Abstract
The seawater battery, consisted of silver (+ve) and carbon-coated NaTi2(PO4)3 (-ve), is an eco-friendly energy storage system due to the low cost and natural abundance of seawater. However, more efforts are still needed to research on the potential issues associated with the ion transport, the breakdown of voltage losses and the attempts for scaling up of such a battery system. Herein, it is found that a nonnegligible shuttle effect of Ag+ ions could pose a serious impact on the reversibility of the battery system. In addition, through the four-electrode measurement, the carbon-coated NaTi2(PO4)3 negative electrode with intercalation/ deintercalation chemistry is identified as the limiting component in the current battery device. Moreover, attempts on applying semi-solid electrolytes to such a battery system are also conducted. It is found that the capacity fading is serious probably due to the hydrogen evolution side reaction at the negative side. Future technical advancements in the key materials and reactor design will make this battery technology more competitive. This work offers important insights to develop safer and scalable seawater batteries.
References
Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2014; 7: 19. https://doi.org/10.1038/nchem.2085
Yang G, Zha D, Cao D, Zhang G. Time for a change: Rethinking the global renewable energy transition from the sustainable development goals and the paris climate agreement. Innovation. 2024; 5(2): 100582. https://doi.org/10.1016/j.xinn.2024.100582
Deguenon L, Yamegueu D, Gomna A. Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of electrochemical battery storage systems. J Power Sources. 2023; 580: 233343. https://doi.org/10.1016/j.jpowsour.2023.233343
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012; 488: 294. https://doi.org/10.1038/nature11475
Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011; 334(6058): 928. https://doi.org/10.1126/science.1212741
Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci. 2018; 11(10): 2696-767. https://doi.org/10.1039/C8EE01419A
Yang D, Liao X-Z, Huang B, Shen J, He Y-S, Ma Z-F. A Na4Fe(CN)6/NaCl solid solution cathode material with an enhanced electrochemical performance for sodium ion batteries. J Mater Chem A. 2013; 1(43): 13417-21. https://doi.org/10.1039/c3ta12994b
Kwak W-J, Chen Z, Yoon CS, Lee J-K, Amine K, Sun Y-K. Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries. Nano Energy. 2015; 12: 123-30. https://doi.org/10.1016/j.nanoen.2014.11.057
Hayashi K, Shima K, Sugiyama F. A Mixed Aqueous/Aprotic Sodium/Air Cell Using a NASICON Ceramic Separator. J Electrochem Soc. 2013; 160(9): A1467-A72. https://doi.org/10.1149/2.067309jes
Ye L, Liao M, Zhao T, Sun H, Zhao Y, Sun X, et al. A sodiophilic interphase‐mediated, dendrite‐free anode with ultrahigh specific capacity for sodium‐metal batteries. Angewandte Chemie. 2019; 131(47): 17210-6. https://doi.org/10.1002/ange.201910202
Raji A-RO, Villegas Salvatierra R, Kim ND, Fan X, Li Y, Silva GA, et al. Lithium batteries with nearly maximum metal storage. ACS Nano. 2017; 11(6): 6362-9. https://doi.org/10.1021/acsnano.7b02731
Kim DH, Choi H, Hwang DY, Park J, Kim KS, Ahn S, et al. Reliable seawater battery anode: controlled sodium nucleation via deactivation of the current collector surface. J Mater Chem A. 2018; 6(40): 19672-80. https://doi.org/10.1039/C8TA07610C
Alcántara R, Pérez-Vicente C, Lavela P, Tirado JL, Medina A, Stoyanova R. Review and new perspectives on non-layered manganese compounds as electrode material for sodium-ion batteries. Materials. 2023; 16(21): 6970. https://doi.org/10.3390/ma16216970
Nurohmah AR, Nisa SS, Stulasti KNR, Yudha CS, Suci WG, Aliwarga K, et al. Sodium-ion battery from sea salt: a review. Mater Renew Sustain Energy. 2022; 11(1): 71-89. https://doi.org/10.1007/s40243-022-00208-1
Wu J, Zheng M, Liu T, Wang Y, Liu Y, Nai J, et al. Direct recovery: A sustainable recycling technology for spent lithium-ion battery. Energy Storage Mater. 2023; 54: 120-34. https://doi.org/10.1016/j.ensm.2022.09.029
Li Y, Lv W, Huang H, Yan W, Li X, Ning P, et al. Recycling of spent lithium-ion batteries in view of green chemistry. Green Chem. 2021; 23(17): 6139-71. https://doi.org/10.1039/D1GC01639C
Mrozik W, Rajaeifar MA, Heidrich O, Christensen P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ Sci. 2021; 14(12): 6099-121. https://doi.org/10.1039/D1EE00691F
Lee Y-R, Cho AR, Kim S, Kim R, Wang S, Han Y, et al. Utilizing waste carbon residue from spent lithium-ion batteries as an adsorbent for CO2 capture: A recycling perspective. Chem Eng J. 2023; 470: 144232. https://doi.org/10.1016/j.cej.2023.144232
Mao J, Ye C, Zhang S, Xie F, Zeng R, Davey K, et al. Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy Environ Sci. 2022; 15(7): 2732-52. https://doi.org/10.1039/D2EE00162D
Yu H, Yang H, Chen K, Yang L, Huang M, Wang Z, et al. Non-closed-loop recycling strategies for spent lithium-ion batteries: Current status and future prospects. Energy Storage Mater. 2024; 67: 103288. https://doi.org/10.1016/j.ensm.2024.103288
Jena MC, Mishra SK, Moharana HS. Challenges and the way forward for management and handling of hazardous waste. Glob Environ Eng. 2023; 10: 13-7. https://doi.org/10.15377/2410-3624.2023.10.2
Fukuzumi S, Lee Y-M, Nam W. Fuel production from seawater and fuel cells using seawater. ChemSusChem. 2017; 10(22): 4264-76. https://doi.org/10.1002/cssc.201701381
Chen F, Huang Y, Kong D, Ding M, Huang S, Yang HY. NaTi2 (PO4) 3-Ag electrodes based desalination battery and energy recovery. FlatChem. 2018; 8: 9-16. https://doi.org/10.1016/j.flatc.2018.02.001
Wang ZL, Jiang T, Xu L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy. 2017; 39: 9-23. https://doi.org/10.1016/j.nanoen.2017.06.035
Yang S, Zhang C, Du Z, Tu Y, Dai X, Huang Y, et al. Fluid Oscillation‐Driven Bi‐Directional Air Turbine Triboelectric Nanogenerator for Ocean Wave Energy Harvesting. Adv Energy Mater. 2024; 14(12): 2304184. https://doi.org/10.1002/aenm.202304184
Cao C, Li Z, Shen F, Zhang Q, Gong Y, Guo H, et al. Progress on techniques for improving output performance of triboelectric nanogenerators. Energy Environ Sci. 2024; 17: 885-924. https://doi.org/10.1039/D3EE03520D
Wang W, Yang D, Yan X, Wang L, Hu H, Wang K. Triboelectric nanogenerators: The beginning of blue dream. Front Chem Sci Eng. 2023; 17(6): 635-78. https://doi.org/10.1007/s11705-022-2271-y
Kim Y, Hwang SM, Yu H, Kim Y. High energy density rechargeable metal-free seawater batteries: a phosphorus/carbon composite as a promising anode material. J Mater Chem A. 2018; 6(7): 3046-54. https://doi.org/10.1039/C7TA10668H
Kim Y, Kim G-T, Jeong S, Dou X, Geng C, Kim Y, et al. Large-scale stationary energy storage: Seawater batteries with high rate and reversible performance. Energy Storage Mater. 2019; 16: 56-64. https://doi.org/10.1016/j.ensm.2018.04.028
Kim J-K, Lee E, Kim H, Johnson C, Cho J, Kim Y. Rechargeable seawater battery and its electrochemical mechanism. ChemElectroChem. 2015; 2(3): 328-32. https://doi.org/10.1002/celc.201402344
Senthilkumar ST, Park SO, Kim J, Hwang SM, Kwak SK, Kim Y. Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J Mater Chem A. 2017; 5(27): 14174-81. https://doi.org/10.1039/C7TA03298F
Park S, SenthilKumar B, Kim K, Hwang SM, Kim Y. Saltwater as the energy source for low-cost, safe rechargeable batteries. J Mater Chem A. 2016; 4(19): 7207-13. https://doi.org/10.1039/C6TA01274D
Kim Y, Kim H, Park S, Seo I, Kim Y. Na ion- conducting ceramic as solid electrolyte for rechargeable seawater batteries. Electrochimica Acta. 2016; 191: 1-7. https://doi.org/10.1016/j.electacta.2016.01.054
Kim Y, Kim J-K, Vaalma C, Bae GH, Kim G-T, Passerini S, et al. Optimized hard carbon derived from starch for rechargeable seawater batteries. Carbon. 2018; 129: 564-71. https://doi.org/10.1016/j.carbon.2017.12.059
Weng G-M, Kong J, Wang H, Karpovich C, Lipton J, Antonio F, et al. A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system. Energy Storage Mater. 2020; 24: 557-64. https://doi.org/10.1016/j.ensm.2019.06.032
Weng G-M, Li C-YV, Chan K-Y. High voltage vanadium-metal hydride rechargeable semi-flow battery. J Electrochem Soc. 2013; 160(9): A1384-A9. https://doi.org/10.1149/2.035309jes
Wang K, Wu Y, Luo S, He X, Wang J, Jiang K, et al. Hybrid super-aligned carbon nanotube/carbon black conductive networks: A strategy to improve both electrical conductivity and capacity for lithium ion batteries. J Power Sources. 2013; 233: 209-15. https://doi.org/10.1016/j.jpowsour.2013.01.102
Fang W, Pan S, Zhang F, Zhao Y, Zhang H, Zhang S. A three-dimensional flow-electrochemistry coupling model for optimizing the channel configuration of lithium slurry redox flow battery. Chem Eng J. 2024; 485: 149572. https://doi.org/10.1016/j.cej.2024.149572
Cheng S, Jiang L, Wei Z, Meng X, Duan Q, Xiao H, et al. Elucidating in-situ heat generation of LiFePO4 semi-solid lithium slurry battery under specific cycling protocols. Electrochimica Acta. 2024; 475: 143674. https://doi.org/10.1016/j.electacta.2023.143674
Xue B, Wu X, Ren Y, Guo Y, Zhang C. High-capacity semi-Solid cathodes slurry evaluation in pouch cell. J Power Sources. 2023; 563: 232816. https://doi.org/10.1016/j.jpowsour.2023.232816
Weng G-M. An alternative concept in making hybrid flow batteries into dendrite-free full-flow batteries. Curr Alternat Energy. 2024; 6(1): E220324228279. https://doi.org/10.2174/0124054631291796240308065141
Li Q, Li K, Yuan C. Application research of an automatic control seawater reverse osmosis (SWRO) system based on the siemens PLC. Glob J Earth Sci Eng. 2024; 11(86): 1-18. https://doi.org/10.15377/2409-5710.2024.11.1
Lee S, Park T-s, Park Y-G, Lee W-i, Kim S-H. Toward scale-up of seawater reverse osmosis (SWRO)-pressure retarded osmosis (PRO) hybrid system: A case study of a 240 m3/day pilot plant. Desalination. 2020; 491: 114429. https://doi.org/10.1016/j.desal.2020.114429
Aktij SA, Firouzjaei MD, Pilevar M, Asad A, Rahimpour A, Elliott M, et al. Enhancing sustainable energy production through co-polyamide membranes for improved pressure-retarded osmosis performance and environmental impact: synthesis and life cycle analysis. Green Chem. 2025; 27: 586-606. https://doi.org/10.1039/D4GC03963G
He W, Wang Y, Shaheed MH. Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis). Energy. 2015; 86: 423-35. https://doi.org/10.1016/j.energy.2015.04.046
Banchik LD, Sharqawy MH. Limits of power production due to finite membrane area in pressure retarded osmosis. J Membrane Sci. 2014; 468: 81-9. https://doi.org/10.1016/j.memsci.2014.05.021
Soliman MN, Guen FZ, Ahmed SA, Saleem H, Khalil MJ, Zaidi SJ. Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Saf Environ Prot. 2021; 147: 589-608. https://doi.org/10.1016/j.psep.2020.12.038
Mavukkandy MO, Chabib CM, Mustafa I, Al Ghaferi A, AlMarzooqi F. Brine management in desalination industry: From waste to resources generation. Desalination. 2019; 472: 114187. https://doi.org/10.1016/j.desal.2019.114187
Bello AS, Zouari N, Da'ana DA, Hahladakis JN, Al-Ghouti MA. An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies. J Environ Manage. 2021; 288: 112358. https://doi.org/10.1016/j.jenvman.2021.112358
Meskher H, Woldu AR, Chu PK, Lu F, Hu L. Sustainability assessment of seawater splitting: Prospects, challenges, and future directions. EcoEnergy. 2024; 2(4): 630-51. https://doi.org/10.1002/ece2.68
Liang X, Jiang T, Liu G, Xiao T, Xu L, Li W, et al. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv Funct Mater. 2019; 29(41): 1807241. https://doi.org/10.1002/adfm.201807241
Ock IW, Yin J, Wang S, Zhao X, Baik JM, Chen J. Advances in blue energy fuels: harvesting energy from ocean for self‐powered electrolysis. Adv Energy Mater. 2025; 15(2): 2400563. https://doi.org/10.1002/aenm.202400563
Chen F, Leong ZY, Yang HY. An aqueous rechargeable chloride ion battery. Energy Storage Mater. 2017; 7: 189-94. https://doi.org/10.1016/j.ensm.2017.02.001

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Guo-Ming Weng