Radiolytic Degradation of Sulfonamide Antibiotics: A Brief Overview of Recent Advances
Abstract - 35
Cover Image
PDF

Keywords

Overview
Radiolytic
Degradation
Sulfonamide

How to Cite

1.
Bojanowska-Czajka A, Sun Y, Wang J. Radiolytic Degradation of Sulfonamide Antibiotics: A Brief Overview of Recent Advances. Glob. Environ. Eng. [Internet]. 2025 Aug. 2 [cited 2025 Aug. 15];12:22-36. Available from: https://avantipublishers.com/index.php/tgevnie/article/view/1616

Abstract

Sulfonamide antibiotics are widely used in both human and veterinary medicine. Although their use in human therapy has declined, they continue to pose a significant environmental threat due to their persistence in pharmaceutical formulations and subsequent release into the aquatic environment. The concentrations of these compounds in the influents and effluents of urban wastewater treatment plants (UWTPs) vary widely, depending on consumption patterns and the treatment technologies employed. Numerous studies have shown that conventional wastewater treatment methods are often insufficient for the complete removal of sulfonamides.

This underscores the urgent need for more effective and reliable treatment technologies capable of removing both sulfonamide antibiotics and their transformation products. Among advanced oxidation processes, electron beam (EB) irradiation has shown particular promise.

This review presents recent advances in analytical methods for detecting residues of selected sulfonamide antibiotics and explores the application of ionizing radiation—particularly gamma and EB irradiation—for their degradation in water and wastewater. The study also discusses observed changes in toxicity following treatment, offering a comprehensive perspective on the effectiveness and limitations radiation-based approaches in environmental remediation.

https://doi.org/10.15377/2410-3624.2025.12.3
PDF

References

Bojanowska-Czajka A. Application of radiation technology in removing endocrine micropollutants from waters and wastewaters – A review. Appl Sci. 2021; 11: 12032. https://doi.org/10.3390/app112412032

Yu T, Lin AY, Lateef SK, Lin C, Yang P. Removal of antibiotics and non-steroidal anti-inflammatory drugs by extended sludge age biological process. Chemosphere. 2009; 77: 175-81. https://doi.org/10.1016/j.chemosphere.2009.07.049

Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ. 2006; 366: 772-83. https://doi.org/10.1016/j.scitotenv.2005.10.007

Ternes TA, Bonerz M, Herrmann N, Teiser B, Andersen HR. Irrigation of treated wastewater in Braunschweig, Germany: an option to remove pharmaceuticals and musk fragrances. Chemosphere. 2007; 66: 894-904. https://doi.org/10.1016/j.chemosphere.2006.06.035

Rogowska J, Gałęzowska G, Zimmermen A. Challenges and current trends in preventing antimicrobial resistance in EU water law context. Antibiotics. 2025; 14: 18. https://doi.org/10.3390/antibiotics14010018

Liu Y, Wang J. Degradation of sulfamethazine by gamma irradiation in the presence of hydrogen peroxide. J Hazard Mater. 2013; 250-251: 99-105. https://doi.org/10.1016/j.jhazmat.2013.01.050

Liu Y, Hu J, Wang J. Radiation-induced removal of sulphadiazine antibiotics from wastewater. Environ Technol. 2014; 35: 2028-2034. https://doi.org/10.1080/09593330.2014.889761

Bojanowska-Czajka A, Pyszynska M, Majkowska-Pilip A, Wawrowicz K. Degradation of selected antidepressants sertraline and citalopram in ultrapure water and surface water using gamma radiation. Processes. 2022; 10: 63. https://doi.org/10.3390/pr10010063

Sun Y, Madureira J, Justino GC, Cabo Verde S, Chmielewska-Śmietanko D, Sudlitz M, et al. Diclofenac degradation in aqueous solution using electron beam irradiation and combined with nanobubbling. Appl Sci. 2024; 14: 6028. https://doi.org/10.3390/app14146028

Dong Y, Sun Y, Bulka S, Wang W. Degradation of tetracycline in aqueous solution by electron beam: kinetics and degradation mechanism. Radiat Phys Chem. 2025; 236: 112939. https://doi.org/10.1016/j.radphyschem.2025.112939

Trojanowicz M, Bartosiewicz I, Bojanowska-Czajka A, Kulisa K, Szreder T, Bobrowski K, et al. Application of ionizing radiation in decomposition of perfluorooctanoate (PFOA) in waters. Chem Eng J. 2018; 357: 698-714. https://doi.org/10.1016/j.cej.2018.09.065

Bojanowska-Czajka A, Drzewicz P, Zimek Z, Nichipor H, Nałęcz-Jawecki G, Sawicki J, et al. Radiolytic degradation of pesticide 4-chloro-2-methylphenoxyacetic acid (MCPA) – Experimental data and kinetic modelling. Radiat Phys Chem. 2007; 76: 1806-14. https://doi.org/10.1016/j.radphyschem.2007.02.114

Zhuan R, Wang J. Degradation of sulfamethoxazole by ionizing radiation: Kinetics and implications of additives. Sci Total Environ. 2019; 668: 67-73. https://doi.org/10.1016/j.scitotenv.2019.03.027

Zhu F, Pan J, Zou Q, Wu M, Wang H, Xu G. Electron beam irradiation of typical sulfonamide antibiotics in the aquatic environment: kinetics, removal mechanisms, degradation products and toxicity assessment. Chemosphere. 2021; 274: 129713. https://doi.org/10.1016/j.chemosphere.2021.129713

Haag WR, Yao CCD. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol. 1992; 26: 1005-13. https://doi.org/10.1021/es00029a021

Wojnarovits L, Takacs E. Rate coefficient of hydroxyl radical reaction with pesticide molecules and related compounds: a review. Radiat Phys Chem. 2014; 96: 120-34. https://doi.org/10.1016/j.radphyschem.2013.09.003

Cooper WJ, Nickelsen MG, Mezyk SP, Leslie G, Tornatore PM, Hardison W, et al. MTBE and priority contaminant treatment with high energy electron beam injection. Radiat Phys Chem. 2002; 65: 451-460. https://doi.org/10.1016/S0969-806X(02)00344-4

Spinks JWT, Woods KJ. Introduction to Radiation Chemistry. 3rd ed. New York: John Wiley & Sons; 1990.

Kim TH, Kim SD, Kim HY, Lim SJ, Lee M, Yu S. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV. J Hazard Mater. 2012; 227-228: 237-42. https://doi.org/10.1016/j.jhazmat.2012.05.038

Trojanowicz M, Bojanowska-Czajka A, Capodaglio AG. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ Sci Pollut Res. 2017; 24: 20187-208. https://doi.org/10.1007/s11356-017-9836-1

Kot-Wasik AL, Dębska J, Namieśnik J. Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products. TrAC Trends Anal Chem. 2007; 26: 557-68. https://doi.org/10.1016/j.trac.2006.11.004

Dmitrienko SG, Kochuk EV, Apyari VV, Tolmacheva VV, Zolotov YA. Recent advances in sample preparation techniques and methods of sulfonamides detection – A review. Anal Chim Acta. 2014; 850: 6-25. https://doi.org/10.1016/j.aca.2014.08.023

Kengne BT, Wang S, Sun Y, Wang J, Bulka S. Electron beam irradiation-induced degradation of sulfadiazine in aqueous solutions. Water. 2025; 17: 1077. https://doi.org/10.3390/w17071077

Nagaraja P, Sunitha KR, Vasantha RA, Yathirajan HS. Iminodibenzyl as a novel coupling agent for the spectrophotometric determination of sulfonamide derivatives. Eur J Pharm Biopharm. 2002; 53: 187-92. https://doi.org/10.1016/S0939-6411(01)00235-1

Errayess SA, Lahcen AA, Idrissi L, Marcoaldi C, Chiavarini S, Amine A. A sensitive method for the determination of sulfonamides in seawater samples by solid phase extraction and UV-visible spectrophotometry. Spectrochim Acta A Mol Biomol Spectrosc. 2017; 181: 276-85. https://doi.org/10.1016/j.saa.2017.03.061

Assassi N, Tazerouti A, Canselier JP. Analysis of chlorinated, sulfochlorinated and sulfonamide derivatives of n-tetradecane by gas chromatography/mass spectrometry. J Chromatogr A. 2005; 1071: 71-80. https://doi.org/10.1016/j.chroma.2005.01.102

Begou O, Drabert K, Theodoridis G, Tsikas D. GC-NICI-MS analysis of acetazolamide and other sulfonamide (R-SO₂-NH₂) drugs as pentafluorobenzyl derivatives [R-SO₂-N(PFB)₂] and quantification of pharmacological acetazolamide in human urine. J Pharm Anal. 2020; 10: 49-59. https://doi.org/10.1016/j.jpha.2019.11.006

Sun L, Chen L, Sun X, Du X, Yue Y, He D, et al. Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UV detection. Chemosphere. 2009; 77: 1306-12. https://doi.org/10.1016/j.chemosphere.2009.09.049

Białk-Bielińska A, Siedlewicz G, Stępnowski P, Pazdro K, Fabiańska A, Kumirska J. A very fast and simple method for the determination of sulfonamide residues in seawaters. Anal Methods. 2011; 3: 1371-78. https://doi.org/10.1039/c0ay00763c

Raich-Montiu J, Folch J, Compañó R, Granados M, Prat MD. Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-fluorescence. J Chromatogr A. 2007; 23: 186-93. https://doi.org/10.1016/j.chroma.2007.10.010

Díaz-Cruz MS, García-Galán MJ, Barceló D. Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography–quadrupole linear ion trap–mass spectrometry. J Chromatogr A. 2008; 1193: 50-9. https://doi.org/10.1016/j.chroma.2008.03.029

Yuan SF, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, et al. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant. Sci Total Environ. 2019; 653: 815-21. https://doi.org/10.1016/j.scitotenv.2018.10.417

Chu L, Wang J, Liu Y. Degradation of sulfamethazine in sewage sludge mixture by gamma irradiation. Radiat Phys Chem. 2015; 108: 102-5. https://doi.org/10.1016/j.radphyschem.2014.12.002

Sagi G, Csay T, Patzay G, Csonka E, Wojnarovits L, Takacs E. Oxidative and reductive degradation of sulfamethoxazole in aqueous solutions: decomposition efficiency and toxicity assessment. J Radioanal Nucl Chem. 2014; 301: 475-82. https://doi.org/10.1007/s10967-014-3134-x

Nałęcz-Jawecki G. Water enviroment toxicity investigated by bioassays. Prospect Pharm Sci. 2003; 2: 11-7. https://doi.org/10.56782/pps.41

Liu N, Huang W, Li Z, Shao H, Wu M, Lei J, et al. Radiolytic decomposition of sulfonamide antibiotics: implications to the kinetics, mechanisms and toxicity. Sep Purif Technol. 2018; 202: 259-65. https://doi.org/10.1016/j.seppur.2018.03.060

Kim HY, Yu SH, Lee MJ, Kim TH, Kim SD. Radiolysis of selected antibiotics and their toxic effects on various aquatic organisms. Radiat Phys Chem. 2009; 78: 267-72. https://doi.org/10.1016/j.radphyschem.2009.01.010

Sági G, Bezsenyi A, Kovács K, Klátyik S, Darvas B, Székács A, et al. Radiolysis of sulfonamide antibiotics in aqueous solution: degradation efficiency and assessment of antibacterial activity, toxicity and biodegradability of products. Sci Total Environ. 2018; 622-623: 1009-15. https://doi.org/10.1016/j.scitotenv.2017.12.065

Huang Y, Kong M, Coffin S, Cochran KH, Westerman DC, Schlenk D, et al. Degradation of contaminants of emerging concern by UV/H₂O₂ for water reuse: kinetics, mechanisms, and cytotoxicity analysis. Water Res. 2020; 174: 115587. https://doi.org/10.1016/j.watres.2020.115587

Liu Y, Wang J, Zhou Z, Zheng X, Zhao L, Yu A. The degradation, biodegradability and toxicity evaluation of sulfamethazine antibiotics by gamma radiation. Open Chem. 2020; 18: 1188-1194. https://doi.org/10.1515/chem-2020-0156

Dainton FS, Peterson DB. Forms of H and OH produced in the radiolysis of aqueous systems. Proc R Soc Lond A Math Phys Sci. 1962; 267(1331): 443-63. https://doi.org/10.1098/rspa.1962.0112

Wojnarovits L, Takacs E, Dajka K, Emmi S, Russo M, D'Angelantonini M. Re-evaluation of the rate constant for the H atom reaction with tert-butanol in aqueous solution. Radiat Phys Chem. 2004; 68: 217-9. https://doi.org/10.1016/S0969-806X(03)00461-4

Wang S, Wang J. Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions. Chem Eng J. 2018; 351: 688-96. https://doi.org/10.1016/j.cej.2018.06.137

Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radical (●OH/●O-) in aqueous solution. J Phys Ref Data. 1988; 17: 513-31. https://doi.org/10.1063/1.555805

Chen H, Wang J. Degradation of sulfamethoxazole by ozonation combined with ionizing radiation. J Hazard Mater. 2021; 407: 124377. https://doi.org/10.1016/j.jhazmat.2020.124377

Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ. 2010; 99: 27-42. https://doi.org/10.1016/j.apcatb.2010.06.033

Zhuan R, Wang J. Enhanced mineralization of sulfamethoxazole by gamma radiation in the presence of Fe₃O₄ as Fenton-like catalyst. Environ Sci Pollut Res. 2019; 26: 27712-25. https://doi.org/10.1007/s11356-019-05925-1

Wang JL, Xu LJ. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol. 2012; 42: 251-325. https://doi.org/10.1080/10643389.2010.507698

Rivas-Ortiz IB, Cruz-González G, Lastre-Acosta AM, Manduca-Artiles M, Rapado-Paneque M, Chávez-Ardanza A, et al. Optimization of radiolytic degradation of sulfadiazine by combining Fenton and gamma irradiation processes. J Radioanal Nucl Chem. 2017; 314: 2597-607. https://doi.org/10.1007/s10967-017-5629-8

Bojanowska-Czajka A, Drzewicz P, Kozyra C, Nałęcz-Jawecki G, Sawicki J, Szostek B, et al. Radiolytic degradation of herbicide 4-chloro-2-methyl phenoxyacetic acid (MCPA) by gamma radiation for environmental protection. Ecotoxicol Environ Saf. 2006; 65: 265-77. https://doi.org/10.1016/j.ecoenv.2005.07.015

Huang X, Wen D, Wang J. Radiation-induced degradation of sulfonamide and quinolone antibiotics: a brief review. Radiat Phys Chem. 2024; 215: 111373. https://doi.org/10.1016/j.radphyschem.2023.111373

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Anna Bojanowska-Czajka, Yongxia Sun, Jianlong Wang