenergy. 2015; 72: 65-73. https://doi.org/10.1016/j.biombioe.2014.11.016

Bashir Z, Amjad M, Raza SF, Ahmad S, Abdollahian M, Farooq M. Investigating the impact of shifting the brick kiln industry from conventional to zigzag technology for a sustainable environment. Sustainability. 2023; 15(10): 8291. https://doi.org/10.3390/su15108291

da Silva LF, Arantes MDC, Marcelino RAG, Mendes Castro AFN, Da Mata Ataíde G, Oliveira Castro RV. et al. Kiln-furnace system: Validation of a technology for producing charcoal with less environmental impact in Brazil. Forests. 2024; 15(4): 645. https://doi.org/10.3390/f15040645

Adam JC. Improved and more environmentally friendly charcoal production system using a low-cost retort-kiln (Eco-charcoal). Renew Energy. 2009; 34(8): 1923-5. https://doi.org/10.1016/j.renene.2008.12.009

UN. (United Nations). African regional implementation review for the commission on sustainable development (CSD-14 ) report on the review of African sustainable industrial development. 2006; Retrieved from https://sustainabledevelopment.un.org/content/documents/ecaRIM_bp3.pdf

Lee C, Chandler C, Lazarus M, Johnson FX. Assessing the climate impacts of cookstove projects: Issues in emissions accounting, stock. Challenges Sustain. 2013; 1(2): 53-71. https://doi.org/10.12924/cis2013.01020053

Hamatui N, Naidoo RN, Kgabi N. Respiratory health effects of occupational exposure to charcoal dust in Namibia. Int J Occup Environ Health. 2016; 22: 240-8. https://doi.org/10.1080/10773525.2016.1214795

EIA (Energy Information Administration). International Energy Outlook. Washington, D.C.2001.

World Bank. GDP per capita (Current US$)', 'Access to Electricity (% of population)', and 'Combustible Renewables and Waste (% of population)'. 2014; Data obtained from http://data.worldbank.org/indicator

Goanue AV. Status of Renewable Energy in Liberia. Presentation of Rural and Renewable Energy Agency, 2009.

DeFries R, Pandey D. Urbanization, the energy ladder and forest transitions in India's emerging economy. Land Use Policy. 2010; 27(2): 130-8. https://doi.org/10.1016/j.landusepol.2009.07.003

Smith KR, Apte MG, Yuqing M, Wongsekiarttirat W, Kulkarni A. Air pollution and the Energy Ladder in Asian cities. Energy. 1994; 19(5): 587-600. https://doi.org/10.1016/0360-5442(94)90054-X

Carneiro ACO, Castro AFV, Castro RVO, Santos RC, Ferreira LP, Damásio RAP, et al. Potencial energético da madeira de Eucalyptus sp. em função da idade e de diferentes materiais genéticos. Revista Árvore. 2014; 38(2): 375-81. https://doi.org/10.1590/S0100-67622014000200019

Madubansi M, Shackleton CM. Changes in fuelwood use and selection following electrification in the Bushbuckridge lowveld, South Africa. J Environ Manage. 2007; 83(4): 416-26. https://doi.org/10.1016/j.jenvman.2006.03.014

Prasad G. Energy sector reform, energy transitions and the poor in Africa. Energy Policy. 2008; 36(8): 2806-11. https://doi.org/10.1016/j.enpol.2008.02.042

Okello C, Pindozzi S, Faugno S, Boccia L. Development of bioenergy technologies in Uganda: A review of progress. Renew Sustain Energy Rev. 2013; 218: 55-63. https://doi.org/10.1016/j.rser.2012.10.004

Oliveira AC. Sistema forno-fornalha para produção de carvão vegetal [dissertação]. Viçosa: Universidade Federal de Viçosa; 2012.

Vale AT, Brasil MAM, Leão AL. Quantificação e caracterização energética da madeira e casca de espécies do cerrado. Ciência Florestal. 2022; 12(1): 71-80. https://doi.org/10.5902/198050981702

Leme M. Estudo técnico, econômico e ambiental da utilização de alternativas tecnológicas para a geração de eletricidade na cadeia produtiva do carvão vegetal no Brasil [tese]. Itajubá: Universidade Federal de Itajubá; 2016.

Ahmed B, Shamaki SB, Gidado AH, Alaji DG, Kwaha JD, Iliyasu AL, et al. Assessment of environmental impacts of charcoal production in gummi local government Area, Zamfara State, Nigeria. J Agric Environt. 2021; 17(2): 133-42.

Luwaya E. Improvement of conversion efficiency of charcoal kiln using a numerical method. (PhD thesis) Department of Mechanical Engineering, University of Zambia; 2015.

IEA (International Energy Agency). Secure Sustainable Together, Energy Access Outlook; From poverty to Prosperity. Special Report; OECD/IEA, 2017; International Energy Agency. www.iea.org/energyaccess (Assessed on 8 Nov, 2024).

Schure J, Pinta F, Cerutti PO, Kasereka-Muvatsi L. Efficiency of charcoal production in Sub-Saharan Africa: Solutions beyond the kiln. Bois et Forêts des Tropiques. 2019; 340: 57-70. https://doi.org/10.19182/bft2019.340.a31691

WHO. Progress on basic energy access reverses for first time in a decade. 2024. https://www.who.int/news/item/08-06-24-progress on basic energy access reverses for first time in a decade. (Assessed on 08 Nov, 2024)

United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. United Nations, A/res/70/1, 2015; p. 35. Available from: https://sustainabledevelopment.un.org/post2015/transformingourworld

Mwampamba TH, Ghilardi A, Sander K, Chaix KJ. Dispelling common misconceptions to improve attitudes and policy outlook on charcoal in developing countries. Energy Sustain Dev. 2013; 17(2): 75-85. https://doi.org/10.1016/j.esd.2013.01.001

Owen M, Van der Plas R, Sepp S. Can There Be Energy Policy in Sub-Saharan Africa without Biomass? Energy Sustain Dev. 2013; 17: 146-52. https://doi.org/10.1016/j.esd.2012.10.005

Schure J, Ingram V, Arts B, Levang P, Mvula-Mampasi E. Institutions and access to woodfuel commerce in the Democratic Republic of Congo. For Policy Econ. 2015; 50: 53-61. https://doi.org/10.1016/j.forpol.2014.06.010

(a) Girard P, Napoli A. La pyrolyse. In: Schenkel Y, Benabdallah B, Eds. Guide Biomasse Énergie. 2nd ed. Belgium: Institute of Energy and Environment of the Francophonie (IEPF); 2005, pp. 163-82. Available from: https://www.ifdd.francophonie.org/media/docs/publications/248_Guide_biomasse_2005.pdf (b) EAO (Energy Access Outlook 2017: From poverty to prosperity. OECD/IEA; 2017. https://webstore.iea.org/weo-2017-special-report-energy-access-outlook

FAO. The charcoal transition: greening the charcoal value chain to mitigate climate change and improve local livelihoods. Rome, Italy: FAO; 2017a, p.184. http://www.fao.org/3/ai6935e.pdf

Ishaya S, Ikediashi T, Yetunde BJ, Monica ON. Assessment of ambient air within the vicinity of charcoal production site in Kunguni community, kwali area council in Abuja, Nigeria. Dutse J Pure Appl Sci. 2023; 9(4b): 284-304. https://dx.doi.org/10.4314/dujopas.v9i4b.24

World Health Organization. Guidelines for indoor air quality: Ambient (outdoor) air pollution. 2022; Available online: https:www.who.int/news-room/factsheets/detail/ambient-(outdoor)-air-quality-and health. (Accessed on 19 Dec 2022).

Onekon WA, Kipchirchir KO. Assessing the effect of charcoal production and use on the transition to a green economy in Kenya. Trop Subtrop Agro-ecosystems. 2012; 19(3): 327-335. https://doi.org/10.56369/tsaes.2243

Gazull L, Gautier D. Woodfuel in a global change context. Wiley Interdisciplinary Reviews: Energy Environ. 2015; 4(2): 156-70. https://doi.org/10.1002/wene.115

Arnold JEM, Köhlin G, Persson R. Woodfuels, livelihoods, and policy interventions: Changing Perspectives. World Dev. 2006; 34(3): 596-611. https://doi.org/10.1016/j.worlddev.2005.08.008

Zulu LC, Richardson RB. Charcoal, livelihoods, and poverty reduction: Evidence from sub-Saharan Africa. Energy Sustain Deve. 2013; 17: 127-37. https://doi.org/10.1016/j.esd.2012.07.007

Alem S, Duraisamy J, Legesse E, Seboka Y. Wood charcoal supply to addis ababa city and it's effect on the environment. J Energy Environ. 2010; 21(6): 601-9. https://doi.org/10.1260/0958-305X.21.6.601

Fei R, Di G, Cheng H. Classification of air pollution in China. In: International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021), 2021, Harbin, China: 121682E. https://doi.org/10.1117/12.2631163

World Health Organization. Preventing Disease through Healthy Environments: A Global Assessment of the Burden of Disease From Environmental Risks. 2020. Available online: https://apps.who.int/iris/handle/10665/204585 (accessed on 29 April 2020).

Song C. Health burden attributable to ambient PM2.5 in China. Environ Pollut. 2017; 223(1): 575-86. https://doi.org/10.1016/j.envpol.2017.01.060

Mohammad T, Amirhossein B, Mahdieh A, Oliver HG. Spatial/temporal variability in transportation emissions and air quality in NYC cordon pricing. Transp Res D: Transp Environ. 2020; 89: 102620. https://doi.org/10.1016/j.trd.2020.102620

Chang QLH, Zhang B. Spatial-temporal characteristics and socio-economic influencing factors of air quality in major cities along the yellow river. Ecol Econ. 2021; 37 (7): 7-14.

Orru H, Marek M, Taavi L, Tanel T, Marko K, Veljo K, et al. Health impacts of particulate matter in five major Estonian towns: Main sources of exposure and local differences. Air Quality Health. 2010; 4(3): 247-58. https://doi.org/10.1007/s11869-010-0075-6

Abidin ZE, Semple S, Irniza R, Sharifah NS, Jon GA. The relationship between air pollution and asthma in Malaysian school children. Air Quality Atmos Health. 2014; 7(3): 421-32. https://doi.org/10.1007/s11869-014-0252-0

Ismail M, Muhammad D, Khan FU, Munsif F, Ahmad T, Ali S, et al. Effect of brick kilns emissions on heavy metal (Cd and Cr) content of contiguous soil and plants. Sarhad J Agric. 2012; 28: 165-70.

WHO. Air Pollution. World Health Organization. 2018; Available online: https://www.who.int/topics/airpollution/en (accessed on 23 April 2018).

Pervaiz S, Akram MAN, Khan FZ, Javid K, Zahid Y. Brick Sector and Air Quality: An Integrated Assessment towards 2020 Challenge of Environment Development. Environ Nat Resour J. 2021; 19: 153-64. https://doi.org/10.32526/ennrj/19/2020203

Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al. Global, regional, and national comparative risk 927 assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159): 1923-94. https://doi.org/10.1016/S0140-6736(18)32225-6

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020; 8: Article 14. https://doi.org/10.3389/fpubh.2020.00014

Sahu SK, Beig G, Parkhi NS. Emissions inventory of anthropogenic PM2.5 and PM10 in Delhi during Commonwealth Games. Atmos Environ. 2011; 45: 6180-90.

Mangaraj P, Sahu SK, Beig G, Yadav R. A comprehensive high-848 resolution gridded emission inventory of anthropogenic sources of air pollutants in Indian megacity Kolkata, SN. Appl Sci. 2022; 4: 117. https://doi.org/10.1007/s42452-022-05001-3

Albuquerque FB, de Melo RR, Pimenta AS. Mini-rectangular kiln to produce charcoal and wood vinegar. Floresta Ambient. 2024; 31(3): e20240022. https://doi.org/10.1590/2179-8087-floram-2024-0022

Hussain A, Khan N, Ullah M, Imran M, Ibrahim M, Hussain J, et al. Brick kilns air pollution and its impact on the Peshawar city. Pollution. 2022; 8(4): 1266-73. https://doi.org/10.22059/POLL.2022.341450.1436

Sahu SK, Mangaraj P, Beig G. Decadal growth in emission load of major air pollutants 1 in Delhi. Earth Sys Sci Data. 2023; 1-39. https://doi.org/10.5194/essd-2023-90

Raza A, Ali Z. Impact of air pollution generated by brick kilns on the pulmonary health of workers. J Health Pollut. 2021; 11(31): 1-10. https://doi.org/10.5696/2156-9614-11.31.210906

Tippayawong N, Saengow N, Chaiya E, Srisang N. Production of charcoal from woods and bamboo in a small natural draft carbonizer. Int J Energy Environ. 2010; 1(5): 911-8.

Lachowicz JI, Milia S, Jaremko M, Oddone E, Cannizzaro E, Cirrincione L, et al. Cooking particulate matter: a systematic review on nanoparticle exposure in the indoor cooking environment. Atmosphere. 2022; 14: 12. https://doi.org/10.3390/atmos14010012

Huang HL, Lee WMG, Wu FS. Emissions of air pollutants from indoor charcoal barbecue. J Hazard Mater. 2016; 302: 198-207. https://doi.org/10.1016/j.jhazmat.2015.09.048

Yu KP, Chen YC, Miao YJ, Siregar S, Tsai YW, Lee WMG. Effects of oil drops and the charcoal's proximate composition on the air pollution emitted from charcoal barbecues. Aerosol Air Qual Res. 2020; 20: 1480-94. https://doi.org/10.4209/aaqr.2019.01.0042

Dias Junior AF, Esteves RP, da Silva 'AM, Sousa Júnior AD, Oliveira MP, Brito JO, et al. Investigating the pyrolysis temperature to define the use of charcoal. Eur J Wood Prod. 2020; 78, 193-204. https://doi.org/10.1007/s00107-019-01489-6

Jeoung TY, Yang SM, Kang SG. Study on fuel specificity and harmful air pollutants factor of agglomerated wood charcoal. J Korean Wood Sci. 2020; 48: 253-66. https://doi.org/10.5658/WOOD.2020.48.2.253

Pennise DM, Smith KR, Kithinji JP, Rezende ME, Raad TJ, Zhang J, et al. Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. J Geophys Res Atmos. 2001; 106: 24143-55. https://doi.org/10.1029/2000JD000041

Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA. 2018; 115: 9592-7. https://doi.org/10.1073/pnas.1803222115

Koppmann R, Czapiewski K, Reid J. A review of Biomass burning emissions, part I: gaseous emissions of carbon Monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos Chem Phys Discuss. 2005; 5: 10455-516. https://doi.org/10.5194/acpd-5-10455-2005

Wei W, Zhang W, Hu D, Ou L, Tong Y, Shen G, Shen H, et al. Emissions of carbon Monoxide and carbon dioxide from Uncompressed and Pelletized Biomass fuel burning in typical household stoves in China. Atmosph Environ. 2012; 56: 136-42. https://doi.org/10.1016/j.atmosenv.2012.03.060

Gilman JB, Lerner BM, Kuster WC, Goldan PD, Warneke C, Veres PR, et al. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmos Chem Phys. 2015; 15: 13915-38. https://doi.org/10.5194/acp-15-13915-2015

Ozgen S, Cernuschi S, Caserini S. An overview of nitrogen oxides emissions from Biomass combustion for domestic heat production. Renew Sustain Energy Rev. 2021; 135: 110113. https://doi.org/10.1016/j.rser.2020.110113

Nguyen T, Hlangothi D, Martinez RA, Jacob D, Anthony K, Nance H, et al. Charcoal burning as a source of Polyaromatic hydrocarbons in Waterpipe smoking. J Environ Sci Health B. 2013; 48: 1097-102. https://doi.org/10.1080/03601234.2013.824300

Yang W, Zhu Y, Cheng W, Wang M, Song W, Yu D, et al. Characteristics of particulate matter emitted from agricultural Biomass combustion. Energy Fuels. 2017; 31: 7493-501. https://doi.org/10.1021/acs.energyfuels.7b00229

Jelonek Z, Drobniak A, Mastalerz M, Jelonek I. Environmental implications of the quality of charcoal briquettes and lump charcoal used for grilling. Sci Total Environ. 2020; 747(10): 141267. https://doi.org/10.1016/j.scitotenv.2020.141267

Ju YM, Jeong H, Chea KS, Ahn BJ, Lee SM. Evaluation of the amount of gas generated through combustion of wood charcoal and agglomerated charcoal depending on air ventilation. J Korean Wood Sci. 2020; 48: 847-60. https://doi.org/10.5658/WOOD.2020.48.6.847

Harris P. On charcoal. Interdis Sci Rev. 1999; 24: 301-6. https://doi.org/10.1179/030801899678966

Kleinhans U, Wieland C, Frandsen FJ, Spliethoff H. Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior. Prog Energy Combust Sci. 2018; 68: 65-168. https://doi.org/10.1016/j.pecs.2018.02.001

Yang W, Pudasainee D, Gupta R, Li W, Wang B, Sun L. An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Process Technol. 2021; 213: 106657. https://doi.org/10.1016/j.fuproc.2020.106657

Mencarelli A, Cavalli R, Greco R. Variability on the energy properties of charcoal and charcoal briquettes for barbecue. Heliyon. 2022; 8(8): 1-9. https://doi.org/10.1016/j.heliyon.2022.e10052

Souza MS, Magnarelli GG, Rovedatti MG, Santa Cruz S, Pechen De D'Angelo AM. Prenatal exposure to pesticides: analysis of human placental acetylcholinesterase, glutathione S-transferase and catalase as biomarkers of effect. Biomarkers. 2005; 10: 376-89. https://doi.org/10.1080/13547500500272614

Eniola P, Odebode S, Ayandele B. Contributions of charcoal production to socio-economic activities of rural dwellers in the rain forest agro-ecological zone of Nigeria. Recent Adv Petrochem Sci. 2018; 6: 555683. https://doi.org/10.19080/RAPSCI.2018.06.555683

Nabukalu C, Gieré R. Charcoal as an energy resource: Global trade, production and socioeconomic practices observed in Uganda. Resources. 2019; 8: 183. https://doi.org/10.3390/resources8040183

Schure J, Ingram V, Sakho-jimbira MS, Levang P, Wiersum KF. Formalisation of charcoal value chains and livelihood outcomes in Central- and West Africa. Energy Sustain Dev. 2013; 17: 95-105. https://doi.org/10.1016/j.esd.2012.07.002

Ribot JC. Theorizing access: forest profits along senegal's charcoal commodity chain. Dev Change. 1998; 29: 307-41. https://doi.org/10.1111/1467-7660.00080

Post J, Snel M. The impact of decentralised forest management on charcoal production practices in Eastern Senegal. Geoforum. 2003; 34(1): 85-98. https://doi.org/10.1016/S0016-7185(02)00034-9

Fisher M. Household welfare and forest dependence in southern Malawi. Environ Dev Econ. 2004; 9(2): 135-54. https://doi.org/10.1017/S1355770X03001219

Cuvilas CA, Jirjis R, Lucas C. Energy situation in Mozambique: A review. Renew Sustain Energy Rev. 2010; 14(7): 2139-46. https://doi.org/10.1016/j.rser.2010.02.002

Obiebi IP, Oyibo PG. A cross-sectional analysis of respiratory ill-health among charcoal workers and its implications for strengthening occupational health services in southern Nigeria. BMJ Open. 2019; 9: e022361. https://doi.org/10.1136/bmjopen-2018-022361

da Silva Viana Jacobson L, de Souza Hacon S, de Castro HA, Ignotti E, Artaxo P, Saldiva PH, et al. Acute effects of particulate matter and black carbon from seasonal fires on peak expiratory flow of schoolchildren in the Brazilian Amazon. PLoS One. 2014; 9: e104177. https://doi.org/10.1371/journal.pone.0104177

El-Batrawy OA. Air quality around charcoal making kilns and the potential health hazards. Int J Environ. 2019; 8(4): 180-8. https://doi.org/10.36632/ije/2019.8.4.4

Ullah S, Khan AA, Haq KU, Nabi G. Effects of occupational exposure to smoke and dust in brick kiln occupants. Am Res Thoughts. 2015; 1(5): 1511-22.

Vaidya VG, Mamulwar MS, Ray SB, Beena R, Bhathlawande PV, Ubale S. Occupational health hazards of women working in brick kiln and construction industry. J Kris Inst Med Sci Uni. 2015; 4(1): 45-54.

Salam MT, Millstein J, Li YF, Lurmann FW, Margolis HG, Gilliland FD. Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: Results from the children's health study. Environ Health Perspect. 2005; 113: 1638-44. https://doi.org/10.1289/ehp.8111

Lui KH, Bandowe BA, Tian L, Chan CS, Cao JJ, Ning Z, et al. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. Chemosphere. 2017; 169: 660-8. https://doi.org/10.1016/j.chemosphere.2016.11.112

Li H, You S, Zhang H, Zheng W, Zou L. Investigating the environmental quality deterioration and human health hazard caused by heating emissions. Sci Total Environ. 2018; 628: 1209-22. https://doi.org/10.1016/j.scitotenv.2018.01.313

Mishra V, Retherford RD. Does biofuel smoke contribute to anaemia and stunting in early childhood? Int J Epidemiol. 2007; 36: 117-29. https://doi.org/10.1093/ije/dyl234

Fullerton DG, Semple S, Kalambo F, Suseno A, Malamba R, Henderson G, et al. Biomass fuel use and indoor air pollution in homes in Malawi. Occup Environ Med. 2009; 66: 777-83. https://doi.org/10.1136/oem.2008.045013

Barone-Adesi F, Chapman RS, Silverman DT, He X, Hu W, Vermeulen R, et al. Risk of lung cancer associated with domestic use of coal in Xuanwei, China: retrospective cohort study. BMJ. 2012; 345: e5414. https://doi.org/10.1136/bmj.e5414

Edokpa DA, Ikelegbe OO. Ambient air quality and human health in oil producing rural communities of Edo State. In: Nigerian Meteorological Society (NMetS) conference proceedings of the 2012. Theme: climate change and variability: saving our tomorrow today. 2012, pp. 180-5.

Kurmi OP, Lam KBH, Ayres JG. Indoor air pollution and the lung in low- and medium-income countries. Eur Respir J. 2012; 40: 239-54. https://doi.org/10.1183/09031936.00190211

Tzanakis N, Kallergis K, Bouros D, Samiou M, Siafakas N. Short-term effects of wood smoke exposure on the respiratory system among charcoal production workers. Chest. 2001; 119: 1260-5. https ://doi.org/10.1378/chest .119.4.1260

Ediagbonya TF, Tobin AE. Air pollution and respiratory morbidity in an urban area of Nigeria. Greener J Environ Manag Pub Saf. 2013; 2(1): 010-5. https://doi.org/10.15580/GJEMPS.2013.1.101112106

Svedahl S, Svendsen K, Qvenild T, Sjaastad AK, Hilt B. Short term exposure to cooking fumes and pulmonary function. J Occup Med Toxicol. 2009; 4: 9. https://doi.org/10.1186/1745-6673-4-9

Swiston JR, Davidson W, Attridge S, Li GT, Brauer M, van Eeden SF. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J. 2008; 32(1): 129-38. https://doi.org/10.1183/09031936.00097707

Keraka M, Ochieng C, Engelbrecht J, Hongoro C. Association between the use of biomass fuels on respiratory health of workers in food catering enterprises in Nairobi Kenya. Pan Afr Med J. 2013; 15: 12. https://doi.org/10.11604/pamj.2013.15.12.1831

Adewole OO, Desalu OO, Nwogu KC, Adewole TO, Erhabor GE. Respiratory symptoms and lung function pattern in workers exposed to wood smoke and cooking oil fumes (Mai Suya) in Nigeria. Ann Med Health Sci Res. 2013; 3(1): 38-42. https://doi.org/10.4103/2141-9248.109475

Zhou Y, Zi T, Lang J, Huang D, Wei P, Chen D, et al. Impact of rural residential coal combustion on air pollution in Shandong, China. Chemosphere. 2020; 260: 127517. https://doi.org/10.1016/j.chemosphere.2020.127517

de Souza RM, Costa CC da, Watte G, Teixeira PJZ. Lung function and respiratory symptoms in charcoal workers in Southern Brazil: an eight-year cohort study. J Bras Pneumol. 2020; 46: S1806. https://doi.org/10.36416/1806-3756/e20200250

Pramchoo W, Geater AF, Jamulitrat S, Geater SL, Tangtrakulwanich B. Occupational tasks influencing lung function and respiratory symptoms among charcoal-production workers: A time-series study. Saf Health Work. 2017; 8: 250-7. https://doi.org/10.1016/j.shaw.2016.11.006

Senya BK, Anim NB, Domson BSK, Edu P. Prevalence of asymptomatic Mycobacterium tuberculosis infection in charcoal producers: A cross-sectional study in Kaase, Ghana. J Pathog. 2018; 2018: 9094803. https://doi.org/10.1155/2018/9094803

Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, et al. Woodsmoke health effects: a review. Inhal Toxicol. 2007; 19: 67-106. https://doi.org/10.1080/08958370600985875

Obiebi IP, Ibekwe RU, Eze GU. Lung function impairment among charcoal workers in an informal occupational setting in Southern Nigeria. African J Res Med. 2017; 13: 8-13.

Maia IMO, de Francisco AC. Workers' postural conditions in the charcoal production Proccess based on vertical metallic Cylynders. Work. 2012; 41: 453-61. https://doi.org/10.3233/WOR-2012-0196-453

Alfaro JF, Jones B. Social and environmental impacts of charcoal production in Liberia: evidence from the field. Energy Sustain Dev. 2018; 47: 124-32. https://doi.org/10.1016/j.esd.2018.09.004

Zelikoff JT, Chen LC, Cohen MD, Schlesinger RB. The toxicology of inhaled woodsmoke. J Toxicol Environ Health B Crit Rev. 2002; 5: 269-82. https://doi.org/10.1080/10937400290070062

IARC. International Agency of Research on Cancer. List of agents, mixtures or exposures classified as their carcinogenic risk to human up to date France: IARC monographs. 2002. Available: https://monographs.iarc.who.int/agents-classifiedby-the-iarc

Pimenta AS, Bayona JM, García MT, Solanas AM. Evaluation of acute toxicity and Genotoxicity of liquid products from Pyrolysis of eucalyptus Grandis wood. Arch Environ Contam Toxicol. 2000; 38(1): 69-75. https://doi.org/10.1007/s002449910022

Amegah AK, Boachie J, Näyhä S, Jaakkola JJ. Association of Biomass fuel use with reduced body weight of adult Ghanaian women. J Expo Sci Environ Epidemiol. 2020; 30: 670-9. https://doi.org/10.1038/s41370-019-0129-2

Amegah AK, Jaakkola JJ, Quansah R, Norgbe GK, Dzodzomenyo M. Cooking fuel choices and garbage burning practices as determinants of birth weight: a cross-sectional study in Accra, Ghana. Environ Health. 2012; 11: 78. https://doi.org/10.1186/1476-069X-11-78

Baumgartner, J., Schauer JJ, Ezzati M, Lu L, Cheng C, Patz JA, et al. Indoor air pollution and blood pressure in adult women living in rural China. Environ Health Perspect. 2011; 119: 1390-5. https://doi.org/10.1289/ehp.1003371

Quinn AK, Ae-Ngibise KA, Jack DW, Boamah EA, Enuameh Y, Mujtaba MN, et al. Association of carbon monoxide exposure with blood pressure among pregnant women in rural Ghana: evidence from GRAPHS. Int J Hyg Environ Health. 2016; 219: 176-83. https://doi.org/10.1016/j.ijheh.2015.10.004

Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ, et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19• 1 million participants. Lancet. 2017; 389: 37-55. https://doi.org/10.1016/S0140-6736(16)31919-5

Arku RE, Ezzati M, Baumgartner J, Fink G, Zhou B, Hystad P, et al. Elevated blood pressure and household solid fuel use in premenopausal women: analysis of 12 demographic and health surveys (DHS) from 10 countries. Environ Res. 2018; 160: 499-505. https://doi.org/10.1016/j.envres.2017.10.026

Ismaili N, Elomrani A, Belbaraka R, Ismaili N, Elomrani A, Belbaraka R, et al. Female lung cancer in Marrakech. Clin Cancer Investig J. 2013; 2: 128. https://doi.org/10.4103/2278-0513.113635

Muscat JE, Takezaki T, Tajima K, Stellman SD. Charcoal cigarette filters and lung cancer risk in Aichi Prefecture, Japan. Cancer Sci. 2005; 96: 283-7. https://doi.org/10.1111/j.1349-7006.2005.00045.x

Ghorbani SF, Bahrami A, Farasati F. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company. Ind Health. 2012; 50: 450-7. https://doi.org/10.2486/indhealth.MS1369

Jafari MJ, Karimi A, Azari MR. The role of the exhast ventilation system in reducing occupational exposure to organic solvents in a paint manufacturing factory. Indian J Occup Env Med. 2008; 12: 82-7. https://doi.org/10.4103/0019-5278.43266

Maes WH, Verbist B. Increasing the sustainability of household cooking in developing countries: Policy implications. Renew Sustain Energy Rev. 2012; 16(6): 4204-21. https://doi.org/10.1016/j.rser.2012.03.031

Karekezi S. Poverty and energy in Africa - A brief review. Energy Policy. 2002; 30: 915-9. https://doi.org/10.1016/S0301-4215(02)00047-2

World Bank. Overview of harvesting Non-productive rubber trees and charcoal production in Liberia. Report, 30 January, 2012.

Jones B. Social and Environmental Impacts of Charcoal Production in Liberia (Thesis). University of Michigan; 2015, Pp. 1-60.

Tassie K, Misganaw B, Addisu S, Tesfaye E. Socioeconomic and environmental impacts of charcoal production activities of rural households in mecha district, Ethiopia. Adv Agric. 2024; 1-16. https://doi.org/10.1155/2021/6612720

Marais EA, Wiedinmyer C. Air Quality Impact of Diffuse and Inefficient Combustion Emissions in Africa (DICE-Africa). Environ Sci Technol. 2016; 50(19): 10739-45. https://doi.org/10.1021/acs.est.6b02602

Sparrevik M, Field JL, Martinsen V, Breedveld GD, Cornelissen G. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia. Environ Sci Technol. 2012; 47(3): 1206e15. https://doi.org/10.1021/es302720k

Pimenta AS, Minette LJ, Faria MM, Souza AP, Vital BR, Gomes JM. Avaliac- ~ao do perfil de trabalhadores e de condic- ~oes ergonˆomicas na atividade de produc- ~ao de carv~ao vegetal em bateria de fornos de superfı'cie do tipo ''rabo-quente''. Rev. A' rvore, 2006; 30 (779-785): 2006. https://doi.org/10.1590/S0100-67622006000500011

Rohde GM. Carv~ao Vegetal no Estado do Rio Grande do Sul. CEP SENAI de Artes gra' ficas, Porto Alegre, Portuguese, 2011.

Demirbas A. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Process Technol. 2007; 88: 591-7. https://doi.org/10.1016/j.fuproc.2007.01.010

Zulu LC. The forbidden fuel: charcoal, urban woodfuel demand and supply dynamics, community forest management and woodfuel policy in Malawi. Energy Policy. 2010; 38: 3717-30. https://doi.org/10.1016/j.enpol.2010.02.050

UNEP. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication. http://www.unep.org > Green Economy > Green Economy Report. 2012. (Accessed on 11/01/2014).

Harindintwari J, Gaspard N. Socio-Economic and Environmental Impact of Charcoal Production in Rangiro, Cyato and Bushekeri Sectors, Nyamasheke District. Glob Sci J. 2019; 7(3): 1-18.

de Miranda RC, Sepp S, Ceccon E, Mann S, Singh B. Sustainable Production of Commercial Woodfuel: Lessons and Guidance from Two Strategies. The Energy Sector Management Assistance Program (ESMAP); Report Mar 2010.

FAO. Global Forest Resource Assessment Main Report. FAO Forestry Paper, 2010a, 163. Available from: http://foris.fao.org/static/data/fra2010/FRA2010_Report_en_WEB.pdf

Rotowa OJ, Egbwole ZT, Adeagbo AA, Blessing OM. Effect of indiscrimate charcoal production on Nigeria forest estate. Int J Environ Protect Policy. 2019; 7(6): 134-9. https://doi.org/10.11648/j.ijepp.20190706.12

Nwofe P. Comparative aanlysis of domestic energy use in Nigeria - a review. Continental J Renew Energy. 2013; 4(1): 7-17.

Lattimore B, Smith CT, Titus BD, Stupak I, Egnell G. Environmental factors in woodfuel production: Opportunities, risks, and criteria and indicators for sustainable practices. Biomass Bioenergy. 2009; 33(10): 1321-42. https://doi.org/10.1016/j.biombioe.2009.06.005

Larson AM, Ribot JC. The poverty of forestry policy: double standards on an uneven playing field. Sustain Sci. 2007; 2(2): 189-204. https://doi.org/10.1007/s11625-007-0030-0

Ishengoma E, Kappel R. Economic growth and poverty: does formalization of informal enterprises matter? German Institute of Global and Area studies. Working Paper, GIGA Hamburg. 2006. https://doi.org/10.2139/ssrn.909188

Knopfle M. A study on Charcoal supply in Kampala. Final Report: Ministry of Energy and Mineral Development. 2004.

Girard P. Charcoal production and use in Africa: what future. Unasylva. 2002; 53: 30-5.

FAO. Industrial charcoal making. FAO Forestry Paper, Rome: 1985; No. 63.

Neuberger I. Policy Solutions For Sustainable Charcoal In Sub-Saharan Africa, Forests For People, World Future Council, 2015; pp. 1-60. Available from: www.worldfuturecouncil.org

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Oluwaseun Princess Okimiji