Unraveling the Potential of Micro-nano Bubbles in Water Treatment: A Review Focusing on Physicochemical Properties, Generation Methods, and Environmental Impacts
Abstract - 13
PDF

Keywords

Mass transfer
Micro-nano bubbles
Wastewater treatment
Advanced oxidation processes
Reactive oxygen species generation

How to Cite

1.
Li L, Liu H, Huang Y, Hong F, Yuan X, Cai W, Chen C, Huang D. Unraveling the Potential of Micro-nano Bubbles in Water Treatment: A Review Focusing on Physicochemical Properties, Generation Methods, and Environmental Impacts. Glob. Environ. Eng. [Internet]. 2024 Dec. 15 [cited 2025 Feb. 22];11:37-53. Available from: https://avantipublishers.com/index.php/tgevnie/article/view/1570

Abstract

With the advancement of industrialization, water pollution has become a pressing global environmental issue. Traditional water treatment technologies are struggling to remove emerging contaminants and meet current discharge standards, against this backdrop, micro-nano bubbles (MNBs) technology has attracted considerable research attention due to its unique physicochemical properties, such as long-term stability, high internal pressure, photoelectric characteristics, and reactive oxygen species (ROS) generation capabilities, especially in its combination with advanced oxidation processes (AOPs). A comprehensive understanding of MNBs generation and utilization is significant for developing green, economical, and highly effective wastewater treatment technologies. Herein, on the basis of the comprehensive literature survey, this review article systematically studied the distinctive characteristics of MNBs, along with the methodologies employed for their generation. It concurrently explores the characterization methods used to assess the properties of MNBs, which is instrumental for subsequent analyses on how these properties can enhance the catalytic performance of AOPs. Finally, this article explores the potential applications of MNBs in the environmental sector and points out the direction for future research, including the development of more efficient and cost-effective MNBs generation technologies, in-depth exploration of their mechanisms in AOPs, and comprehensive environmental impact assessments. This review aims to provide readers with an in-depth understanding of the intrinsic correlation between the properties and applications of MNBs, thereby enabling their optimal utilization in the environmental remediation.

https://doi.org/10.15377/2410-3624.2024.11.3
PDF

References

Huo X, Yi H, Almatrafi E, Ma D, Fu Y, Qin L, et al. Insights into Fenton-like oxidation of oxytetracycline mediated by Fe-doped porous

g-C3N4 nanomaterials: synthesis, performance and mechanism. Environ Sci: Nano. 2023; 10: 1828-41. https://doi.org/10.1039/D3EN00108C

Jin L, Huang Y, Liu H, Ye L, Liu X, Huang D. Efficient treatment of actual glyphosate wastewater via non-radical Fenton-like oxidation. J Hazard Mater. 2024; 463: 132904. https://doi.org/10.1016/j.jhazmat.2023.132904

Chen Z, Lin B, Huang Y, Liu Y, Wu Y, Qu R, et al. Pyrolysis temperature affects the physiochemical characteristics of lanthanum-modified biochar derived from orange peels: Insights into the mechanisms of tetracycline adsorption by spectroscopic analysis and theoretical calculations. Sci Total Environ. 2023; 862: 160860. https://doi.org/10.1016/j.scitotenv.2022.160860

Shi Y, Li J, Huang D, Wang X, Huang Y, Chen C, et al. Specific adsorption and efficient degradation of cylindrospermopsin on oxygen-vacancy sites of BiOBr. ACS Catal. 2023; 13(1): 445-58. https://doi.org/10.1021/acscatal.2c04228

Jioui I, Abrouki Y, Aboul Hrouz S, Sair S, Dânoun K, Zahouily M. Efficient removal of Cu2+ and methylene blue pollutants from an aqueous solution by applying a new hybrid adsorbent based on alginate-chitosan and HAP derived from Moroccan rock phosphate. Environ Sci Pollut R. 2023; 30(49): 107790-810. https://doi.org/10.1007/s11356-023-29890-y

Abrouki Y, Mabrouki J, Anouzla A, Rifi SK, Zahiri Y, Nehhal S, et al. Optimization and modeling of a fixed-bed biosorption of textile dye using agricultural biomass from the Moroccan Sahara. Desalin Water Treat. 2021; 240: 144-51. https://doi.org/10.5004/dwt.2021.27704

Sakr M, Mohamed MM, Maraqa MA, Hamouda MA, Aly Hassan A, Ali J, et al. A critical review of the recent developments in micro-nano bubbles applications for domestic and industrial wastewater treatment. Alex Eng J. 2022; 61(8): 6591-612. https://doi.org/10.1016/j.aej.2021.11.041

Patel AK, Singhania RR, Chen CW, Tseng YS, Kuo CH, Wu CH, et al. Advances in micro- and nano bubbles technology for application in biochemical processes. Environ Technol Inno. 2021; 23: 101729. https://doi.org/10.1016/j.eti.2021.101729

Ning R, Yu S, Li L, Snyder SA, Li P, Liu Y, et al. Micro and nanobubbles-assisted advanced oxidation processes for water decontamination: The importance of interface reactions. Water Res. 2024; 265: 122295. https://doi.org/10.1016/j.watres.2024.122295

Azevedo A, Oliveira H, Rubio J. Bulk nanobubbles in the mineral and environmental areas: Updating research and applications. Adv Colloid Interfac. 2019; 271: 101992. https://doi.org/10.1016/j.cis.2019.101992

Kim S, Kim H, Han M, Kim T. Generation of sub-micron (nano) bubbles and characterization of their fundamental properties. Environ Eng Res. 2018; 24(3): 382-8. https://doi.org/10.4491/eer.2018.210

Moussadik A, Lazar N-e, Mazkad D, Siro Brigiano F, Baert K, Hauffman T, et al. Investigation of electronic and photocatalytic properties of AgTi2(PO4)3 NASICON-type phosphate: Combining experimental data and DFT calculations. J Photoch Photobio A. 2023; 435: 114289. https://doi.org/10.1016/j.jphotochem.2022.114289

Xie R, Guo K, Li Y, Zhang Y, Zhong H, Leung DYC, et al. Harnessing air-water interface to generate interfacial ROS for ultrafast environmental remediation. Nat Commun. 2024; 15(1): 8860. https://doi.org/10.1038/s41467-024-53289-z

Luo P, Wang T, Lin F, Luo A, Fiallos M, Ahmed AKA, et al. Promoting strategies for biological stability in drinking water distribution system from the perspective of micro-nano bubbles. Sci Total Environ. 2024; 954: 176615. https://doi.org/10.1016/j.scitotenv.2024.176615

Zhao Z, Huang X, Zhang Z, Pang H, Wang X, Li P, et al. Removal efficiency and mechanism of geosmin by modified micro-nano bubbles in drinking water treatment process. J Water Process Eng. 2024; 60: 105125. https://doi.org/10.1016/j.jwpe.2024.105125

Fan W, Desai P, Zimmerman WB, Duan Y, Crittenden JC, Wang C, et al. Optical density inferences in aqueous solution with embedded micro/nano bubbles: A reminder for the emerging green bubble cleantech. J Clean Prod. 2021; 294: 126258. https://doi.org/10.1016/j.jclepro.2021.126258

Fan W, Cui J, Li Q, Huo Y, Xiao D, Yang X, et al. Bactericidal efficiency and photochemical mechanisms of micro/nano bubble-enhanced visible light photocatalytic water disinfection. Water Res. 2021; 203: 117531. https://doi.org/10.1016/j.watres.2021.117531

Zhao K, Padervand M, Ren H, Jia T, Guo Q, Yang L, et al. Enhancing tetracycline removal efficiency through ozone micro-nano bubbles: Environmental implication and degradation pathway. ACS EST Engg. 2024; 4(8): 1860-70. https://doi.org/10.1021/acsestengg.4c00102

Hu L, Xia Z. Application of ozone micro-nano-bubbles to groundwater remediation. J Hazard Mater. 2018; 342: 446-53. https://doi.org/10.1016/j.jhazmat.2017.08.030

Movahed SMA, Sarmah AK. Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis. Sci Total Environ. 2021; 785: 147362. https://doi.org/10.1016/j.scitotenv.2021.147362

Feng J, Song Z, He Q, Wu X, Miao Z. Enhanced degradation of butyl xanthate by hydrogen peroxide and persulfate using micro-nano bubble. Miner Eng. 2024; 218: 108996. https://doi.org/10.1016/j.mineng.2024.108996

Ma P, Han C, He Q, Miao Z, Gao M, Wan K, et al. Oxidation of Congo red by Fenton coupled with micro and nanobubbles. Environ Technol. 2023; 44(17): 2539-48. https://doi.org/10.1080/09593330.2022.2036245

Bu X, Alheshibri M. The effect of ultrasound on bulk and surface nanobubbles: A review of the current status. Ultrason Sonochem. 2021; 76: 105629. https://doi.org/10.1016/j.ultsonch.2021.105629

Mo CR, Wang J, Fang Z, Zhou LM, Zhang LJ, Hu J. Formation and stability of ultrasonic generated bulk nanobubbles. Chinese Phys B. 2018; 27(11): 118104. https://doi.org/10.1088/1674-1056/27/11/118104

Angulo A, van der Linde P, Gardeniers H, Modestino M, Fernández Rivas D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule. 2020; 4(3): 555-579. https://doi.org/10.1016/j.joule.2020.01.005

Xiao W, Wang X, Zhou L, Zhou W, Wang J, Qin W, et al. Influence of mixing and nanosolids on the formation of nanobubbles. J Phys Chem B. 2019; 123(1): 317-23. https://doi.org/10.1021/acs.jpcb.8b11385

Wang B, Su H, Zhang B. Hydrodynamic cavitation as a promising route for wastewater treatment - A review. Chem Eng J. 2021; 412: 128685. https://doi.org/10.1016/j.cej.2021.128685

Foudas AW, Kosheleva RI, Favvas EP, Kostoglou M, Mitropoulos AC, Kyzas GZ. Fundamentals and applications of nanobubbles: A review. Chem Eng Res Des. 2023; 189: 64-86. https://doi.org/10.1016/j.cherd.2022.11.013

Jia J, Zhu Z, Chen H, Pan H, Jiang L, Su W-H, et al. Full life circle of micro-nano bubbles: Generation, characterization and applications. Chem Eng J. 2023; 471: 144621. https://doi.org/10.1016/j.cej.2023.144621

Haris S, Qiu X, Klammler H, Mohamed MMA. The use of micro-nano bubbles in groundwater remediation: A comprehensive review. Groundw Sustain Dev. 2020; 11: 100463. https://doi.org/10.1016/j.gsd.2020.100463

Atkinson AJ, Apul OG, Schneider O, Garcia-Segura S, Westerhoff P. Nanobubble technologies offer opportunities to improve water treatment. Acc Chem Res. 2019; 52(5): 1196-205. https://doi.org/10.1021/acs.accounts.8b00606

Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, et al. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. Water Res. 2023; 245: 120613. https://doi.org/10.1016/j.watres.2023.120613

Marcelino KR, Ling L, Wongkiew S, Nhan HT, Surendra KC, Shitanaka T, et al. Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges. Crit Rev Environ Sci Technol. 2023; 53(14): 1378-1403. https://doi.org/10.1080/10643389.2022.2136931

Soyluoglu M, Kim D, Zaker Y, Karanfil T. Stability of oxygen nanobubbles under freshwater conditions. Water Res. 2021; 206: 117749. https://doi.org/10.1016/j.watres.2021.117749

Gao Z, Wu W, Sun W, Wang B. Understanding the stabilization of a bulk nanobubble: A molecular dynamics analysis. Langmuir. 2021; 37(38): 11281-11291. https://doi.org/10.1021/acs.langmuir.1c01796

Prakash R, Lee J, Moon Y, Pradhan D, Kim SH, Lee HY, et al. Experimental investigation of cavitation bulk nanobubbles characteristics: Effects of pH and surface-active agents. Langmuir. 2023; 39(5): 1968-1986. https://doi.org/10.1021/acs.langmuir.2c03027

Zhang Z, Li J, Jiang Y, Zhao L, Bai L, Yang J, et al. Emission characteristics of aerosols generated during the micro-nano bubble aeration process in wastewater. Environ Scie Technol. 2024; 58(39): 17396-405. https://doi.org/10.1021/acs.est.4c00986

Fan W, Zhou Z, Wang W, Huo M, Zhang L, Zhu S, et al. Environmentally friendly approach for advanced treatment of municipal secondary effluent by integration of micro-nano bubbles and photocatalysis. J Clean Prod. 2019; 237: 117828. https://doi.org/10.1016/j.jclepro.2019.117828

Zhou L, Wang X, Shin H-J, Wang J, Tai R, Zhang X, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water. J Am Chem Soc. 2020; 142(12): 5583-93. https://doi.org/10.1021/jacs.9b11303

Shi W, Pan G, Chen Q, Song L, Zhu L, Ji X. Hypoxia remediation and methane emission manipulation using surface oxygen nanobubbles. Environ Sci Technol. 2018; 52(15): 8712-7. https://doi.org/10.1021/acs.est.8b02320

Xiang P, Ma P, He Q, Song Z, Miao Z. Enhanced removal of phenol and chemical oxygen demand from coking wastewater using micro and nano bubbles: Microbial community and metabolic pathways. Bioresource Technol. 2024; 394: 130207. https://doi.org/10.1016/j.biortech.2023.130207

Churnside JH. Lidar signature from bubbles in the sea. Opt Express. 2010; 18(8): 8294-9. https://doi.org/10.1364/OE.18.008294

Ma D, Yin R, Liang Z, Liang Q, Xu G, Lian Q, et al. Photo-sterilization of groundwater by tellurium and enhancement by micro/nano bubbles. Water Res. 2023; 233: 119781. https://doi.org/10.1016/j.watres.2023.119781

Kim H, Chang JH. Increased light penetration due to ultrasound-induced air bubbles in optical scattering media. Sci Rep. 2017; 7(1): 16105. https://doi.org/10.1038/s41598-017-16444-9

Fan W, Li Y, Wang C, Duan Y, Huo Y, Januszewski B, et al. Enhanced photocatalytic water dcontamination by micro-nano bubbles: Measurements and mechanisms. Environ Sci Technol. 2021; 55(10): 7025-7033. https://doi.org/10.1021/acs.est.0c08787

Zhang W, Xiong J, Lin X, Liu Y, Gan T, Hu H, et al. Advanced pyro-/piezoelectric catalytic disinfection of water via porous spontaneously polarized ceramic with strong local electric field induced by micro-nano bubbles. Chem Eng J. 2024; 499: 155958. https://doi.org/10.1016/j.cej.2024.155958

Huang L, Ji X, Nan B, Yang P, Shi H, Wu Y, et al. Enhanced photoelectrochemical water oxidation by micro-nano bubbles: Measurements and mechanisms. J Alloy Compd. 2023; 965: 171449. https://doi.org/10.1016/j.jallcom.2023.171449

Zhou S, Nazari S, Hassanzadeh A, Bu X, Ni C, Peng Y, et al. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation. Ultrason Sonochem. 2022; 84: 105965. https://doi.org/10.1016/j.ultsonch.2022.105965

Soyluoglu M, Kim D, Karanfil T. Characteristics and stability of ozone nanobubbles in freshwater conditions. Environ Sci Technol. 2023; 57(51): 21898-907. https://doi.org/10.1021/acs.est.3c07443

Jadhav AJ, Barigou M. Electrochemically induced bulk nanobubbles. Ind Eng Chem Res. 2021; 60(49): 17999-18006. https://doi.org/10.1021/acs.iecr.1c04046

Vogel YB, Evans CW, Belotti M, Xu L, Russell IC, Yu L-J, et al. The corona of a surface bubble promotes electrochemical reactions. Nat Commun. 2020; 11(1): 6323. https://doi.org/10.1038/s41467-020-20186-0

van der Linde P, Moreno Soto Á, Peñas-López P, Rodríguez-Rodríguez J, Lohse D, Gardeniers H, et al. Electrolysis-driven and pressure-controlled diffusive growth of successive bubbles on microstructured surfaces. Langmuir. 2017; 33(45): 12873-86. https://doi.org/10.1021/acs.langmuir.7b02978

Zhang Y, Zhu X, Wood JA, Lohse D. Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. P Natl Acad Sci USA. 2024; 121(21): 2321958121. https://doi.org/10.1073/pnas.2321958121

Liu H, Xie R, Luo Y, Cui Z, Yu Q, Gao Z, et al. Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2. Nat Commun. 2022; 13(1): 6382. https://doi.org/10.1038/s41467-022-34121-y

Li M, Xie P, Yu L, Luo L, Sun X. Bubble engineering on micro-/nanostructured electrodes for water splitting. ACS Nano. 2023; 17(23): 23299-316. https://doi.org/10.1021/acsnano.3c08831

Jiang M, Wang H, Li Y, Zhang H, Zhang G, Lu Z, et al. Superaerophobic RuO2-based nanostructured electrode for high-performance chlorine evolution reaction. Small. 2017; 13(4): 1602240. https://doi.org/10.1002/smll.201602240

Wu M, Yuan S, Song H, Li X. Micro-nano bubbles production using a swirling-type venturi bubble generator. Chem Eng Process. 2022; 170: 108697. https://doi.org/10.1016/j.cep.2021.108697

Terasaka K, Hirabayashi A, Nishino T, Fujioka S, Kobayashi D. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci. 2011; 66(14): 3172-9. https://doi.org/10.1016/j.ces.2011.02.043

Liu S, Yuan X, Shao Z, Xiang K, Huang W, Tian H, et al. Investigation of singlet oxygen and superoxide radical produced from vortex-based hydrodynamic cavitation: Mechanism and its relation to cavitation intensity. Sci Total Environ. 2024; 929: 172761. https://doi.org/10.1016/j.scitotenv.2024.172761

Birkin PR, Linfield S, Youngs JJ, Denuault G. Generation and in situ electrochemical detection of transient nanobubbles. J Phys Chem C. 2020; 124(13): 7544-9. https://doi.org/10.1021/acs.jpcc.0c00435

Nirmalkar N, Pacek AW, Barigou M. On the Existence and stability of bulk nanobubbles. Langmuir. 2018; 34(37): 10964-73. https://doi.org/10.1021/acs.langmuir.8b01163

Roy K, Moholkar VS. Sulfadiazine degradation using hybrid AOP of heterogeneous Fenton/persulfate system coupled with hydrodynamic cavitation. Chem Eng J. 2020; 386: 121294. https://doi.org/10.1016/j.cej.2019.03.170

Hong F, Xue H, Yuan X, Wang L, Tian H, Ye L, et al. Numerical investigation on the hydrodynamic performance with special emphasis on the cavitation intensity detection in a Venturi cavitator. Process Saf Environ. 2023; 175: 212-26. https://doi.org/10.1016/j.psep.2023.05.037

Jain P, Bhandari VM, Balapure K, Jena J, Ranade VV, Killedar DJ. Hydrodynamic cavitation using vortex diode: An efficient approach for elimination of pathogenic bacteria from water. J Environ Manage. 2019; 242: 210-9. https://doi.org/10.1016/j.jenvman.2019.04.057

Ferraro G, Jadhav AJ, Barigou M. A Henry's law method for generating bulk nanobubbles. Nanoscale. 2020; 12(29): 15869-79. https://doi.org/10.1039/D0NR03332D

Wang Q, Zhao H, Qi N, Qin Y, Zhang X, Li Y. Generation and stability of size-adjustable bulk nanobubbles based on periodic pressure change. Sci Rep. 2019; 9(1): 1118. https://doi.org/10.1038/s41598-018-38066-5

Kim JY, Song MG, Kim JD. Zeta Potential of nanobubbles generated by ultrasonication in aqueous akyl polyglycoside solutions. J Colloid Interf Sci. 2000; 223(2): 285-91. https://doi.org/10.1006/jcis.1999.6663

Yasuda K, Matsushima H, Asakura Y. Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chem Eng Sci. 2019; 195: 455-61. https://doi.org/10.1016/j.ces.2018.09.044

Cho SH, Kim JY, Chun JH, Kim JD. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloid Surface A. 2005; 269(1): 28-34. https://doi.org/10.1016/j.colsurfa.2005.06.063

Jadhav AJ, Barigou M. Bulk nanobubbles or not nanobubbles: That is the question. Langmuir. 2020; 36(7): 1699-1708. https://doi.org/10.1021/acs.langmuir.9b03532

Li C, Li X, Xu M, Zhang H. Effect of ultrasonication on the flotation of fine graphite particles: Nanobubbles or not? Ultrason Sonochem. 2020; 69: 105243. https://doi.org/10.1016/j.ultsonch.2020.105243

Qiu J, Zou Z, Wang S, Wang X, Wang L, Dong Y, et al. Formation and stability of bulk nanobubbles generated by ethanol-water exchange. ChemPhysChem. 2017; 18(10): 1345-50. https://doi.org/10.1002/cphc.201700010

Stride E, Edirisinghe M. Novel microbubble preparation technologies. Soft Matter. 2008; 4(12): 2350-9. https://doi.org/10.1039/b809517p

Yu K, Zhang H, Hodges C, Biggs S, Xu Z, Cayre OJ, et al. Foaming behavior of polymer-coated colloids: The need for thick liquid films. Langmuir. 2017; 33(26): 6528-39. https://doi.org/10.1021/acs.langmuir.7b00723

Zhang W, Wang J, Li B, Yu K, Wang D, Yongphet P, et al. Experimental investigation on bubble coalescence regimes under non-uniform electric field. Chem Eng J. 2021; 417: 127982. https://doi.org/10.1016/j.cej.2020.127982

Chan CU, Ohl C-D. Total-Internal-Reflection-Fluorescence microscopy for the study of nanobubble dynamics. Phys Rev Lett. 2012; 109(17): 174501. https://doi.org/10.1103/PhysRevLett.109.174501

Yu K, Hodges C, Biggs S, Cayre OJ, Harbottle D. Polymer molecular weight dependence on lubricating particle-particle interactions. Ind Eng Chem Res. 2018; 57(6): 2131-8. https://doi.org/10.1021/acs.iecr.7b04609

Hassan PA, Rana S, Verma G. Making sense of brownian motion: Colloid characterization by dynamic light scattering. Langmuir. 2015; 31(1): 3-12. https://doi.org/10.1021/la501789z

Oh SH, Kim J-M. Generation and stability of bulk nanobubbles. Langmuir. 2017; 33(15): 3818-323. https://doi.org/10.1021/acs.langmuir.7b00510

Yu K, Chen L, Zhang W, Zhang H, Jia J, Wang Z, et al. Behaviour of polymer-coated composite nanoparticles at bubble-stabilizing interfaces during bubble coarsening and accelerated coalescence: A Cryo-SEM study. J Colloid Interf Sci. 2023; 633: 113-9. https://doi.org/10.1016/j.jcis.2022.11.100

Walczyk W, Schönherr H. Characterization of the interaction between AFM tips and surface nanobubbles. Langmuir. 2014; 30(24): 7112-26. https://doi.org/10.1021/la501484p

Pan G, He G, Zhang M, Zhou Q, Tyliszczak T, Tai R, et al. Nanobubbles at hydrophilic particle-water interfaces. Langmuir. 2016; 32(43): 11133-7. https://doi.org/10.1021/acs.langmuir.6b01483

Thi Phan KK, Truong T, Wang Y, Bhandari B. Nanobubbles: Fundamental characteristics and applications in food processing. Trends Food Sci Tech. 2020; 95: 118-30. https://doi.org/10.1016/j.tifs.2019.11.019

Eklund F, Alheshibri M, Swenson J. Differentiating bulk nanobubbles from nanodroplets and nanoparticles. Curr Opin Colloid In. 2021; 53: 101427. https://doi.org/10.1016/j.cocis.2021.101427

Zhou L, Wang S, Zhang L, Hu J. Generation and stability of bulk nanobubbles: A review and perspective. Curr Opin Colloid In. 2021; 53: 101439. https://doi.org/10.1016/j.cocis.2021.101439

Babu KS, Amamcharla JK. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective. Crit Rev Food Sci. 2023; 63(28): 9262-81. https://doi.org/10.1080/10408398.2022.2067119

Guo Y, Long J, Huang J, Yu G, Wang Y. Can the commonly used quenching method really evaluate the role of reactive oxygen species in pollutant abatement during catalytic ozonation? Water Res. 2022; 215: 118275. https://doi.org/10.1016/j.watres.2022.118275

Guo Y, Zhang Y, Yu G, Wang Y. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: The probe approach versus the scavenger approach. Appl Catal B: Environ. 2021; 280: 119418. https://doi.org/10.1016/j.apcatb.2020.119418

Takahashi M, Ishikawa H, Asano T, Horibe H. Effect of microbubbles on ozonized water for photoresist removal. J Phys Chem C. 2012; 116(23): 12578-83. https://doi.org/10.1021/jp301746g

Xie Z, Shentu J, Long Y, Lu L, Shen D, Qi S. Effect of dissolved organic matter on selective oxidation of toluene by ozone micro-nano bubble water. Chemosphere. 2023; 325: 138400. https://doi.org/10.1016/j.chemosphere.2023.138400

Kalogerakis N, Kalogerakis GC, Botha QP. Environmental applications of nanobubble technology: Field testing at industrial scale. Can J Chem Eng. 2021; 99(11): 2345-54. https://doi.org/10.1002/cjce.24211

Yang X, Chen L, Oshita S, Fan W, Liu S. Mechanism for enhancing the ozonation process of micro- and nanobubbles: Bubble behavior and interface reaction. ACS EST Water. 2023; 3(12): 3835-47. https://doi.org/10.1021/acsestwater.3c00031

Koundle P, Nirmalkar N, Momotko M, Boczkaj G. Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions. Water Res. 2024; 263: 122148. https://doi.org/10.1016/j.watres.2024.122148

Li L, Yin Z, Cheng M, Qin L, Liu S, Yi H, et al. Insights into reactive species generation and organics selective degradation in Fe-based heterogeneous Fenton-like systems: A critical review. Chem Eng J. 2023; 454: 140126. https://doi.org/10.1016/j.cej.2022.140126

Li L, Cheng M, Almatrafi E, Qin L, Liu S, Yi H, et al. Tuning the intrinsic catalytic sites of magnetite to concurrently enhance the reduction of H2O2 and O2: Mechanism analysis and application potential evaluation. J Hazard Mater. 2023; 457: 131800. https://doi.org/10.1016/j.jhazmat.2023.131800

Liu S, Lai C, Zhou X, Zhang C, Chen L, Yan H, et al. Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and 1O2 generation. Water Res. 2022; 221: 118797. https://doi.org/10.1016/j.watres.2022.118797

Gurung A, Dahl O, Jansson K. The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies. Geosystem Eng. 2016; 19(3): 133-42. https://doi.org/10.1080/12269328.2016.1153987

Zhang R, Wang J, Yang J, Qin S, Li F, Zhao L, et al. Treatment of wastewater-CPL by biochar-based Fenton-like catalyst in the presence of micro-nano bubbles. Water Air Soil Poll. 2022; 233(6): 207. https://doi.org/10.1007/s11270-022-05654-1

Duan Y, Zhao D, Liu Z, Yu J. Hydrogen peroxide enhancing the process of MnO2-modified ceramic membrane catalyzing micro-nano bubble. Sep Purif Technol. 2025; 353: 128320. https://doi.org/10.1016/j.seppur.2024.128320

Chen Z, Fu M, Yuan C, Hu X, Bai J, Pan R, et al. Study on the degradation of tetracycline in wastewater by micro-nano bubbles activated hydrogen peroxide. Environ Technol. 2022; 43(23): 3580-90. https://doi.org/10.1080/09593330.2021.1928292

Lai C, An N, Li B, Zhang M, Yi H, Liu S, et al. Future roadmap on nonmetal-based 2D ultrathin nanomaterials for photocatalysis. Chem Eng J. 2021; 406: 126780. https://doi.org/10.1016/j.cej.2020.126780

Zhang M, Lai C, Li B, Xu F, Huang D, Liu S, et al. Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation. Chem Eng J. 2020; 396: 125343. https://doi.org/10.1016/j.cej.2020.125343

Wang X, Zhang X, Zhang Y, Wang Y, Sun SP, Wu WD, et al. Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review. J Mater Chem A. 2020; 8(31): 15513-46. https://doi.org/10.1039/D0TA04541A

Rojviroon O, Rojviroon T. Photocatalytic process augmented with micro/nano bubble aeration for enhanced degradation of synthetic dyes in wastewater. Water Resour Ind. 2022; 27: 100169. https://doi.org/10.1016/j.wri.2021.100169

Boonwan C, Rojviroon T, Rojviroon O, Rajendran R, Paramasivam S, Chinnasamy R, et al. Micro-nano bubbles in action: AC/TiO2 hybrid photocatalysts for efficient organic pollutant degradation and antibacterial activity. Biocatal Agric Biotechnol. 2024; 61: 103400. https://doi.org/10.1016/j.bcab.2024.103400

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Ling Li, Honglin Liu, Yingping Huang, Feng Hong, Xi Yuan, Wei Cai, Chuncheng Chen, Di Huang