Energy Optimization of Reactive Distillation Columns for Biodiesel by Pinch Point Analysis

Authors

  • Rangel-Hernández V.H. University of Guanajuato,Salamanca-Valle de Santiago km 3.5+1.8, CP-36885, Mexico
  • Chaveza-Rosa H. Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, C.P. 52750, México
  • Niño Avendaño Andrés M. University of Guanajuato, Salamanca-Valle de Santiago km 3.5+1.8, CP-36885, Mexico

DOI:

https://doi.org/10.15377/2409-5818.2017.04.01.1

Keywords:

Biodiesel, reactive distillation, method Point Pinch Analysis

Abstract

This papers aims at optimizing the energy consumption of reactive distillation columns for simulation of biodiesel production. The design of the proposed biodiesel production uses lauric acid (C12H24O2) as feedstock in a reactive distillation column. In order to do so, selection has been done by selecting the design parameters of the column: the number of stages, feeding flows, reflux ratio, the height of the transfer unit as well as the analysis of the Sulzer BX packing. ASPEN PLUSTM simulation software has been used to work out the thermodynamic steady state of the system on which the optimization is based on. Energy optimization is carried out through the Pinch Point Analysis. Thus it has been proven that the Pinch Point Analysis allows optimization of the heat exchange network in a distillation column. Results showed that it is possible to reduce drastically the energy requirements of a distillation process up to 60 %. The heat exchange network showed that is promising to design more energy-efficient and environment-friendly distillation process for production of biodiesel.

Author Biographies

  • Rangel-Hernández V.H., University of Guanajuato,Salamanca-Valle de Santiago km 3.5+1.8, CP-36885, Mexico

    Mechanical Engineering Department, Engineering Division, Campus Irapuato-Salamanca

  • Chaveza-Rosa H., Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, C.P. 52750, México

    Instituto Nacional de Investigaciones Nucleares

  • Niño Avendaño Andrés M., University of Guanajuato, Salamanca-Valle de Santiago km 3.5+1.8, CP-36885, Mexico

    Mechanical Engineering Department, Engineering Division, Campus Irapuato-Salamanca

References

Mueanmas C, Prasertsit K, Tongurai C. Transesterification of triolein with methanol in reactive distillition column: Simulation studies. International Journal of Chemical Reactor Engineering 2010; 8: A141. DOI: https://doi.org/10.2202/1542-6580.2314

Talebian-Kiakalaieh A, Amin NAS, Mazaheri H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy 2013; 104: 683-710. https://doi.org/10.1016/j.apenergy.2012.11.061 DOI: https://doi.org/10.1016/j.apenergy.2012.11.061

Lee AF, Bennett JA, Manayil JC, Wilson K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews 2014; 43(22): 7887-7916. https://doi.org/10.1039/C4CS00189C DOI: https://doi.org/10.1039/C4CS00189C

Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO. A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy 2014; 61: 276-297. https://doi.org/10.1016/j.biombioe.2013.11.014 DOI: https://doi.org/10.1016/j.biombioe.2013.11.014

Carraretto C, Macor A, Mirandola A, Stoppato A, Tonon S. Biodiesel as alternative fuel. Experimental Analysis and Energetic Evaluations. Energy 2004; 29: 2195-2211. DOI: https://doi.org/10.1016/j.energy.2004.03.042

Islas J, Manzini F, Masera O. A prospective study of bioenergy use in Mexico. Energy 2007; 32: 2306-2320. DOI: https://doi.org/10.1016/j.energy.2007.07.012

Quintero JA, Montoya MI, Sánchez OJ, Giraldo OH, Cardona CA. Fuel ethanol production from sugarcane and corn: Comparative analysis for a colombian case. Energy 2008; 33: 385-399. https://doi.org/10.1016/j.energy.2007.10.001 DOI: https://doi.org/10.1016/j.energy.2007.10.001

Kiss AA, Dimian AC, Rothenberg G. Biodiesel by catalytic reactive distillation powered by metal oxides. Energy and Fuels 2007; 22(1): 598-604. https://doi.org/10.1021/ef700265y DOI: https://doi.org/10.1021/ef700265y

Kleinova A, Cvengrosova Z, Mikulec J, Cvengros J. Properties of fatty acids methyl esters from used frying oils. Chemical Engineering Transactions 2010; 21: 667-672.

Masera Cerutti O, Rodríguez Martínez N, Lazcano Martínez I, Horta Nogueira LA, Macedo Isaias C, Trindade Sergio C, et al. (2006). Potenciales y viabilidad del uso de bioetanol y biodiesel para el transporte en México. Proyectos ME-T1007 – ATN/DO-9375-ME y PN 04.2148.7-001.00.

Mu-oz Carlo. Biodiesel: Energético para el Auto Transporte Público del Estado de Jalisco. Centro de Ingeniería Renovable de la Universidad Autónoma de Guadalajara. 2010.

Amiya KJ. Heat Integrated Distillation Operation. Applied Energy 2010; 87: 1477-1404. https://doi.org/10.1016/j.apenergy.2009.10.014 DOI: https://doi.org/10.1016/j.apenergy.2009.10.014

Humphrey JL, Siebert AF. Separation technologies: An opportunity for energy saving. Chem Eng Prog 1992; 92.

Engelien HK, Skogestad S. Selecting appropriate control variables for a heat integrated distillation system with prefractioner. Comput Chem Eng 2004; 28: 683-691. DOI: https://doi.org/10.1016/j.compchemeng.2004.02.023

Hernandez S, Segovia-Hernandez JG, Juárez-Trujillo L, Estrada-Pacheco JE, Maya-Yescas R. Design study of the control of a reactive thermally coupled distillation sequence for the esterification of fatty organic acids. Chem Eng Comm 2010; 1: 1-18. https://doi.org/10.1080/00986445.2010.493102 DOI: https://doi.org/10.1080/00986445.2010.493102

Mascia M, Ferrara F, Vacca A, Tola G, Enricco M. Design of heat integrated distillation system for a light ends separation plant. Appl Therm Eng 2007; 27: 1205-1211. https://doi.org/10.1016/j.applthermaleng.2006.02.045 DOI: https://doi.org/10.1016/j.applthermaleng.2006.02.045

Rong BG, Turunen I. A new method for synthesis of thermodynamically equivalent structures for Petlyuk arrangements. Trans Inst Chem Eng Part A 2006; 84: 1095-1116. DOI: https://doi.org/10.1205/cherd06012

Plesu AE, Bonet J, Plesu V, Bozga G, Galan MI. Residue curves map analysis for tert-amyl methyl ether synthesis by reactive distillation in kinetically controlled conditions with energy-saving evaluation. Energy 2008; 33: 1572-1589. DOI: https://doi.org/10.1016/j.energy.2008.07.014

Malinen I, Tanskanen J. A rigorous minimum energy calculation method for a fully thermally coupled distillation system. Trans Inst Chem Eng Part A 2007; 85: 502-509. https://doi.org/10.1205/cherd06086 DOI: https://doi.org/10.1205/cherd06086

Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T. Internally heat-integrated distillation columns: a review. Trans Inst Chem Eng 2007; 81: 162-177. DOI: https://doi.org/10.1205/026387603321158320

Null HR. Heat pumps in distillation. Chem Eng Prog 1976; 42: 249-258.

Lueprasitsakul V, Hasebe S, Hashimoto I, Takamatsu T. Study of energy efficiency of a wetted-wall distillation column with internal heat integration. J Chem Eng Jpn 1990; 23: 580-587. https://doi.org/10.1252/jcej.23.580 DOI: https://doi.org/10.1252/jcej.23.580

Kaymak DB, Luyben WL. Comparison of two types of twotemperature control structures for reactive distillation columns. Ind Eng Chem Res 2005; 44: 4625. DOI: https://doi.org/10.1021/ie058012m

Triantafyllou C, Smith R. The design and optimization of fully thermally coupled distillation columns. Trans Inst Chem Eng 1992; 70: 118-132.

Boon-Anuwat N-N, Kiatkittipong W, Aiouache F, Assabumrungrat S. Process design of continuos biodiesel production by reactive distillation: Comparison between homogeneous and heterogeneous catalysts. Chem Eng Process: Process Intensif 2015; 92: 33-44. DOI: https://doi.org/10.1016/j.cep.2015.03.025

Miranda-Galindo E, Segovia-Hernández J, Hernández, De la Rosa Álvarez G, Gutierrez C, Briones-Ramírez A. Design of reactive distillation with thermal coupling for the synthesis or biodiesel using genetic algorithms. 19th European Symposium on Computer Aided Process Engineering 2009; 26: 549-554. https://doi.org/10.1016/S1570-7946(09)70092-6 DOI: https://doi.org/10.1016/S1570-7946(09)70092-6

Murch DP. Height of equivalent theoretical plate in packed fractionation columns. Engineering and Process Development 1953; 45: 12: 2616-2621. DOI: https://doi.org/10.1021/ie50528a022

Dimian A, Bildea CS, Omota F. Innovative process for fatty acid esters by dual reactive distillation. Computers and Chemical Engineering 2008. DOI: https://doi.org/10.1016/j.compchemeng.2008.09.020

Humphrey JL, Seibert AF, Koort RA. Separation technologies advances and priorities. Final Report for US Department of Energy. Office of Industrial Technologist, Washington, DC. 1991.

De Koeijer G, Kjelstrup S. Minimizing entropy production in binary tray distillation. Int J Appl Thermodyn 2000; 3:105-110.

Downloads

Published

2017-03-01

Issue

Section

Articles

How to Cite

1.
Energy Optimization of Reactive Distillation Columns for Biodiesel by Pinch Point Analysis. Glob. J. Energy. Technol. Res. Updates. [Internet]. 2017 Mar. 1 [cited 2026 Feb. 13];4(1):1-8. Available from: https://avantipublishers.com/index.php/gjetru/article/view/759

Similar Articles

31-35 of 35

You may also start an advanced similarity search for this article.