Time Series in the Study of Seismic Regime of Vrancea (Romania) Seismic Zone
Abstract - 95
PDF

Keywords

Simple seasonal
winters
ARIMA models
autocorrelation
periodogramm.

How to Cite

1.
R.Z. Burtiev. Time Series in the Study of Seismic Regime of Vrancea (Romania) Seismic Zone. Glob. Environ. Eng. [Internet]. 2015 Jan. 10 [cited 2024 Nov. 16];1(2):54-63. Available from: https://avantipublishers.com/index.php/tgevnie/article/view/219

Abstract

In the series of monthly number of earthquakes is present long-term systematic component. The assumption about stationary of the average value and the variance is rejected. Statistically significant autocorrelation coefficients mean that the time series is not random, and there is some connection between successive levels. In order to predict a series of exponential smoothing method was used. Best model is simple seasonal for the logarithm of the levels, and Winters additive for the square root level of the original series. The research of time series confirms that the ARIMA (0, 1, 2) x (1, 0, 1) s model can be used to the analysis and prediction of uniform non-stationary time series with a nonlinear trend, such as a polynomial of low degree. Prediction for 2012 is computed using simple Simple seasonal, Winters and ARIMA models.

https://doi.org/10.15377/2410-3624.2014.01.02.4
PDF

References

Box J, Jenkins G. Analiz vremennyh ryadov. Prognoz i upravlenie (in Russian), Vyp 1 Mir: Moskva 1974.

Christine Bernhardt. Modellierung von Elektrizitätspreisen durch lineare Zeitreihenmodelle und Value-at-Risk Schätzung mittels Methoden aus der Extremwerttheorie (in German), Technische Universität München, Zentrum Mathematik, München 2007.

Rasid Burtiev, Fernanda Greenwell, Vitalii Kolivenko. Time series analysis of wind speed and temperature in Tiraspol, Moldova. Environmental Engineering and Management Journal 2013; 12: 23-33.

Eliseeva II, Juzbashev MM. Obshaya teoriya statistiki. (in Russian). Financy i Statistika: Moskva 2004.

Fisz M. Probability and Mathematical Statistics (in German), VEBDeutscher Verlag der Wissenschaften: Berlin 1966.

Marcel Dettling, Angewandte Zeitreihenanalyse (in German). Zürcher Hochschule für Angewandte Wissenschaften: Zürich 2008.

Kislyak NV. Econometrics (in Russian), Ekaterinburg 2007.

Toutenburg H, Heumann C, Deskriptive Statistik. Eine Einfuhrung in Methoden und Anwendungen mit R und SPSS (in German). Springer-Verlag: Berlin-Heidelberg, 2008.

Kendall M. Vremennye ryady (in Russian). Nauka: Moskva 1981.

Spezialvorlesung. Zeitreihenanalyse mit Beispielen in Mathematica (in German). Institut für Stochastik. Johannes Kepler Universitat Linz: Linz 2006.

Soong TT. Fundamentals of Probability and Statistics for Engineers. State University of New York at Buffalo: New York 2004.

Shanchenko NI. Lekcii po ekonometrike (in Russian). Ulyanovsk 2008.

Teusch A. Einführung in die Spektral- und Zeitreihen analyse mit Beispielen aus der Geodäsie (in German). Verlag der Bayerischen Akademie der Wissenschaften: München 2006.

Kramer G. Matematicheskie metody statistiki (in Russian), Mir, Moskva 1975.

Vaidogas ER, Juocevicius V. A critical estimation of data on extreme winds in Lithuania. Journal of Environmental Engineering and Landscape Management 2012; 19: 178-88. http://dx.doi.org/10.3846/16486897.2011.579452

Leshinsky OL, Ryazantseva VA, Yunkova OO (in Ukrainian). Ekonometriya: Kiev 2003.

Glass GV, Glass GV, Willson VL, Gottman JM. Design and Analysis of Time- Series Experiments. Colorado Associated University Press: USA 2009.

Kolmogorov AN, Fomin SV. Elementy teorii funkcii i funkcional'nogo analiza (in Russian), Nauka: Moskva 1976.

Piskunov NS. Differencial'noe i integral'noe ischislenie (in Russian), Nauka: Moskva 1964.

Rytov SM. Vvedenie v statisticheskuyu radiofiziku (in Russian), Nauka: Moskva, 1976.

SPSS Trends ™ 14.0, Copyright ©2005SPSS Inc. Chicago 2005.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 R.Z. Burtiev