Mass Transfer Resistances at the Boundary of a Fractured Porous Medium
Abstract - 166
PDF

Keywords

Averaging volume
fractured porous media
surface transport equation
mass transfer
numerical model
interfacial effects.

How to Cite

1.
Epifanio Morales-Zárate, Gilberto Espinosa-Paredes. Mass Transfer Resistances at the Boundary of a Fractured Porous Medium. Int. J. Pet. Technol. [Internet]. 2014 Nov. 17 [cited 2024 Nov. 15];1(1):3-7. Available from: https://avantipublishers.com/index.php/ijpt/article/view/109

Abstract

The aim of this paper is the study of the mass transfer resistance effects at the boundary of a fractured porous media. The boundary between the porous media adjacent to the fluid considers the transient effects. The numerical experiments show that the α parameter has an influence that facilitates the mass transfer of the porous region to the fluid region. The α parameter expresses the relation of the mass transfer resistances between the porous media and the homogeneous fluid; in the present work it is considered as a parameter which facilities mass transfer of the porous region to the fluid region.

https://doi.org/10.15377/2409-787X.2014.01.01.1
PDF

References

Rangel-German ER, Kovscek AR. Water Infiltration in Fractured Systems: Experiments and Analytical Model. In: SPE Annual Technical Conference and Exhibition. New Orleans – Louisiana 2001. http://dx.doi.org/10.2118/71618-MS

Kaya E, Zarrouk SJ, O'Sulliva. MJ. Reinjection in geothermal fields: A review of worldwide experience. Renewable and Sustainable Energy Reviews 2011; 15: 47-68. http://dx.doi.org/10.1016/j.rser.2010.07.032

Beavers G, Joseph D. Boundary conditions at a naturally permeable Wall, J. Fluid Mech 1967; 30: 197- 207. http://dx.doi.org/10.1017/S0022112067001375

Neale G, Nader W. Practical signicance of Brinkman´s extension of Darcy´s law: coupled parallel flows within a channel and a bounding porous medium. Can J Chem Energ 1974; 52: 475-478. http://dx.doi.org/10.1002/cjce.5450520407

Vafai K, Tien CL. Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transfer 1981; 24: 195-203. http://dx.doi.org/10.1016/0017-9310(81)90027-2

Haber S, Mauri R. Boundary conditions for Darcy´s flow through porous media. Int J Multiphase Flow 1983; 9: 561- 574. http://dx.doi.org/10.1016/0301-9322(83)90018-6

Poulikakos D, Kazmierczak M. Forced convection in a duct partially filled with a porous material. J Heat Transfer 1987; 109: 653-662. http://dx.doi.org/10.1115/1.3248138

Prat M. On the boundary conditions at the macroscopic level. Transport in Porous Media 1989; 4: 259-280. http://dx.doi.org/10.1007/BF00138039

Vafai K. Kim SJ. Fluid mechanics of the interface region between a porous medium and a fluid layer – an exact solution. Int J Heat Fluid Flow 1990; 11: 254-256. http://dx.doi.org/10.1016/0142-727X(90)90045-D

Prat M. Some refinements concerning the boundary conditions at the macroscopic level. Transport in Porous Media 1992; 7: 147-161. http://dx.doi.org/10.1007/BF00647394

Jang JY, Chen JL. Forced convection in a parallel plate channel partially filled with a high porosity medium. Int Commun Heat Mass Transfer 1992; 19: 263-273. http://dx.doi.org/10.1016/0735-1933(92)90037-I

Sahraoui M, Kaviany M. Slip and no slip temperature boundary conditions at the interface of porous, plain media: Convection. Int Heat Mass Trans 1994; 37: 1029-1044. http://dx.doi.org/10.1016/0017-9310(94)90227-5

Kuznetsov AV. Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl Sci Res 1996; 56: 53-67. http://dx.doi.org/10.1007/BF02282922

Alazmi B, Vafai K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int J Heat Mass Trans 2001; 44: 1735-1749. http://dx.doi.org/10.1016/S0017-9310(00)00217-9

Espinosa-Paredes G. Jump mass transfer for double emulsion systems. International Mathematical Forum 2 2007; (32): 1553-1570.

Espinosa-Paredes G, Morales-Zárate E, Vázquez-Rodríguez A. Analytical Analysis for Mass Transfer in a Fractured Porous Medium. Petroleum Science and Technology 2013; 31: 2004-2012. http://dx.doi.org/10.1080/10916466.2011.557681

Gwo JP, O’Brien R, Jardine PM. Mass transfer in structured porous media: Embedding mesoscale structure and microscale hydrodynamics in a two-region model. J Hydrologic 1998; 208: 204-222. http://dx.doi.org/10.1016/S0022-1694(98)00161-9

Gibbs JW. The Collected Works of J. Willard Gibbs, vol. 1, Yale University Press, New Haven, Connecticut 1928.

Slattery JC. Interfacial Transport Phenomena. Springer- Verlag, New-York 1990.

Kaviany M. Principles of Heat Transfer in Porous Media, (Second Edition) Springer-Verlang, New York 1995. http://dx.doi.org/10.1007/978-1-4612-4254-3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2014 Epifanio Morales-Zárate, Gilberto Espinosa-Paredes

Downloads

Download data is not yet available.